Histomorphometric characteristics of the metaepiphyseal plate of the distal femur of lambs during the period of their intensive growth
https://doi.org/10.18019/1028-4427-2025-31-1-42-50
Abstract
Introduction Growth zone injuries are quite common and account for 15–30 % of all skeletal bone injuries in children. Complications occur in 2–14 % of patients. An adequate experimental animal model is needed to develop new methods for treating growth zone injuries. The purpose of the work is to identify patterns in the dynamics of histomorphometric characteristics of the metaepiphyseal cartilage of the distal femur of lambs during the period of their intensive growth.
Materials and methods The metaepiphyseal cartilage of the distal femur of 12 lambs (aged 3.5 and 5.5 months, 5 males and 7 females) previously participating in an experiment on the effect of osteosynthesis pins on the structural reorganization of the metaepiphyseal cartilage was studied. Histological, immunohistochemical, and histomorphometric studies were performed.
Results The zonal structure of the metaepiphyseal plate along with an increased proportion of PAS-positive structures in the outer layer of the border zone and in the calcified cartilage zone were determined. Masson staining revealed fuchsinophilic areas of the border zone matrix in the metaepiphyseal cartilage of animals aged 5.5 months, as well as an increase in the proportion of fuchsinophilic areas of the calcified cartilage zone compared to animals aged 3.5 months, which indicated increased mineralization. CD34 expression at 3.5 months was detected in the outer layer of the border zone, at 5.5 months the depth of vascular invasion increased, but did not reach the proliferating cartilage zone. A decrease in the thickness of the metaepiphyseal cartilage at the age of 5.5 months by an average of 18.2 % is due to a decrease in the thickness of the border zone by 1.9 times, while the thickness of the proliferating cartilage zone increased by 1.2 times.
Discussion The changes observed in the main substance of the metaepiphyseal cartilage indicated that the processes of matrix calcification are more intense in lambs by the age of 5.5 months. The depth of vascular penetration from the diaphysis is more pronounced than from the epiphysis. Fractures in the growth zone during the period of intensive growth can be caused by the predominance of the border zone and by the proliferating cartilage zone.
Conclusion Histomorphometric changes in the metaepiphyseal plate of the distal femur of lambs during the period of their intensive growth were characterized by a decrease in its thickness due to a marked decrease in the thickness of the reserve zone, while the thickness of the proliferating cartilage statistically significantly increased. The depth of vascular invasion in the border zone increased, but did not reach the proliferating cartilage zone, changes in the tinctorial characteristics of the ground substance indicated the activation of matrix calcification processes from the subchondral bone of the epiphysis and endomorphic ossification from the diaphysis.
About the Authors
T. A. StupinaRussian Federation
Tatyana A. Stupina — Doctor of Biological Sciences, Leading Researcher
O. V. Dyuryagina
Russian Federation
Olga V. Diuriagina — Candidate of Veterinary Sciences, Head of Laboratory
Kurgan
A. A. Korobeynikov
Russian Federation
Anatoly A. Korobeinikov — Candidate of Medical Sciences, Senior Researcher
Kurgan
References
1. Shaw N, Erickson C, Bryant SJ, et al. Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries. Tissue Eng Part B Rev. 2018;24(2):85-97. doi: 10.1089/ten.TEB.2017.0274.
2. Sananta P, Lesmana A, Alwy Sugiarto M. Growth plate injury in children: Review of literature on PubMed. J Public Health Res. 2022;11(3):22799036221104155. doi: 10.1177/22799036221104155.
3. Meyers AL, Taqi M, Marquart MJ. Pediatric Physeal Injuries Overview. 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
4. Elsoe R, Ceccotti AA, Larsen P. Population-based epidemiology and incidence of distal femur fractures. Int Orthop. 2018;42(1):191‑196. doi: 10.1007/s00264-017-3665-1.
5. Wang X, Li Z, Wang C, Bai H, et al. Enlightenment of Growth Plate Regeneration Based on Cartilage Repair Theory: A Review. Front Bioeng Biotechnol. 2021;9:654087. doi: 10.3389/fbioe.2021.654087.
6. Коробейников А.А., Аранович А.М., Попков Д.А. Метод Илизарова при лечении детей с околосуставными переломами. Гений ортопедии. 2021;27(4):418-423. doi: 10.18019/1028-4427-2021-27-4-418-423.
7. Бровин Д.А., Трофимова Т.Н., Кенис В.М., Брайлов С.А. Диффузионно-тензорная магнитно-резонансная томография зоны роста кости: обоснование методики и оценка ее воспроизводимости. Лучевая диагностика и терапия. 2022;13(3):67-76. doi: 10.22328/2079-5343-2022-13-3-67-76.
8. Макарова М.Н. , Матичин А.А., Матичина А.А., Макаров В.Г. Принципы выбора животных для научных исследований. Сообщение 1. Выбор модельных организмов на основании филогенетических связей. Лабораторные животные для научных исследований. 2022;5(2):58-70. doi: 10.29296/2618723X-2022-02-07.
9. Drenkard LMM, Kupratis ME, Li K, Gerstenfeld LC, Morgan EF. Local Changes to the Distal Femoral Growth Plate Following Injury in Mice. J Biomech Eng. 2017;139(7). doi: 10.1115/1.4036686.
10. Erickson CB, Shaw N, Hadley-Miller N, et al. A Rat Tibial Growth Plate Injury Model to Characterize Repair Mechanisms and Evaluate Growth Plate Regeneration Strategies. J Vis Exp. 2017;(125):55571. doi: 10.3791/55571.
11. Li W, Xu R, Huang J, et al. Treatment of rabbit growth plate injuries with oriented ECM scaffold and autologous BMSCs. Sci Rep. 2017;7:44140. doi: 10.1038/srep44140.
12. Fernández-Iglesias Á, Fuente R, Gil-Peña H, et al. The Formation of the Epiphyseal Bone Plate Occurs via Combined Endochondral and Intramembranous-Like Ossification. Int J Mol Sci. 2021;22(2):900. doi: 10.3390/ijms22020900.
13. van Loon JJWA, Berezovska OP, Bervoets TJM, et al. Growth and mineralization of fetal mouse long bones under microgravity and daily 1g gravity exposure. NPJ Microgravity. 2024;10(1):80. doi: 10.1038/s41526-024-00421-4.
14. Kember NF, Sissons HA. Quantitative histology of the human growth plate. J Bone Joint Surg Br. 1976;58-B(4):426-435. doi: 10.1302/0301-620X.58B4.1018028.
15. Pearce AI, Richards RG, Milz S, et al. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1-10. doi: 10.22203/ecm.v013a01.
16. Turner AS. Experiences with sheep as an animal model for shoulder surgery: strengths and shortcomings. J Shoulder Elbow Surg. 2007;16(5 Suppl):S158-163. doi: 10.1016/j.jse.2007.03.002.
17. Sartoretto SC, Uzeda MJ, Miguel FB, et al. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop Bras. 2016;24(5):262-266. doi: 10.1590/1413-785220162405161949.
18. Banstola A, Reynolds JNJ. The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. Biology (Basel). 2022 Aug 23;11(9):1251. doi: 10.3390/biology11091251.
19. Коробейников А.А., Ступина Т.А., Дюрягина О.В. и др. Оценка влияния спиц для остеосинтеза на структурную реорганизацию метаэпифизарного хряща (экспериментально-морфологическое исследование). Гений ортопедии. 2024;30(4):561-571. doi: 10.18019/1028-4427-2024-30-4-561-571.
20. Хайитов А.Х., Джураева У.Ш. Морфофизиологические закономерности роста костной и мышечной тканей у овец. Известия Санкт-Петербургского государственного аграрного университета. 2017;(48):72-80.
21. Щудло М.М., Варсегова Т.Н., Ступина Т.А. и др. Проблема эффекта Холмса в количественной телепатологии (методические аспекты). Известия Челябинского научного центра УрО РАН. 2003;(1):120-124.
22. Ступина Т.А., Щудло М.М. Способ количественной оценки состояния суставного хряща на разных уровнях структурной организации. Гений ортопедии. 2009;(1):55-57.
23. Заварухин В.И., Моренко Е.С., Свиридов М.К., Говоров А.В. Эмбриональное развитие и строение зоны роста. Ортопедия, травматология и восстановительная хирургия детского возраста. 2015;3(2):61-65. doi: 10.17816/PTORS3261-65.
24. Singh V, Garg V, Parikh SN. Management of Physeal Fractures: A Review Article. Indian J Orthop. 2021;55(3):525-538. doi: 10.1007/s43465-020-00338-6.
25. Celarek A, Fischerauer SF, Weinberg AM, Tschegg EK. Fracture patterns of the growth plate and surrounding bone in the ovine knee joint at different ages. J Mech Behav Biomed Mater. 2014;29:286-294. doi: 10.1016/j.jmbbm.2013.09.010.
26. Алексина Л.А. Возрастные особенности и динамика окостенения проксимальных отделов плечевых костей. Журнал анатомии и гистопатологии. 2015;4(1):38-44.
27. Cuestas ME, Cieri ME, Ruiz Brünner MLM, Cuestas E. Height growth study of healthy children and adolescents from Córdoba, Argentina. Rev Chil Pediatr. 2020;91(5):741-748. (In English, Spanish.) doi: 10.32641/rchped.vi91i5.2066.
28. Villemure I, Stokes IA. Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech. 2009;42(12):1793-1803. doi: 10.1016/j.jbiomech.2009.05.021.
29. Kazemi M, Williams JL. Properties of Cartilage-Subchondral Bone Junctions: A Narrative Review with Specific Focus on the Growth Plate. Cartilage. 2021;13(2_suppl):16S-33S. doi: 10.1177/1947603520924776.
30. Zhang C, Yan B, Cui Z, et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells. Sci Rep. 2017;7(1):10519. doi: 10.1038/s41598-017-11155-7.
31. Skak SV, Jensen TT, Poulsen TD, Stürup J. Epidemiology of knee injuries in children. Acta Orthop Scand. 1987;58(1):78‑81. doi: 10.3109/17453678709146348.
32. Nilsson O, Baron J. Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends Endocrinol Metab. 2004;15(8):370-374. doi: 10.1016/j.tem.2004.08.004.
Review
For citations:
Stupina T.A., Dyuryagina O.V., Korobeynikov A.A. Histomorphometric characteristics of the metaepiphyseal plate of the distal femur of lambs during the period of their intensive growth. Genij Ortopedii. 2025;31(1):42-50. https://doi.org/10.18019/1028-4427-2025-31-1-42-50