Preview

Genij Ortopedii

Advanced search

Management of a total defect of the talus with a customized 3D-implant made of porous titanium for Charcot neuroosteoarthropathy in a patient with neurosyphilis: a case report

https://doi.org/10.18019/1028-4427-2025-31-1-66-73

Abstract

Introduction Neuropathic arthropathy, or Charcot arthropathy, is characterized by rapid progressive bone destruction due to impaired nociceptive and proprioceptive innervation of the affected limb. In recent years, there have been publications on the use of 3D modeling and 3D printing of porous titanium implants for filling large bone defects in the foot, but we found only two descriptions of clinical cases of 3D porous titanium implants in patients with Charcot arthropathy.

The aim of the work is to demonstrate and analyze the results of performing resection calcaneotibial arthrodesis with  defect plasty using a customized 3D implant made of porous titanium in a patient with manifestation of Charcot arthropathy as a complication of tertiary syphilis.

Materials and methods A 50-year-old woman, with a history of syphilis for 26 years, noted the signs of inflammation in the ankle joint during increased loading two months after total knee arthroplasty on the left joint. The examination revealed total destruction of the talus. The diagnosis was Charcot neuroosteoarthropathy of the foot, active stage. After 2.5 months of unloading, based on the results of a CT study of the left ankle joint and 3D modeling, a 3D porous titanium customized implant was fabricated; resection calcaneotibial arthrodesis with autograft harvesting from the tibial canal and plastic surgery of the defect with a 3D implant and fixation with the Ilizarov apparatus were performed. Five months after the operation, consolidation was determined based on the results of control radiographs, and the Ilizarov apparatus was dismantled.

Discussion The proposed method of surgical treatment for total destruction of the talus and the resulting defect-diastasis allows for reconstructive intervention with immediate compensation of shortening, regardless of the shape and size of the defect, to avoid secondary shortening of the limb while maintaining its ability to support, thereby preventing the occurrence of secondary overload changes in the adjacent joints.

Conclusion The initial results in this clinical case seem encouraging, but additional research is required to clarify the indications and patient selection criteria for this treatment method.

About the Authors

S. A. Osnach
Yudin City Clinical Hospital
Russian Federation

Stanislav A. Osnach — orthopaedic surgeon

Moscow



V. G. Protsko
Yudin City Clinical Hospital; Patrice Lumumba Peoples' Friendship University of Russia
Russian Federation

Victor G. Protsko — Doctor of Medical Sciences, orthopaedic surgeon, Head of the Center for Foot and Diabetic Foot Surgery

Moscow



V. N. Obolensky
City Clinical Hospital No. 13; Pirogov Russian National Research Medical University
Russian Federation

Vladimir N. Obolenskiy — Candidate of Medical Sciences, orthopaedic surgeon, Head of the Center for Purulent Surgery

Moscow



A. V. Mazalov
Yudin City Clinical Hospital
Russian Federation

Alexey V. Mazalov — orthopaedic surgeon

Moscow



V. B. Bregovsky
SPb Territorial Diabetology Center
Russian Federation

Vadim B. Bregovskiy — Doctor of Medical Sciences, endocrinologist

St. Petersburg



V. V. Kuznetsov
Yudin City Clinical Hospital
Russian Federation

Vasiliy V. Kuznetsov — Candidate of Medical Sciences, orthopaedic surgeon

Moscow



S. K. Tamoev
Yudin City Clinical Hospital
Russian Federation

Sargon K. Tamoev — Candidate of Medical Sciences, orthopaedic surgeon, Head of the Department

Moscow



References

1. Charcot JM. On some arthropathies which seem to depend on a lesion of the brain or spinal cord. Arch Physiol Norm Pathol. 1868;1:161-178. (in French).

2. Rogers LC, Frykberg RG, Armstrong DG, et al. The Charcot foot in diabetes. Diabetes Care. 2011;34(9):2123-2129. doi: 10.2337/dc11-0844.

3. Wang M, Huang R, Wang L, et al. Syphilis with Charcot arthropathy: A case report. Dermatol Ther. 2019;32(3):e12862. doi: 10.1111/dth.12862.

4. Bonasia DE, Dettoni F, Femino JE, et al. Total ankle replacement: why, when and how? Iowa Orthop J. 2010;30:119-130.

5. Klaue K, Zwipp H, Mittlmeier T, Espinosa N. Internal circular arc osteosynthesis of tibiotalocalcaneal arthrodesis. Unfallchirurg. 2016;119(10):885-9. (In German). doi: 10.1007/s00113-016-0210-4.

6. Belczyk RJ, Rogers LC, Andros G, et al. External fixation techniques for plastic and reconstructive surgery of the diabetic foot. Clin Podiatr Med Surg. 2011;28(4):649-660. doi: 10.1016/j.cpm.2011.07.001.

7. Kreulen C, Lian E, Giza E. Technique for Use of Trabecular Metal Spacers in Tibiotalocalcaneal Arthrodesis With Large Bony Defects. Foot Ankle Int. 2017;38(1):96-106. doi: 10.1177/1071100716681743.

8. Henricson A, Rydholm U. Use of a trabecular metal implant in ankle arthrodesis after failed total ankle replacement. Acta Orthop. 2010;81(6):745-747. doi: 10.3109/17453674.2010.533936.

9. Long WJ, Scuderi GR. Porous tantalum cones for large metaphyseal tibial defects in revision total knee arthroplasty: a minimum 2-year follow-up. J Arthroplasty. 2009;24(7):1086-1092. doi: 10.1016/j.arth.2008.08.011.

10. Frigg A, Dougall H, Boyd S, Nigg B. Can porous tantalum be used to achieve ankle and subtalar arthrodesis?: a pilot study. Clin Orthop Relat Res. 2010;468(1):209-216. doi: 10.1007/s11999-009-0948-x.

11. Dekker TJ, Steele JR, Federer AE, et al. Use of Patient-Specific 3D-Printed Titanium Implants for Complex Foot and Ankle Limb Salvage, Deformity Correction, and Arthrodesis Procedures. Foot Ankle Int. 2018;39(8):916-921. doi: 10.1177/1071100718770133.

12. Bejarano-Pineda L, Sharma A, Adams SB, Parekh SG. Three-Dimensional Printed Cage in Patients With Tibiotalocalcaneal Arthrodesis Using a Retrograde Intramedullary Nail: Early Outcomes. Foot Ankle Spec. 2021;14(5):401-409. doi: 10.1177/1938640020920947.

13. Hsu AR, Ellington JK. Patient-Specific 3-Dimensional Printed Titanium Truss Cage With Tibiotalocalcaneal Arthrodesis for Salvage of Persistent Distal Tibia Nonunion. Foot Ankle Spec. 2015;8(6):483-489. doi: 10.1177/1938640015593079.

14. Wang G, Lin J, Zhang H, et al. Three-dimension correction of Charcot ankle deformity with a titanium implant. Comput Assist Surg (Abingdon). 2021;26(1):15-21. doi: 10.1080/24699322.2021.1887356.

15. Lu V, Zhang J, Thahir A, et al. Charcot knee - presentation, diagnosis, management - a scoping review. Clin Rheumatol. 2021;40(11):4445-4456. doi: 10.1007/s10067-021-05775-8.

16. Eichenholtz SN. Charcot Joints. Springfield, IL, USA: Charles C. Thomas; 1966.

17. Shibata T, Tada K, Hashizume C. The results of arthrodesis of the ankle for leprotic neuroarthropathy. J Bone Joint Surg Am. 1990;72(5):749-756.

18. Chantelau EA, Richter A. The acute diabetic Charcot foot managed on the basis of magnetic resonance imaging--a review of 71 cases. Swiss Med Wkly. 2013;143:w13831. doi: 10.4414/smw.2013.13831.

19. Оснач С.А., Оболенский В.Н., Процко В.Г. и др. Метод двухэтапного лечения пациентов с тотальными и субтотальными дефектами стопы при нейроостеоартропатии Шарко. Гений ортопедии. 2022;28(4):523-531. doi: 10.18019/1028-4427-2022-28-4-523-531.

20. Wukich DK, Schaper NC, Gooday C, et al. Guidelines on the diagnosis and treatment of active Charcot neuro-osteoarthropathy in persons with diabetes mellitus (IWGDF 2023). Diabetes Metab Res Rev. 2024;40(3):e3646. doi: 10.1002/dmrr.3646.

21. Демина А.Г., Бреговский В.Б., Карпова И.А. Ближайшие результаты лечения активной стадии стопы Шарко в амбулаторных условиях. Сахарный диабет. 2020;23(4):316-323. doi: 10.14341/DM10363.


Review

For citations:


Osnach S.A., Protsko V.G., Obolensky V.N., Mazalov A.V., Bregovsky V.B., Kuznetsov V.V., Tamoev S.K. Management of a total defect of the talus with a customized 3D-implant made of porous titanium for Charcot neuroosteoarthropathy in a patient with neurosyphilis: a case report. Genij Ortopedii. 2025;31(1):66-73. https://doi.org/10.18019/1028-4427-2025-31-1-66-73

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)