Dependence of serum procalcitonin level on microflora in the infection site in chronic osteomyelitis
https://doi.org/10.18019/1028-4427-2025-31-2-218-225
Abstract
Introduction The study of procalcitonin (PCT) levels simultaneously with blood cultures for sterility is an important addition to the diagnostic algorithm for chronic osteomyelitis detection.
Purpose of work is to study the relationship of serum PCT with the microflora isolated from blood, wounds and fistulas in patients with chronic osteomyelitis.
Materials and methods A retrospective analysis of wound microflora, blood cultures for sterility, and procalcitonin test results was performed.
Results Gram-positive microorganisms prevailed in the microbial tests from wounds, fistulas and blood in patients with PCT less than 0.5 ng/ml and from 0.5 to 2.0 ng/ml. In patients with PCT levels from 2.0– 10.0 and above10 ng/ml, both gram-positive and gram-negative bacteria were isolated. Among positive blood cultures, S. epidermidis strains were the most frequently isolated, followed by S. aureus, K. pneumoniae, S. agalactae, and S. hominis isolates. PCT in the blood of seven patients was higher than 10 ng/ml; and six patients had it from 2.0–10.0 ng/ml. Two subjects had a low PCT level, but an infectious agent was detected in their blood.
Discussion In patients with PCT lower than 0.5 ng/ml, gram-positive microorganisms are most often found in the microflora of wounds and fistulas. The proportion of patients with PCT values ≥ 2 ng/ml and gram‑negative bacteria in the focus was higher compared to patients with gram-positive microflora. Nevertheless, the detected high correlation relationship between the microbiocenosis of patients' wounds and procalcitonin values confirms the leading role of gram-positive bacteria in the development of osteomyelitis.
Conclusion In positive blood cultures, the serum PCT level was usually higher than 2.0 ng/ml. The presence of gram-negative bacteria in the blood, as well as in the wound, was accompanied by PCT values higher than 10 ng/ml.
About the Authors
I. V. ShipitsynaRussian Federation
Irina V. Shipitsyna — Candidate of Biological Sciences, Leading Researcher
Kurgan
E. V. Osipova
Russian Federation
Elena V. Osipova — Candidate of Biological Sciences, Senior Researcher
Kurgan
A. L. Shastov
Russian Federation
Alexander L. Shastov — Candidate of Medical Sciences, Senior Researcher
Kurgan
References
1. Миронов С.П., Цискарашвили А.В., Горбатюк Д.С. Хронический посттравматический остеомиелит как проблема современной травматологии и ортопедии (обзор литературы). Гений ортопедии. 2019;25(4):610-621. doi: 10.18019/1028-4427-2019-25-4-610-621.
2. Судницын А.С., Клюшин Н.М., Мигалкин Н.С. и др. Диагностика хронического остеомиелита, осложненного микозной инфекцией. Гений ортопедии. 2019;25(4):528-534. doi: 10.18019/1028-4427-2019-25-4-528-534.
3. Ma X, Han S, Ma J, et al. Epidemiology, microbiology and therapeutic consequences of chronic osteomyelitis in northern China: A retrospective analysis of 255 Patients. Sci Rep. 2018;8(1):14895. doi: 10.1038/s41598-018-33106-6.
4. Zhang K, Bai YZ, Liu C, et al. Composition of pathogenic microorganism in chronic osteomyelitis based on metagenomic sequencing and its application value in etiological diagnosis. BMC Microbiol. 2023;23(1):313. doi: 10.1186/s12866-023-03046-.x
5. Шипицына И.В., Осипова Е.В. Эффективность амикацина в комбинации с трипсином в отношении биоплёночных форм бактерий P. aeruginosa. Экспериментальная и клиническая фармакология. 2023;86(6):25-29. doi: 10.30906/0869-2092-2023-86-6-25-29.
6. Besal R, Adamič P, Beović B, Papst L. Systemic Antimicrobial Treatment of Chronic Osteomyelitis in Adults: A Narrative Review. Antibiotics (Basel). 2023;12(6):944. doi: 10.3390/antibiotics12060944.
7. Glaudemans AWJM, Jutte PC, Cataldo MA, et al. Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. 2019;46(4):957-970. doi: 10.1007/s00259-019-4262-x.
8. Шипицына И. В., Осипова Е. В., Леончук Д. С., Судницын А. С. Мониторинг ведущей грамотрицательной микрофлоры и антибиотикорезистентности при остеомиелите. Гений ортопедии. 2020;26(4):544-547. doi: 10.18019/1028-4427-2020-26-4-544-547.
9. Rubio-Díaz R, Julián-Jiménez A, González Del Castillo J, et al. Ability of lactate, procalcitonin, and criteria defining sepsis to predict 30-day mortality, bacteremia, and microbiologically confirmed infection in patients with infection suspicion treated in emergency departments. Emergencias. 2022;34(3):181-189.
10. Velly L, Freund Y. Biomarkers of sepsis: An old story or an exciting future? Emergencias. 2022;34(6):474-475.
11. El Haddad H, Chaftari AM, Hachem R, et al. Biomarkers of Sepsis and Bloodstream Infections: The Role of Procalcitonin and Proadrenomedullin With Emphasis in Patients With Cancer. Clin Infect Dis. 2018;67(6):971-977. doi: 10.1093/cid/ciy331.
12. Samsudin I, Vasikaran SD. Clinical Utility and Measurement of Procalcitonin. Clin Biochem Rev. 2017;38(2):59-68.
13. Шипицына И.В., Осипова Е.В., Люлин С.В., Свириденко А.С. Диагностическая ценность прокальцитонина в постравматическом периоде у пациентов с политравмой. Политравма. 2018;(1):47-51.
14. Sato H, Tanabe N, Murasawa A, et al. Procalcitonin is a specific marker for detecting bacterial infection in patients with rheumatoid arthritis. J Rheumatol. 2012;39(8):1517-1523. doi: 10.3899/jrheum.111601.
15. Zafar Iqbal-Mirza S, Serrano Romero de Ávila V, Estévez-González R, et al. Ability of procalcitonin to differentiate true bacteraemia from contaminated blood cultures in an emergency department. Enferm Infecc Microbiol Clin (Engl Ed). 2019;37(9):560-568. doi: 10.1016/j.eimc.2019.01.012.
16. Wei TT, Hu ZD, Qin BD, Ma N, Tang QQ, Wang LL, Zhou L, Zhong RQ. Diagnostic Accuracy of Procalcitonin in Bacterial Meningitis Versus Nonbacterial Meningitis: A Systematic Review and Meta-Analysis. Medicine (Baltimore). 2016;95(11):e3079. doi: 10.1097/MD.0000000000003079.
17. Balakrishnan B, Kulkarni UP, Pai AA, et al. Biomarkers for early complications post hematopoietic cell transplantation: Insights and challenges. Front Immunol. 2023;14:1100306. doi: 10.3389/fimmu.2023.1100306.
18. Kennis B, Ali A, Lasoff D, et al. The diagnostic utility of procalcitonin is limited in the setting of methamphetamine toxicity. Am J Emerg Med. 2022;54:36-40. doi: 10.1016/j.ajem.2022.01.049.
19. Oksuz L, Somer A, Salman N, et al. Procalcitonin and C-reactive protein in differantiating to contamination from bacteremia. Braz J Microbiol. 2015;45(4):1415-1421. doi: 10.1590/s1517-83822014000400036.
20. Berthezène C, Aissa N, Manteaux AE, et al. Accuracy of procalcitonin for diagnosing peripheral blood culture contamination among patients with positive blood culture for potential contaminants. Infection. 2021;49(6):1249-1255. doi: 10.1007/s15010-021-01697-4.
21. Banerjee R, Humphries R. Rapid Antimicrobial Susceptibility Testing Methods for Blood Cultures and Their Clinical Impact. Front Med (Lausanne). 2021;8:635831. doi: 10.3389/fmed.2021.635831.
22. Nolan J, Meregawa PF. The role of serum procalcitonin in establishing diagnosis of bone and joint infections. J Clin Orthop. 2020;5(1):3-7.
23. Lima AL, Oliveira PR, Carvalho VC, et al. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526-534. doi: 10.1016/j.bjid.2013.12.005.
24. He C, Wang B, Wang YF, Shen YC. Can procalcitonin be used to diagnose Gram-negative bloodstream infection? Evidence based on a meta-analysis. Eur Rev Med Pharmacol Sci. 2017;21(14):3253-3261.
25. Watanabe Y, Oikawa N, Hariu M, et al. Ability of procalcitonin to diagnose bacterial infection and bacteria types compared with blood culture findings. Int J Gen Med. 2016;9:325-331. doi: 10.2147/IJGM.S115277.
26. Hawkey PM. Multidrug-resistant Gram-negative bacteria: a product of globalization. J Hosp Infect. 2015;89(4):241-247. doi: 10.1016/j.jhin.2015.01.008.
27. Julián-Jiménez A, Rubio-Díaz R, González Del Castillo J, et al. New predictive models of bacteremia in the emergency department: a step forward. Rev Esp Quimioter. 2022;35(4):344-356. (In Span.) doi: 10.37201/req/015.2022.
28. Oksuz L, Somer A, Salman N, et al. Procalcitonin and C-reactive protein in differantiating to contamination from bacteremia. Braz J Microbiol. 2015;45(4):1415-21. doi: 10.1590/s1517-83822014000400036.
29. Leng Y, Chen C, Zhang Y, et al. Ability of serum procalcitonin to distinguish focus of infection and pathogen types in patients with bloodstream infection. Ann Transl Med. 2019;7(7):135. doi: 10.21037/atm.2019.03.24.
30. Laukemann S, Kasper N, Kulkarni P, et al. Can We Reduce Negative Blood Cultures With Clinical Scores and Blood Markers? Results From an Observational Cohort Study. Medicine (Baltimore). 2015;94(49):e2264. doi: 10.1097/MD.0000000000002264.
31. Gregoriano C, Heilmann E, Molitor A, Schuetz P. Role of procalcitonin use in the management of sepsis. J Thorac Dis. 2020;12(Suppl 1):S5 S15. doi: 10.21037/jtd.2019.11.63.
32. El Haddad H, Chaftari AM, Hachem R, et al. Biomarkers of Sepsis and Bloodstream Infections: The Role of Procalcitonin and Proadrenomedullin With Emphasis in Patients With Cancer. Clin Infect Dis. 2018;67(6):971-977. doi: 10.1093/cid/ciy331.
Review
For citations:
Shipitsyna I.V., Osipova E.V., Shastov A.L. Dependence of serum procalcitonin level on microflora in the infection site in chronic osteomyelitis. Genij Ortopedii. 2025;31(2):218-225. https://doi.org/10.18019/1028-4427-2025-31-2-218-225