Experimental evaluation of CA3(PO4)2 based bone substitutes using rat femoral defect models
https://doi.org/10.18019/1028-4427-2025-31-2-226-236
Abstract
Introduction Replacement of bone defects is an important issue of modern traumatology and orthopedics. With increasing technological advances there is a spectrum of bone-substituting materials, and the choice of the effective option is essential for biomedical research.
The objective was to determine the effect of the three-dimensional structure and pore size of tricalcium phosphate based bone substitute materials on osteoconduction using a critical diaphyseal defect of the rat femur.
Material and methods A monocortical 7 mm defect was simulated in the middle third of the rodent femoral shaft under anaesthesia and filled with blocks of one of four tricalcium phosphate based materials differing in the number, size and direction of pores. Eight rats from each group were sacrificed at 3 and 6 months, and the newly formed bone was histologically examined and the results compared using statistical methods.
Results The bone tissue was shown to grow into the defect area through the pores of the material in all the groups at 3 and 6 months, The newly formed bone measured (11 ± 4) % and (31 ± 6) % of the defect area in the Cylinders group, (14 ± 5) % and (29 ± 4) % in the Gyroid group; (39 ± 5) % and (41 ± 7) % in the Gyroid-150 μm group and (17 ± 7) % and (27 ± 8) % in the Gyroid-50 μm group, respectively. The area of newly formed bone was statistically greater in the Gyroid-150 µm group compared to that in the other groups (p < 0.05, Kruskal – Wallis test).
Discussion The effect of the type of architecture of the bone substitute material, the pore size and their relationships are reported in many studies with larger diameter pores (more than 600 μm) improving osteoconduction, and the upper limit of porosity being limited by a decrease in the mechanical properties of the block. The advantages of the Gyroid structure over other types of architectures are described in theoretical and applied research. Structures with pores of different sizes were examined in few studies, and our findings demonstrated the feasibility of using the complex structures and the role in replacing bone tissue.
Conclusion The three-dimensional structure of bone substitute materials based on tricalcium phosphate was shown to have an effect on osteoconductive properties, with an additional pore mode with a diameter of 150 μm added to the Gyroid structure leading to significantly greater experimental bone tissue ingrowth in the sample.
About the Authors
I. M. ShcherbakovRussian Federation
Ivan M. Shcherbakov — Candidate of Medical Sciences, Assistant Professor
Moscow
P. V. Evdokimov
Russian Federation
Pavel V. Evdokimov — Candidate of Chemical Sciences, Senior Researcher, Assistant Professor
Moscow
D. S. Larionov
Russian Federation
Dmitriy S. Larionov — Junior Researcher
Moscow
V. I. Putlayev
Russian Federation
Valeriy I. Putlayev — Candidate of Chemical Sciences, Associate Professor
Moscow
G. A. Shipunov
Russian Federation
Georgiy A. Shipunov — postgraduate student
Moscow
N. V. Danilova
Russian Federation
Nataliya V. Danilova — Candidate of Medical Sciences, Assistant of the Department, Senior Researcher
Moscow
A. Yu. Efimenko
Russian Federation
Anastasiya Yu. Efimenko — Candidate of Medical Sciences, Head of the Laboratory
Moscow
E. S. Novoseletskaya
Russian Federation
Ekaterina S. Novoseletskaya — laboratory assistant-researcher
Moscow
V. E. Dubrov
Russian Federation
Vadim E. Dubrov — Doctor of Medical Sciences, Head of the Department
Moscow
References
1. Farhan YAA, Abdelsameaa SE, Elgamily M, Awad S. Impact of Different Preparations of Tooth Graft vs Xenogeneic Bone Graft on Bone Healing: An Experimental Study. J Contemp Dent Pract. 2022;23(11):1163-1172. doi: 10.5005/jp-journals-10024-3438.
2. Яриков А.В., Горбатов Р.О., Денисов А.А. и др. Применение аддитивных технологий 3D-печати в нейрохирургии, вертебрологии, травматологии и ортопедии. Клиническая практика. 2021;12(1):90-104. doi: 10.17816/clinpract64944.
3. Каралкин П.А., Сергеева Н.С., Комлев В.С. и др. Бактериостатические свойства костнозамещающих конструктов, полученных методом 3D-печати из композиционных материалов на основе природных полимеров, фосфатов кальция и ванкомицина. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2017;24(2):48-56. doi: 10.17816/vto201724248-56.
4. Хоминец В.В., Воробьев К.А., Соколова М.О. и др. Аллогенные остеопластические материалы для реконструктивной хирургии боевых травм. Известия Российской военно-медицинской академии. 2022;41(3):309-314. doi: 10.17816/rmmar109090.
5. Hong YR, Kim TH, Lee K, et al. Bioactive Bone Substitute in a Rabbit Ulna Model: Preclinical Study. Tissue Eng Regen Med. 2023;20(7):1205-1217. doi: 10.1007/s13770-023-00591-4.
6. Tomas M, Karl M, Čandrlić M, et al. A Histologic, Histomorphometric, and Immunohistochemical Evaluation of Anorganic Bovine Bone and Injectable Biphasic Calcium Phosphate in Humans: A Randomized Clinical Trial. Int J Mol Sci. 2023;24(6):5539. doi: 10.3390/ijms24065539.
7. Suzuki O, Hamai R, Sakai S. The material design of octacalcium phosphate bone substitute: increased dissolution and osteogenecity. Acta Biomater. 2023;158:1-11. doi: 10.1016/j.actbio.2022.12.046.
8. Климентьев А.А., Набока В.А. Биологические характеристики биодеградируемого материала на основе фиброина шелка для замещения костной ткани. Медицина теория и практика. 2021;6(3):28-36.
9. Попков А.В., Стогов М.В., Горбач Е.Н. и др. Гидролиз костнозамещающих материалов на основе полимолочной кислоты с добавлением гидроксиапатита в эксперименте in vitro. Бюллетень экспериментальной биологии и медицины. 2022;174(7):114-118.
10. Анастасиева Е.А., Черданцева Л.А., Толстикова Т.Г., Кирилова И.А. Замещение костных дефектов тканеинженерной конструкцией на основе депротеинизированной губчатой кости: экспериментальное исследование. Гений ортопедии. 2023;29(6):602 608. doi: 10.18019/1028-4427-2023-29-6-602-608. EDN: FYLPOS.
11. Vasileva R, Chaprazov T. Bone Healing of Critical-Sized Femoral Defects in Rats Treated with Erythropoietin Alone or in Combination with Xenograft. Vet Sci. 2023;10(3):196. doi: 10.3390/vetsci10030196.
12. Guerrero J, Maevskaia E, Ghayor C, et al. Influence of Scaffold Microarchitecture on Angiogenesis and Regulation of Cell Differentiation during the Early Phase of Bone Healing: A Transcriptomics and Histological Analysis. Int J Mol Sci. 2023;24(6):6000. doi: 10.3390/ijms24066000.
13. Putra NE, Leeflang MA, Klimopoulou M, et al. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes. Acta Biomater. 2023;162:182-198. doi: 10.1016/j.actbio.2023.03.033.
14. Yung WTB, Koo SCJJ, Mak CKM, et al. Clinical and Radiological Outcome of Osteoscopic-Assisted Treatment of Enchondroma in Hand with Artificial Bone Substitute or Bone Graft: A 7-Year Case Series and Literature Review. J Hand Surg Asian Pac Vol. 2023;28(2):214- 224. doi: 10.1142/S2424835523500236.
15. Дробышев А.Ю., Редько Н.А., Свиридов Е.Г., Деев Р.В. Особенности регенерации костной ткани альвеолярного гребня челюстей при применении материала на основе гидроксиапатита. Травматология и ортопедия России. 2021;27(1):9-18. doi: 10.21823/2311-2905-2021-27-1-9-18.
16. Щербаков И.М., Климашина Е.С., Евдокимов П.В. и др. Оценка свойств костнозамещающих материалов на основе полиэтиленгликоль диакрилата и октакальциевого фосфата на модели монокортикального диафизарного дефекта бедренной кости крысы : экспериментальное исследование. Травматология и ортопедия России. 2023;29(1):25-35. doi: 10.17816/2311-2905-2039.
17. Стогов М.В., Киреева Е.А., Дубиненко Г.Е., Твердохлебов С.И. Изучение скорости деградации материала состава полилактид/гидроксиапатит в зависимости от кристалличности структуры полимера. Гений ортопедии. 2023;29(6):591-595. doi: 10.18019/1028-4427-2023-29-6-591-595.
18. Хелминская Н.М., Эттингер А.П., Кравец В.И. и др. Сравнительная оценка регенерации костной ткани при ограниченных дефектах теменной кости (экспериментальное исследование на моделях животных). Российский медицинский журнал. 2018;24(4):180-184. doi: 10.18821/0869-2106-2018-24-4-180-184.
19. Попков А.В., Горбач Е.С., Горбач Е.Н. и др. Применение биоактивного биодеградируемого имплантата из поликапролактона для лечения остеохондральных дефектов: экспериментальное исследование. Гений ортопедии. 2023;29(6):615-628. doi: 10.18019/1028-4427-2023-29-6-615-628.
20. Рождественский А.А., Дзюба Г.Г., Ерофеев С.А. и др. Влияние синтетических имплантатов на основе фосфатов и силикатов кальция на процессы репаративной регенерации костной ткани. Международный журнал прикладных и фундаментальных исследований. 2023;3:25-30. doi: 10.17513/mjpfi.13517.
21. Yano M, Yasui K, Jo JI, et al. Carbonate apatite versus β-tricalcium phosphate for rat vertical bone augmentation: A comparison of bioresorbable bone substitutes using polytetrafluoroethylene tubes. Dent Mater J. 2023;42(6):851-859. doi: 10.4012/dmj.2023-112.
22. Дубров В.Э., Климашина Е.С., Щербаков И.М. и др. Возможности получения и применения биоматериалов на основе гидрогелей для регенерации костной ткани человека. Вестник трансплантологии и внутренних органов. 2019;21(3):141-150. doi: 10.15825/1995-1191-2019-3-141-150.
23. Wen J, Song M, Zeng Y, Dong X. Effect of different HA/β-TCP coated 3D printed bioceramic scaffolds on repairing large bone defects in rabbits. J Orthop Surg (Hong Kong). 2023;31(3):10225536231222121. doi: 10.1177/10225536231222121.
24. Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev. 2017;117(5):4376-4421. doi: 10.1021/acs.chemrev.6b00654.
25. Евдокимов П.В., Тихонова С.А., Киселева А.К. и др. Влияние размера пор на биологическую активность резорбируемых макропористых керамических материалов на основе β-Ca3 (PO4 )2 , полученных методом фотополимеризации. Журнал неорганической химии. 2021;66(11):1507-1513. doi: 10.31857/S0044457X21110064.
26. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676- 682. doi: 10.1038/nmeth.2019.
27. Yang Y, Wang G, Liang H, et al. Additive manufacturing of bone scaffolds. Int J Bioprint. 2018;5(1):148. doi: 10.18063/IJB.v5i1.148.
28. Chen H, Han Q, Wang C, et al. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front Bioeng Biotechnol. 2020;8:609. doi: 10.3389/fbioe.2020.00609.
29. García-Lamas L, Sánchez-Salcedo S, Jiménez-Díaz V, et al. Desing and comparison of bone substitutes. Study of in vivo behavior in a rabbit model. Rev Esp Cir Ortop Traumatol. 2023;67(4):324-333. doi: 10.1016/j.recot.2022.12.002.
30. Анастасиева Е.А., Черданцева Л.А., Медведчиков А.Е. и др. Восстановление рентгеновской плотности кости при замещении дефектов кортикальной пластины тканеинженерной конструкцией в эксперименте. Acta Biomedica Scientifica. 2023;8(5):235 243. doi: 10.29413/ABS.2023-8.5.25.
31. Kim NH, Yang BE, On SW, et al. Customized three-dimensional printed ceramic bone grafts for osseous defects: a prospective randomized study. Sci Rep. 2024;14(1):3397. doi: 10.1038/s41598-024-53686-w.
32. Jiao J, Hong Q, Zhang D, et al. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Front Bioeng Biotechnol. 2023;11:1117954. doi: 10.3389/fbioe.2023.1117954.
33. Seehanam S, Khrueaduangkham S, Sinthuvanich C, et al. Evaluating the effect of pore size for 3d-printed bone scaffolds. Heliyon. 2024;10(4):e26005. doi: 10.1016/j.heliyon.2024.e26005.
34. Wu R, Li Y, Shen M, et al. Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation. Bioact Mater. 2020;6(5):1242-1254. doi: 10.1016/j.bioactmat.2020.11.003.
35. Wang X, Nie Z, Chang J, et al. Multiple channels with interconnected pores in a bioceramic scaffold promote bone tissue formation. Sci Rep. 2021;11(1):20447. doi: 10.1038/s41598-021-00024-z.
36. Lim HK, Hong SJ, Byeon SJ, et al. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Int J Mol Sci. 2020;21(18):6942. doi: 10.3390/ijms21186942.
37. Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Effects of Channels and Micropores in Honeycomb Scaffolds on the Reconstruction of Segmental Bone Defects. Front Bioeng Biotechnol. 2022;10:825831. doi: 10.3389/fbioe.2022.825831.
Review
For citations:
Shcherbakov I.M., Evdokimov P.V., Larionov D.S., Putlayev V.I., Shipunov G.A., Danilova N.V., Efimenko A.Yu., Novoseletskaya E.S., Dubrov V.E. Experimental evaluation of CA3(PO4)2 based bone substitutes using rat femoral defect models. Genij Ortopedii. 2025;31(2):226-236. https://doi.org/10.18019/1028-4427-2025-31-2-226-236