Preview

Genij Ortopedii

Advanced search

Risk factors for hardware failure after total spondylectomy in patients with spinal tumors

https://doi.org/10.18019/1028-4427-2025-31-2-183-193

Abstract

Introduction Total spondylectomy for spinal tumors provides optimal local control and is associated with a high risk of implant instability.

The objective was to determine risk factors for implant instability after spondylectomy in patients with neoplastic lesions of the spine.

Material and methods A retrospective cohort study included patients with spinal tumors treated with tumor resection between 2007 and 2023. Inclusion criteria were spondylectomy and vertebral body replacement, thoracic or lumbar spine localization, follow-up period ≥ 12 months. LASSO regression and Random Forest methods and multivariate analysis were used to identify instability predictors.

Results Implant instability was observed in 16 patients (18.4 %). Risk factors included the use of bone cement instead of allograft (OR = 0.125, p = 0.014), contact surface mismatch > 10° (OR = 0.214, p = 0.026), prosthesis subsidence > 2 mm at 3 months (OR = 4.497, p = 0.023).

Discussion The risk factors identified had a great clinical role for the prevention of implant instability. The use of bone graft instead of cement, precise matching of contact surfaces and control of early prosthetic subsidence can significantly reduce the risk of metal construct failure. Careful preoperative planning and regular postoperative monitoring are essential for the outcome.

Conclusion Three independent risk factors for implant instability after spondylectomy identified in patients with  spinal tumor lesions included the use of bone cement instead of allograft, a discrepancy between the contact prosthetic surfaces of more than 10°, and an implant subsidence of more than 2 mm after 3 months. These factors are important for planning of the surgical intervention and postoperative monitoring to prevent metal construct instability.

About the Authors

N. S. Zaborovskii
Vreden National Medical Research Center of Traumatology and Orthopedics; Saint-Petersburg State University
Russian Federation

Nikita S. Zaborovskii — Candidate of Medical Sciences, Head of Department

 Saint-Petersburg



S. V. Masevnin
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Sergei V. Masevnin — Candidate of Medical Sciences, Head of Department

Saint-Petersburg



V. S. Murakhovsky
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Vladislav S. Murakhovsky — neurosurgeon

Saint-Petersburg



R. A. Mukhiddinov
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Rakhmatjon A. Mukhiddinov — orthopaedic surgeon

Saint-Petersburg



O. A. Smekalyonkov
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Oleg A. Smekalenkov — Candidate of Medical Sciences, neurosurgeon

Saint-Petersburg



D. A. Ptashnikov
Saint-Petersburg Clinical Hospital of the Russian Academy of Sciences; North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Dmitrii A. Ptashnikov — Doctor of Medical Sciences, Professor, Head of Hospital, Head of Department

Saint-Petersburg



References

1. Заборовский Н.С., Пташников Д.А., Михайлов Д.А. и др. Онкологические принципы в хирургии опухолей позвоночника. Хирургия Позвоночника. 2021;18(2):64-72. doi: 10.14531/ss2021.2.64-72.

2. Кулага А.В., Мусаев Э.Р., Жукова Л.Г. и др. Локальное лечение пациентов с метастатическим поражением позвоночника при раке легкого. Саркомы костей мягких тканей и опухоли кожи. 2019;11:5-14.

3. Валиев А.К., Тепляков В.В., Мусаев Э.Р. и др. Практические рекомендации по лечению первичных злокачественных опухолей костей. Злокачественные опухоли. Практические рекомендации RUSSCO #3s2. 2022;12:307-329. doi: 10.18027/2224-5057-2022-12-3s2-307-329.

4. Мушкин МА, Дулаев АК, Мушкин АЮ. Опухолевые поражения позвонков: концепция комплексной оценки применительно к условиям неотложной помощи. Хирургия позвоночника. 2018;15:92-99. doi: 10.14531/ss2018.3.92-99.

5. Усиков В.Д., Пташников Д.А. Реконструктивные операции в комплексной терапии больных с гигантоклеточной опухолью позвоночника. Травматология и ортопедия России. 2005;12-15.

6. Усиков В.Д., Пташников Д.А., Магомедов Ш.Ш. Корпор- и спондилэктомия в системе хирургического лечения опухолей позвоночника. Травматология и ортопедия России. 2010;16(2)140-142. doi: 10.21823/2311-2905-2010-0-2-140-142.

7. Xu H, Wang X, Han Y, et al. Biomechanical comparison of different prosthetic reconstructions in total en bloc spondylectomy: a finite element study. BMC Musculoskelet Disord. 2022;23(1):955. doi: 10.1186/s12891-022-05919-0.

8. Glennie RA, Rampersaud YR, Boriani S, et al. A Systematic Review With Consensus Expert Opinion of Best Reconstructive Techniques After Osseous En Bloc Spinal Column Tumor Resection. Spine. 2016;41 Suppl 20:S205-S211. doi: 10.1097/BRS.0000000000001835.

9. Kasapovic A, Bornemann R, Pflugmacher R, et al. Implants for Vertebral Body Replacement - Which Systems are Available and Have Become Established. Z Orthop Unfall. 2021;159(1):83-90. doi: 10.1055/a-1017-3968.

10. Liang Y, Cao Y, Gong Z, et al. A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy. J Orthop Surg Res. 2020;15(1):314. doi: 10.1186/s13018-020-01833-0.

11. Zaborovskii N, Schlauch A, Ptashnikov D, et al. Hardware Failure in Spinal Tumor Surgery: A Hallmark of Longer Survival? Neurospine. 2022;19(1):84-95. doi: 10.14245/ns.2143180.590.

12. Hu X, Barber SM, Ji Y, et al. Implant failure and revision strategies after total spondylectomy for spinal tumors. J Bone Oncol. 2023;42:100497. doi: 10.1016/j.jbo.2023.100497.

13. Park SJ, Lee CS, Chang BS, et al. Rod fracture and related factors after total en bloc spondylectomy. Spine J. 2019;19(10):1613-1619. doi: 10.1016/j.spinee.2019.04.018.

14. Berjano P, Cecchinato R, Pun A, Boriani S. Revision surgery for tumors of the thoracic and lumbar spine: causes, prevention, and treatment strategy. Eur Spine J. 2020;29(Suppl 1):66-77. doi: 10.1007/s00586-019-06276-8.

15. Versteeg AL, Sahgal A, Kawahara N, et al. Patient satisfaction with treatment outcomes after surgery and/or radiotherapy for spinal metastases. Cancer. 2019;125(23):4269-4277. doi: 10.1002/cncr.32465.

16. Zakaria HM, Schultz L, Mossa-Basha F, et al. Morphometrics as a predictor of perioperative morbidity after lumbar spine surgery. Neurosurg Focus. 2015;39(4):E5. doi: 10.3171/2015.7.FOCUS15257.

17. Tomita K, Kawahara N, Kobayashi T, et al. Surgical strategy for spinal metastases. Spine (Phila Pa 1976). 2001;26(3):298-306. doi: 10.1097/00007632-200102010-00016.

18. Kay FU, Ho V, Dosunmu EB, et al. Quantitative CT Detects Undiagnosed Low Bone Mineral Density in Oncologic Patients Imaged With 18F-FDG PET/CT. Clin Nucl Med. 2021;46(1):8-15. doi: 10.1097/RLU.0000000000003416.

19. Kumar N, Ramos MRD, Patel R, et al. The "Spinal Metastasis Invasiveness Index": A Novel Scoring System to Assess Surgical Invasiveness. Spine (Phila Pa 1976). 2021;46(7):478-485. doi: 10.1097/BRS.0000000000003823.

20. Schnake KJ, Stavridis SI, Kandziora F. Five-year clinical and radiological results of combined anteroposterior stabilization of thoracolumbar fractures. J Neurosurg Spine. 2014;20(5):497-504. doi: 10.3171/2014.1.SPINE13246.

21. Hu J, Song G, Chen H, et al. Surgical outcomes and risk factors for surgical complications after en bloc resection following reconstruction with 3D-printed artificial vertebral body for thoracolumbar tumors. World J Surg Oncol. 2023;21(1):385. doi: 10.1186/s12957-023-03271-8.

22. Rampersaud YR, Anderson PA, Dimar JR, et al. Spinal Adverse Events Severity System, version 2 (SAVES-V2): inter- and intraobserver reliability assessment. J Neurosurg Spine. 2016;25(2):256-263. doi: 10.3171/2016.1.SPINE14808.

23. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2024. Available at: https://www.R-project.org/. Accessed Nov 18, 2024.

24. Kleinke K. Multiple Imputation by Predictive Mean Matching When Sample Size Is Small. Methodology. 2018;14(1):3-15. doi: 10.1027/1614-2241/a000141.

25. Ranstam J, Cook JA. LASSO regression. J. Br. Surg. 2018;105(10):1348. doi: 10.1002/bjs.10895.

26. Genuer R, Poggi J-M, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit Lett. 2010;31(14):2225*2236. doi: 10.1016/j.patrec.2010.03.014.

27. Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80(1):27-38. doi: 10.2307/2336755.

28. Pavlou M, Ambler G, Seaman S, et al. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat Med. 2016;35(7):1159-1177. doi: 10.1002/sim.6782.

29. Shimizu T, Kato S, Demura S, et al. Characteristics and risk factors of instrumentation failure following total en bloc spondylectomy. Bone Joint J. 2023;105-B(2):172-179. doi: 10.1302/0301-620X.105B2.BJJ-2022-0761.R2.

30. Yoshioka K, Murakami H, Demura S, et al. Risk factors of instrumentation failure after multilevel total en bloc spondylectomy. Spine Surg Relat Res. 2017;1(1):31-39. doi: 10.22603/ssrr.1.2016-0005.

31. Li Z, Guo L, Zhang P, et al. A Systematic Review of Perioperative Complications in en Bloc Resection for Spinal Tumors. Global Spine J. 2023;13(3):812-822. doi: 10.1177/21925682221120644.

32. Akamaru T, Kawahara N, Tsuchiya H, et al. Healing of autologous bone in a titanium mesh cage used in anterior column reconstruction after total spondylectomy. Spine (Phila Pa 1976). 2002;27(13):E329-333. doi: 10.1097/00007632-200207010-00024.

33. Melcher RP, Harms J. Biomechanics and materials of reconstruction after tumor resection in the spinal column. Orthop Clin North Am. 2009;40(1):65-74, vi. doi: 10.1016/j.ocl.2008.09.005.

34. Zaborovskii N, Schlauch A, Shapton J, et al. Conditional survival after surgery for metastatic tumors of the spine: does prognosis change over time? Eur Spine J. 2023;32(3):1010-1020. doi: 10.1007/s00586-023-07548-0.

35. Mohammad-Shahi MH, Nikolaou VS, Giannitsios D, et al. The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence. J Spinal Disord Tech. 2013;26(5):268-273. doi: 10.1097/BSD.0b013e3182425eab.

36. Кабардаев Р.М., Мусаев Э.Р., Валиев A.К. и др. Многоуровневые радикальные резекции в лечении больных с опухолями позвоночника. Саркомы костей, мягких тканей и опухоли кожи. 2021;13(2):11-17. doi: 10.17650/2070-9781-2021-13-2-11-17.

37. Vaccaro AR, Divi SN, Hassan WA. Complex Reconstruction in Tumor Patients. In: Singh K, Colman M (eds.) Surgical Spinal Oncology: Contemporary Multidisciplinary Strategies. Cham: Springer International Publis.; 2020:297-334.

38. Bokov A, Kalinina S, Leontev A, Mlyavykh S. Circumferential Fusion Employing Transforaminal vs. Direct Lateral Lumbar Interbody Fusion-A Potential Impact on Implants Stability. Front Surg. 2022;9:827999. doi: 10.3389/fsurg.2022.827999.


Review

For citations:


Zaborovskii N.S., Masevnin S.V., Murakhovsky V.S., Mukhiddinov R.A., Smekalyonkov O.A., Ptashnikov D.A. Risk factors for hardware failure after total spondylectomy in patients with spinal tumors. Genij Ortopedii. 2025;31(2):183-193. https://doi.org/10.18019/1028-4427-2025-31-2-183-193

Views: 118


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)