Mesenchymal stem cells and exosomes in bone defects treatment
https://doi.org/10.18019/1028-4427-2024-30-1-124-133
EDN: EQBHMM
Abstract
Introduction Bone defect management is a critical stage of treatment and rehabilitation that still remains a challenging problem for traumatologists and orthopaedists. The need for tissue engineering techniques is due to limited abilities of the human body to correct bone tissue autoregeneration, especially in comorbid and elderly patients with osteoporosis. Bone autografts is a gold standard in those cases but is associated with certain restrictions. Regenerative medicine and stem cell biology development opened up capabilities to employ new methods for enhancement of bone tissue repair. A special interest of researchers is focused on mesenchymal stem cells and extracellular vesicles for bone tissue regeneration optimization.
Purpose of this review was to show mesenchymal stem cells and exosomes effeciency in bone defect treatment.
Materials and methods Open electronic databases of scientific literature, PubMed and e-Library, were used. The literature data search was carried out using the keywords: regenerative medicine, bone defects, exosomes, mesenchymal stem cells.
Results and discussion The review presents current ideas about mesenchymal stem cells, their microenvironment and exosomes influence on bone tissue repair. Clinical need in effective bone regeneration is still high. Mesenchymal stem cells and acellular regenerative treatments have shown good results in bone defects repair and are perspective directions. Productive use of mesenchymal stem cells and exosomes in bone defects treatment requires further study of their mechanisms of action, the regenerative techniques efficacy and safety evaluation in preclinical and clinical studies.
Conclusion The use of mesenchymal stem cells and cell-free regenerative approaches has demonstrated good results in the restoration of bone tissue defects and is a promising direction.
About the Authors
A. I. GrebenRussian Federation
Anastasiya I. Greben – Resident.
Moscow
P. S. Eremin
Russian Federation
Petr S. Eremin – Researcher.
Moscow
E. Yu. Kostromina
Russian Federation
Elena Yu. Kostromina – Candidate of Medical Sciences, Senior Researcher.
Moscow
P. A. Markov
Russian Federation
Pavel A. Markov – Candidate of Biological Sciences, Senior Researcher.
Moscow
I. R. Gilmutdinova
Russian Federation
Ilmira R. Gilmutdinova – Candidate of Medical Science, Head of the Department.
Moscow
References
1. Wu D, Chang X, Tian J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnology. 2021;19(1):209. doi: 10.1186/s12951-021-00958-6
2. Zha Y, Li Y, Lin T, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 2021;11(1):397-409. doi: 10.7150/thno.50741
3. Herberg S, McDermott AM, Dang PN, et al. Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair. Sci Adv. 2019;5(8):eaax2476. doi: 10.1126/sciadv.aax2476
4. Shang F, Yu Y, Liu S, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater. 2020;6(3):666-683. doi: 10.1016/j.bioactmat.2020.08.014
5. Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240-275. doi: 10.1016/j.biomaterials.2018.09.028
6. Sui BD, Hu CH, Liu AQ, et al. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials. 2019;196:18-30. doi: 10.1016/j.biomaterials.2017.10.046
7. Liang B, Liang JM, Ding JN, et al. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther. 2019;10(1):335. doi: 10.1186/s13287-019-1410-y
8. Ho-Shui-Ling A, Bolander J, Rustom LE, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. doi: 10.1016/j.biomaterials.2018.07.017
9. Naudot M, Garcia Garcia A, Jankovsky N, et al. The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects. J Tissue Eng Regen Med. 2020;14(11):1570-1580. doi: 10.1002/term.3114
10. Thormann U, Ray S, Sommer U, et al. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials. 2013;34(34):8589-8598. doi: 10.1016/j.biomaterials.2013.07.036
11. Deev R. Cellular technologies in traumatology and orthopedics of osteogenesis. Traumatology and Orthopaedics of Russia. 2007;46(4):18-30. (in Russ.)
12. Kim BC, Bae H, Kwon IK, et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18(3):235-244. doi: 10.1089/ten.TEB.2011.0642
13. Watson EC, Adams RH. Biology of bone: the vasculature of the skeletal system. Cold Spring Harb Perspect Med. 2018;8(7):a031559. doi: 10.1101/cshperspect.a031559
14. Lu GD, Cheng P, Liu T, Wang Z. BMSC-Derived Exosomal miR-29a Promotes Angiogenesis and Osteogenesis. Front Cell Dev Biol. 2020;8:608521. doi: 10.3389/fcell.2020.608521
15. Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol. 2016;310(3):H326-H336. doi: 10.1152/ajpheart.00635.2015
16. Fierro FA, Nolta JA, Adamopoulos IE. Concise review: stem cells in osteoimmunology. Stem Cells. 2017;35(6):1461-1467. doi: 10.1002/stem.2625
17. Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to tango: dialog between immunity and stem cells in health and disease. Cell. 2018;175(4):908-920. doi: 10.1016/j.cell.2018.08.071
18. Renth AN, Detamore MS. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine. Tissue Eng Part B Rev. 2012;18(5):341-362. doi: 10.1089/ten.TEB.2012.0080
19. Chen P, Tao J, Zhu S, et al. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials. 2015;39:114-123. doi: 10.1016/j.biomaterials.2014.10.049
20. Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res. 2017;5:17059. doi: 10.1038/boneres.2017.59
21. Liu Y, Yang R, Shi S. Systemic infusion of mesenchymal stem cells improves cell-based bone regeneration via upregulation of regulatory T cells. Tissue Eng Part A. 2015;21(3-4):498-509. doi: 10.1089/ten.tea.2013.0673
22. Zheng CX, Sui BD, Hu CH, et al. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization. J Tissue Eng Regen Med. 2018;12(6):1432-1447. doi: 10.1002/term.2676
23. Зинченко Е.В. Изменение минерального состава костей скелета при нанесении дефекта большеберцовых костей и внутривенном введении мезенхимальных стволовых клеток на 10-е сутки формирования костного регенерата. Актуальные вопросы анатомии : Материалы международной научно-практической конференции. Витебск: ВГМУ. 2020. С. 127-129.
24. Sui BD, Chen J, Zhang XY, et al. Gender-independent efficacy of mesenchymal stem cell therapy in sex hormone-deficient bone loss via immunosuppression and resident stem cell recovery. Exp Mol Med. 2018;50(12):1-14. doi: 10.1038/s12276-018-0192-0
25. Ahrens CC, Dong Z, Li W. Engineering cell aggregates through incorporated polymeric microparticles. Acta Biomater. 2017;62:64-81. doi: 10.1016/j.actbio.2017.08.003
26. Yan J, Zhang C, Zhao Y, et al. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials. 2014;35(27):7734-7749. doi: 10.1016/j.biomaterials.2014.05.089
27. Jiang Z, Wang H, Yu K, et al. Light-Controlled BMSC Sheet-Implant Complexes with Improved Osteogenesis via an LRP5/β-Catenin/Runx2 Regulatory Loop. ACS Appl Mater Interfaces. 2017;9(40):34674-34686. doi: 10.1021/acsami.7b10184
28. Вишневский А.А., Луцай В.И., Уша Б.В. Стимуляция репаративного остеогенеза мультипотентными стволовыми клетками при замещении костных дефектов реберного каркаса в эксперименте. Аграрная наука. 2012;10:23-24.
29. Sui BD, Hu CH, Zheng CX, et al. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia. Theranostics. 2017;7(5):1225-1244. doi: 10.7150/thno.18181
30. Wei P, Dove KK, Bensard C, et al. The force is strong with this one: Metabolism (over)powers stem cell fate. Trends Cell Biol. 2018;28(7):551-559. doi: 10.1016/j.tcb.2018.02.007
31. Liao L, Su X, Yang X, et al. TNF-α Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis. Stem Cells. 2016;34(4):1054-1067. doi: 10.1002/stem.2274
32. Almeida M, Laurent MR, Dubois V, et al. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev. 2017;97(1):135-187. doi: 10.1152/physrev.00033.2015
33. Li J, Zhang N, Huang X, et al. Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/ EBPalpha promoter methylation. Cell Death Dis. 2013;4(10):e832. doi: 10.1038/cddis.2013.348
34. Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13(4):208-219. doi: 10.1038/nrendo.2016.153
35. Riddle RC, Clemens TL. Bone cell bioenergetics and skeletal energy homeostasis. Physiol Rev. 2017;97(2):667-698. doi: 10.1152/physrev.00022.2016
36. Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep. 2017;15(4):367-375. doi: 10.1007/s11914-017-0381-0
37. Liu Y, Kou X, Chen C, et al. Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells. Stem Cells. 2016;34(8):2157-2168. doi: 10.1002/stem.2392
38. Liu S, Liu D, Chen C, et al. MSC transplantation improves osteopenia via epigenetic regulation of notch signaling in lupus. Cell Metab. 2015;22(4):606-618. doi: 10.1016/j.cmet.2015.08.018
39. Li C, Li B, Dong Z, et al. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway. Stem Cell Res. Ther. 2014;5(3):67. doi: 10.1186/scrt456
40. Xue P, Li B, An Y, et al. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation. Cell Death Differ. 2016;23(11):1862-1872. doi: 10.1038/cdd.2016.74
41. Geissler S, Textor M, Schmidt-Bleek K, et al. In serum veritas-in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway. Cell Death Dis. 2013;4(12):e970. doi: 10.1038/cddis.2013.501
42. Ming L, Jin F, Huang P, et al. Licochalcone A up-regulates of FasL in mesenchymal stem cells to strengthen bone formation and increase bone mass. Sci Rep. 2014;4:7209. doi: 10.1038/srep07209
43. Zhang X, Li Y, Chen YE, et al. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat Commun. 2016;7:10376. doi: 10.1038/ncomms10376
44. Zhang D, Ni N, Wang Y, et al. CircRNA-vgII3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death Differ. 2021;28(1):283-302. doi: 10.1038/s41418-020-0600-6
45. Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: a review. World J Stem Cells. 2017;9(8):107-117. doi: 10.4252/wjsc.v9.i8.107
46. Betz VM, Kochanek S, Rammelt S, et al. Recent advances in gene-enhanced bone tissue engineering. J Gene Med. 2018;20(6):e3018. doi: 10.1002/jgm.3018
47. Kristensen LS, Okholm TLH, Venø MT, Kjems J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 2018;15(2):280-291. doi: 10.1080/15476286.2017.1409931
48. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55-66. doi: 10.1016/j.molcel.2014.08.019
49. Liu Y, Ma Y, Zhang J, et al. MBG-modified β-TCP scaffold promotes mesenchymal stem cells adhesion and osteogenic differentiation via a FAK/MAPK signaling pathway. ACS Appl Mater Interfaces. 2017;9(36):30283-30296. doi: 10.1021/acsami.7b02466
50. Бордаков В.Н., Деркачев В.С., Руденок В.В. и др. Тканевая инженерия в лечении дефектов длинных трубчатых костей. Хирургия. Восточная Европа. 2018;7(1):67-73.
51. Ostrovidov S, Salehi S, Costantini M, et al. 3D Bioprinting in Skeletal Muscle Tissue Engineering. Small. 2019;15(24):e1805530. doi: 10.1002/smll.201805530
52. Wang Q, Cheng H., Peng H, et al. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv Drug Deliv Rev. 2015;91:125-140. doi: 10.1016/j.addr.2014.12.003
53. Liao W, Ning Y, Xu HJ, et al. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci (Lond). 2019;133(18):1955-1975. doi: 10.1042/CS20181064
54. Liu L, Liu Y, Feng C, et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials. 2019;192:523-536. doi: 10.1016/j.biomaterials.2018.11.007
55. Майбородин И.В., Шевела А.А., Марчуков С.В. и др. Регенерация костного дефекта в условиях экспериментального применения экстрацеллюлярных микровезикул мультипотентных стромальных клеток. Новости хирургии. 2020;28(4):359-369. doi: 10.18484/2305-0047.2020.4.359
56. Шевела А.А., Шевела А.И., Матвеева В.А. и др. Экзосомы мультипотентных стромальных клеток и экспериментальная остеоинтеграция дентальных имплантов. Материалы II Международной научно-практической конференции. 2020;2:41-55.
57. Minutti CM, Knipper JA, Allen JE, Zaiss DM. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol. 2017;61:3-11. doi: 10.1016/j.semcdb.2016.08.006
58. Murray PJ. Macrophage Polarization.Annu Rev Physiol. 2017;79:541-566. doi: 10.1146/annurev-physiol-022516-034339
59. Kang M, Huang CC, Lu Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles. Bone. 2020;141:115627. doi: 10.1016/j.bone.2020.115627
60. Loi F, Córdova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther. 2016;7:15. doi: 10.1186/s13287-016-0276-5
61. Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials. 2016;82:1-19. doi: 10.1016/j.biomaterials.2015.12.017
62. Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164(6):1226-1232. doi: 10.1016/j.cell.2016.01.043
63. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. doi: 10.1126/science.aau6977
64. Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63-78. doi: 10.1016/j.pharmthera.2017.02.020
65. Nathan K, Lu LY, Lin T, et al. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res. 2019;8(10):481-488. doi: 10.1302/2046-3758.810.BJR-2018-0231.R2
66. Gong L, Zhao Y, Zhang Y, Ruan Z. The Macrophage Polarization Regulates MSC Osteoblast Differentiation in vitro. Ann Clin Lab Sci. 2016;46(1):65-71.
67. Cappariello A, Loftus A, Muraca M, et al. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone. J Bone Miner Res. 2018;33(3):517-533. doi: 10.1002/jbmr.3332
68. Huang CC, Kang M, Lu Y, et al. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater. 2020;109:182-194. doi: 10.1016/j.actbio.2020.04.017
69. Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol. 2019;10:799. doi: 10.3389/fimmu.2019.00799
70. Wang X, Ao J, Lu H, et al. Osteoimmune Modulation and Guided Osteogenesis Promoted by Barrier Membranes Incorporated with S-Nitrosoglutathione (GSNO) and Mesenchymal Stem Cell-Derived Exosomes. Int J Nanomedicine. 2020;15:3483-3496. doi: 10.2147/IJN.S248741
71. Shahrezaee M, Salehi M, Keshtkari S, et al. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomedicine. 2018;14(7):2061-2073. doi: 10.1016/j.nano.2018.06.007
72. Corpas FJ, Alché JD, Barroso JB. Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci. 2013;4:126. doi: 10.3389/fpls.2013.00126
73. Stegen S, Carmeliet G. The skeletal vascular system – Breathing life into bone tissue. Bone. 2018;115:50-58. doi: 10.1016/j.bone.2017.08.022
74. Huang Z, He Y, Chang X, et al. A magnetic iron oxide/polydopamine coating can improve osteogenesis of 3D-printed porous titanium scaffolds with a static magnetic field by upregulating the TGFβ-Smads pathway. Adv Healthc Mater. 2020;9(14):e2000318. doi: 10.1002/adhm.202000318
75. Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One. 2019;14(11):e0225472. doi: 10.1371/journal.pone.0225472
76. He Y, Yu L, Liu J, et al. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4. FASEB J. 2019;33(5):6069-6081. doi: 10.1096/fj.201802195R
77. Kim EC, Leesungbok R, Lee SW, et al. Effects of static magnetic fields on bone regeneration of implants in the rabbit: micro-CT, histologic, microarray, and real-time PCR analyses. Clin Oral Implants Res. 2017;28(4):396-405. doi: 10.1111/clr.12812
78. Lee JR, Park BW, Kim J, et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. Sci Adv. 2020;6(18):eaaz0952. doi: 10.1126/sciadv.aaz0952
79. Zhu Y, Li Z, Zhang Y, et al. The essential role of osteoclast-derived exosomes in magnetic nanoparticle-infiltrated hydroxyapatite scaffold modulated osteoblast proliferation in an osteoporosis model. Nanoscale. 2020;12(16):8720-8726. doi: 10.1039/d0nr00867b
80. Kim HY, Kim TJ, Kang L, et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials. 2020;243:119942. doi: 0.1016/j.biomaterials.2020.119942
81. Wu D, Kang L, Tian J, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine. 2020;15:7979-7993. doi: 10.2147/IJN.S275650
82. Okada M, Yamawaki H. A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J Pharmacol Sci. 2019;139(2):59-64. doi: 10.1016/j.jphs.2018.12.001
Review
For citations:
Greben A.I., Eremin P.S., Kostromina E.Yu., Markov P.A., Gilmutdinova I.R. Mesenchymal stem cells and exosomes in bone defects treatment. Genij Ortopedii. 2024;30(1):124-133. https://doi.org/10.18019/1028-4427-2024-30-1-124-133. EDN: EQBHMM