Evaluation of sclerostin as a new biomarker in the diagnosis of osteoporosis
https://doi.org/10.18019/1028-4427-2025-31-5-625-631
Abstract
Background Sclerostin is a glycoprotein mostly produced by osteocytes; it has a key function in bone metabolism and the pathophysiology of osteoporosis.
Objectives The aim of this study is to evaluate the potential use of sclerostin as a new biomarker in the diagnosis of osteoporosis.
Methods This case-control cross-sectional study was carried in Najaf, in Iraq. Seventy patients diagnosed with osteoporosis were involved in the study. The control group consisted of 40 apparently healthy persons identified during the same period. Body Mass Index (BMI) categories were classified according to the world health organization classification. Serum sclerostin levels were determined by a sandwich ELISA technique.
Results The mean sclerostin concentration in patients was 7.9 ± 2.3 ng/mL, much greater than that measured in the control group 2.88 ± 1.22 ng/mL. The univariate logistic regression analysis shows a significant association between high sclerostin levels and the likelihood of having osteoporosis, with an odds ratio of 1.66 and a p-value of < 0.034. The results also indicated that sclerostin reported a sensitivity of 78 % and specificity of 82 % (p-value 0.029).
Conclusions This study indicated a strong association between high serum sclerostin levels and having osteoporosis risk, suggesting its potential as a bone health biomarker. Further research on larger sample is required to confirm its diagnostic value.
Keywords
About the Authors
A. K.H. Al-MasoodyIraq
Ali Kareem Hameed Al-Masoody
Babylon
S. A. Naser
Iraq
Salena Abdulabbas Naser
Babylon
M. N. AL-Khafaji
Iraq
Mayada Nazar AL-Khafaji
Babylon
A. A. Al-Fahham
Iraq
Ali A. Al-Fahham — Professor, Faculty of Nursing
Najaf
References
1. Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287(50):42084-42092. doi: 10.1074/jbc.M112.377515.
2. Maeda K, Kobayashi Y, Koide M, et al. The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci. 2019;20(22):5525. doi: 10.3390/ijms20225525.
3. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121- 132. doi: 10.1007/s00223-013-9749-z.
4. Walker EC, Mcgregor NE, Poulton IJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest. 2010;120(2):582-592. doi: 10.1172/JCI40568.
5. Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag. 2018;14:2029-2049. doi: 10.2147/TCRM.S138000.
6. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29-37. doi: 10.1016/j.bone.2016.10.007.
7. Li H, Wang Z, Fu Q, Zhang J. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers. 2014;19(7):553-556. doi: 10.3109/1354750X.2014.935957.
8. Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease--related markers in Japanese postmenopausal women. J Clin Endocrinol Metab. 2012;97(8):E1473-1477. doi: 10.1210/jc.2012-1218.
9. Recker RR, Benson CT, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 2015;30(2):216-224. doi: 10.1002/jbmr.2351.
10. Kuo TR, Chen CH. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res. 2017;5:18. doi: 10.1186/s40364-017-0097-4.
11. Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489-19500. doi: 10.1074/jbc.M110.190330.
12. Chiu CT, Lee JI, Lu CC, et al. The association between body mass index and osteoporosis in a Taiwanese population: a cross-sectional and longitudinal study. Sci Rep. 2024;14(1):8509. doi: 10.1038/s41598-024-59159-4.
13. Walsh JS, Vilaca T. Obesity, Type 2 Diabetes and Bone in Adults. Calcif Tissue Int. 2017;100(5):528-535. doi: 10.1007/s00223-016-0229-0.
14. Lloyd JT, Alley DE, Hawkes WG, et al. Body mass index is positively associated with bone mineral density in US older adults. Arch Osteoporos. 2014;9:175. doi: 10.1007/s11657-014-0175-2.
15. Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res. 1993;8(5):567-573. doi: 10.1002/jbmr.5650080507.
16. Wu SF, Du XJ. Body Mass Index May Positively Correlate with Bone Mineral Density of Lumbar Vertebra and Femoral Neck in Postmenopausal Females. Med Sci Monit. 2016;22:145-151. doi: 10.12659/msm.895512.
17. Polyzos S, Anastasilakis A, Bratengeier C, et al. Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women--the six-month effect of risedronate and teriparatide. Osteoporos Int. 2012;23(3):1171-1176. doi: 10.1007/s00198-010-1525-6.
18. Reppe S, Noer A, Grimholt RM, et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res. 2015;30(2):249-256. doi: 10.1002/jbmr.2342.
19. Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease--related markers in Japanese postmenopausal women. J Clin Endocrinol Metab. 2012;97(8):E1473-1477. doi: 10.1210/jc.2012-1218.
20. Bousson V, Bergot C, Sutter B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489-1501. doi: 10.1007/s00198-011-1824-6.
21. Akkawi I, Zmerly H. Osteoporosis: Current Concepts. Joints. 2018;6(2):122-127. doi: 10.1055/s-0038-1660790.
22. Compston J, Cooper A, Cooper C, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43. doi: 10.1007/s11657-017-0324-5.
23. Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3-44. doi: 10.1007/s00198-018-4704-5.
24. Hlaing TT, Compston JE. Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem. 2014;51(Pt 2):189-202. doi: 10.1177/0004563213515190.
25. Yu Y, Wang L, Ni S, et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun. 2022;13(1):4241. doi: 10.1038/s41467-022-31997-8.
26. D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal. 2018;28(8):711-732. doi: 10.1089/ars.2017.7178.
Review
For citations:
Al-Masoody A.K., Naser S.A., AL-Khafaji M.N., Al-Fahham A.A. Evaluation of sclerostin as a new biomarker in the diagnosis of osteoporosis. Genij Ortopedii. 2025;31(5):625-631. https://doi.org/10.18019/1028-4427-2025-31-5-625-631