Possible application of glassy carbon composite scaffolds in bone tissue engineering
https://doi.org/10.18019/1028-4427-2025-31-1-28-41
Abstract
Introduction Bone defect management remains one of the challenging problems of regenerative medicine, for the solution of which the most promising trend is the use of tissue-engineered implants based on composite scaffolds that stimulate osteogenesis. One of the main tasks of tissue engineering is the development of a scaffold that mimics three-dimensional architecture for osteogenic progenitor cells inside the scaffold, with the possibility of cell interaction with appropriate chemical and physical stimuli of natural bone.
The purpose of the work is to evaluate the possibility of using composite scaffolds based on glassy carbon in tissue engineering.
Materials and Methods This study describes a reproducible method of obtaining three-dimensional porous glass-carbon-based scaffolds with surfaces modified with pyrocarbon (CF-C) and pyrocarbon and hydroxyapatite (CF-C-HAP) and investigates the porosity, strength characteristics, cytotoxicity, and osteoinductivity of the composite scaffolds obtained. Osteogenic differentiation of cultured human mesenchymal stem cells (MSCs) was evaluated on CF-C and CF-C-HAP scaffolds using common osteogenic markers such as: alkaline phosphatase (ALP) activity, alizarin red staining and quantitative real-time PCR (qPCR).
Results In vitro studies showed the biocompatibility of the developed scaffolds. The ability of CF-C-HAP to induce MSC differentiation in osteogenic direction and to produce calcium-containing matrix was established.
Discussion The scaffolds based on glassy carbon foam with pyrocarbon and hydroxyapatite coatings have a three-dimensional structure with open porosity, along with the strength comparable to the strength of the replaced tissue, and imitate the structure of trabecular bone. However, the strength of glassy carbon foam without coating is characterized by low compressive strength. All the studied materials demonstrated adhesive and proliferative activity of MSCs, high cell adhesion and absence of cytotoxicity. Determination of the mRNA expression level by real-time PCR showed that after 14 days, cells cultured on CS-C-HAP showed expression of the VDR, BMP7, IGFR1, SPP1 genes, what demonstrates osteogenic potential. The results of our studies on phosphatase activity and alizarin red staining demonstrated that the CF-C‑HAP scaffold stimulates osteoblast differentiation in vitro in the osteogenic direction, as well as intracellular mineralization processes.
Conclusion Composite CF-C-HAP scaffolds based on glassy carbon foam support cell proliferation and differentiation and may be promising for use in bone tissue engineering.
Keywords
About the Authors
E. I. TimoshchukRussian Federation
Elena I. Timoshchuk — PhD in Engineering, Head of Structural Materials Department
Moscow
D. V. Ponomareva
Russian Federation
Darya V. Ponomareva — Deputy Head of Department — Head of Structural Graphite Department
Moscow
A. R. Gareev
Russian Federation
Artur R. Gareev — PhD in Engineering, Deputy Director for Science and Innovation
Moscow
References
1. Садовой М.А., Ларионов П.М., Самохин А.Г., Рожнова О.М. Клеточные матрицы (скаффолды) для целей регенерации кости: современное состояние проблемы. Хирургия позвоночника. 2014;2:79-86. doi: 10.14531/ss2014.2.79-86.
2. Phadke A, Hwang Y, Kim SH, et al. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater. 2013;25:114-129. doi: 10.22203/ecm.v025a08.
3. Taylor B, Indano S, Yankannah Y, et al. Decellularized Cortical Bone Scaffold Promotes Organized Neovascularization In Vivo. Tissue Eng Part A. 2019;25(13-14):964-977. doi: 10.1089/ten.TEA.2018.0225.
4. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9. doi: 10.1186/s40824-019-0157-y.
5. Chiarello E, Cadossi M, Tedesco G, et al. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013;25 Suppl 1:S101-S103. doi: 10.1007/s40520-013-0088-8.
6. Hatzenbuehler J, Pulling TJ. Diagnosis and management of osteomyelitis. Am Fam Physician. 2011 Nov 1;84(9):1027-1033.
7. Wang W, Zhang Y, Liu W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci. 2017;71:1‑25. doi: 10.1016/j.progpolymsci.2017.04.001.
8. Zamborsky R, Svec A, Bohac M, et al. Infection in bone allograft transplants. Exp Clin Transplant. 2016;14(5):484-490. doi: 10.6002/ect.2016.0076.
9. Oakley MJ, Smith WR, Morgan SJ, ey al. Repetitive posterior iliac crest autograft harvest resulting in an unstable pelvic fracture and infected non-union: case report and review of the literature. Patient Saf Surg. 2007;1(1):6. doi: 10.1186/1754-9493-1-6.
10. Gao Y, Ma Q. Bacterial infection microenvironment-responsive porous microspheres by microfluidics for promoting anti-infective therapy. Smart Med. 2022;1(1):e20220012. doi: 10.1002/SMMD.20220012.
11. Zhu Y, Kong B, Liu R, Zhao Y. Developing biomedical engineering technologies for reproductive medicine. Smart Med. 2022;1(1):e20220006. doi: 10.1002/SMMD.20220006.
12. Dixon DT, Gomillion CT. Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J Funct Biomater. 2021;13(1):1. doi: 10.3390/jfb13010001.
13. Perez JR, Kouroupis D, Li DJ, et al. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol. 2018;6:105. doi: 10.3389/fbioe.2018.00105.
14. Liu H, Xia L, Dai Y, et al. Fabrication and characterization of novel hydroxyapatite/porous carbon composite scaffolds. Materials Letters. 2012;66(1):36-38. doi: 10.1016/j.matlet.2011.08.053.
15. Guillén T, Ohrndorf A, Tozzi G, et al. Compressive fatigue behavior of bovine cancellous bone and bone analogous materials under multi-step loading conditions. Advanced Engineering Materials. 2012;14(5):B199-B207. doi: 10.1002/adem.201180060.
16. Ramaswamy G, Bidez MW, Misch CE. Bone response to mechanical loads. In: Misch CE. Dental Implant Prosthetics (Second Edition). Mosby; 2015:107-125. doi: 10.1016/B978-0-323-07845-0.00006-3.
17. Попов А.Л., Татарникова О.Г., Шекунова Т.О. и др. Исследование воздействия нанокристаллического диоксида церия, допированного гадолинием (Ce1–xGdxO2–y), на функциональное состояние и жизнеспособность клеток линии NCTC clone L929. Вестник Томского государственного университета. Химия. 2017;(8):68-87. doi: 10.17223/24135542/8/6.
18. Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules. 2007;8(8):2602-2610. doi: 10.1021/bm700451p.
19. Tsukamoto Y, Fukutani S, Mori M. Hydroxyapatite-induced alkaline-phosphatase activity of human pulp fibroblasts. J Mater Sci: Mater Med. 1992;3:180-183. doi: 10.1007/bf00713446.
20. Lao L, Wang Y, Zhu Y, et al. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med. 2011;22(8):1873-1884. doi: 10.1007/s10856-011-4374-8.
21. Chung S, King MW. Design concepts and strategies for tissue engineering scaffolds. Biotechnol Appl Biochem. 2011;58(6):423-438. doi: 10.1002/bab.60.
22. Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology. 2023;21(1):351. doi: 10.1186/s12951-023-02115-7.
23. He X, Zhao Q, Zhang N, et al. Impact of a staggered scaffold structure on the mechanical properties and cell response in bone tissue engineering. J Appl Biomater Funct Mater. 2023;21:22808000231181326. doi: 10.1177/22808000231181326.
24. Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous Scaffolds for Bone Regeneration. J Sci: Adv Mater Dev. 2020;5(1):1-9. doi: 10.1016/j.jsamd.2020.01.007.
25. Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells. 2021;10(11):2993. doi: 10.3390/cells10112993.
26. Persson M, Lehenkari PP, Berglin L, et al. Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci Rep. 2018;8(1):10457. doi: 10.1038/s41598-018-28699-x.
27. Rahman SF, Ghiffary MM, Tampubuluon JY, et al. Effect of graphite, graphene oxide, and multi-walled carbon nanotubes on the physicochemical characteristics and biocompatibility of chitosan/hyaluronic acid/hydroxyapatite scaffolds for tissue engineering applications. J Sci: Adv Mater Dev. 2024;9(2):100719. doi: 10.1016/j.jsamd.2024.100719.
28. Bagal R, Bahir M, Lenka N, Patro TU. Polymer derived porous carbon foam and its application in bone tissue engineering: a review. Int J Polymer Mater Polymer Biomat. 2022;72(12):909-924. doi: 10.1080/00914037.2022.2066669.
29. Islam M, Sadaf A, Gоmez MR, et al. Carbon fiber/microlattice 3D hybrid architecture as multi-scale scaffold for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;126:112140. doi: 10.1016/j.msec.2021.112140.
30. Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel). 2024;16(5):706. doi: 10.3390/polym16050706.
31. Lee DJ, Kwon J, Kim YI, et al. Effect of pore size in bone regeneration using polydopamine-laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mould printing technology. Orthod Craniofac Res. 2019;22 Suppl 1(Suppl 1):127-133. doi: 10.1111/ocr.12261.
32. Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023;12(9):e2202766. doi: 10.1002/adhm.202202766.
33. Cao J, Lian R, Jiang X, Rogachev AV. In vitro degradation assessment of calcium fluoride-doped hydroxyapatite coating prepared by pulsed laser deposition. Surface and Coatings Technology. 2021;416:127177. doi: 10.1016/j.surfcoat.2021.127177.
34. Zhang Y, Chen SE, Shao J, van den Beucken JJJP. Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis. ACS Appl Mater Interfaces. 2018;10(43):36652-36663. doi: 10.1021/acsami.8b10992.
35. Meyer MB, Goetsch PD, Pike JW. Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J Steroid Biochem Mol Biol. 2010;121(1-2):136-141. doi: 10.1016/j.jsbmb.2010.02.011.
36. Li Y, Zhao P, Jiang B, et al. Modulation of the vitamin D/vitamin D receptor system in osteoporosis pathogenesis: insights and therapeutic approaches. J Orthop Surg Res. 2023; 18(1):860. doi: 10.1186/s13018-023-04320-4.
37. Ott SM, Elder G. Osteoporosis associated with chronic kidney disease. In: Marcus R, Feldman D, Dempster DW, et al. (eds). Osteoporosis. 4th ed. Elsevier Pub.; 2013:1387-1424. doi: 10.1016/B978-0-12-415853-5.00058-3.
38. Yakar S, Rosen CJ. From mouse to man: redefining the role of insulin-like growth factor-I in the acquisition of bone mass. Exp Biol Med (Maywood). 2003;228(3):245-252. doi: 10.1177/153537020322800302.
39. Fang J, Zhang X, Chen X, et al. The role of insulin-like growth factor-1 in bone remodeling: A review. Int J Biol Macromol. 2023;238:124125. doi: 10.1016/j.ijbiomac.2023.124125.
40. Canalis E, Rydziel S, Delany AM, et al. Insulin-like growth factors inhibit interstitial collagenase synthesis in bone cell cultures. Endocrinology. 1995;136:1348-1354. doi: 10.1210/endo.136.4.7895645.
41. Brennan-Speranza TC, Rizzoli R, Kream BE, et al. Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties. Bone. 2011;49(5):1073-1079. doi: 10.1016/j.bone.2011.07.039.
42. Denhardt DT, Noda M. Osteopontin expression and function: Role in bone remodeling. J Cell Biochem. 1998;72 Suppl 30‑31(S30‑31): 92‑102. doi: 10.1002/(SICI)1097-4644(1998)72:30/31+<92::AID-JCB13>3.0.CO;2-A.
43. Choi ST, Kim JH, Kang EJ, et al Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford). 2008;47(12):1775-1779. doi: 10.1093/rheumatology/ken385.
44. Martín-Márquez BT, Sandoval-García F, Corona-Meraz FI, et al. Osteopontin: A Bone-Derived Protein Involved in Rheumatoid Arthritis and Osteoarthritis Immunopathology. Biomolecules. 2023;13(3):502. doi: 10.3390/biom13030502.
45. Singh A, Gill G, Kaur H, et al. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod. 2018;19(1):18. doi: 10.1186/s40510-018-0216-2.
Review
For citations:
Timoshchuk E.I., Ponomareva D.V., Gareev A.R. Possible application of glassy carbon composite scaffolds in bone tissue engineering. Genij Ortopedii. 2025;31(1):28-41. https://doi.org/10.18019/1028-4427-2025-31-1-28-41