Preview

Genij Ortopedii

Advanced search

Tibial lengthening over a bioactive degradable intramedullary implant: a case report

https://doi.org/10.18019/1028-4427-2023-29-6-645-649

EDN: YQMVTP

Abstract

Introduction Long duration of distraction osteosynthesis remains an unsolved problem. One of the promising ways to stimulate reparative regeneration of bone tissue is the technology of combined osteosynthesis with intramedullary elastic reinforcement with titanium wires coated with hydroxyapatite. A significant drawback of this combined distraction osteosynthesis is the planned removal of intramedullary wires several months after disassembling the Ilizarov apparatus.

The purpose of this work is to demonstrate the possibility of stimulating reparative regeneration and reducing the duration of distraction osteosynthesis using an intramedullary degradable implant with bioactive filling.

Methods We present the first in clinical practice case of surgical leg lengthening in a female 10-year-old patient using the Ilizarov apparatus an intramedullary degradable implant made of polycaprolactone (PCL) saturated with hydroxyapatite to stimulate reparative regeneration in the tibia. Monthly radiographic monitoring of the process of reparative regeneration of bone tissue was supplemented by computed tomography after disassembling the Ilizarov apparatus.

Results The process of lengthening the tibia was accompanied by pronounced formation of a bone “sleeve” around the implant, which was directly connected to the endosteum of the tibia. The density of bone substance in the medullary canal reached 496.6 HU. The cortical layer of the tibia in the elongation zone increased to 4 mm, and its density was equal to 1288.8 HU.

Discussion Leg lengthening of 4 cm was achieved along with simultaneous correction of valgus recurvatum bone deformity at IO = 15 days/cm, that is two times shorter than the generally accepted excellent IO in distraction osteosynthesis according to Ilizarov.

Conclusions Biodegradable polycaprolactone implants saturated with hydroxyapatite might be not inferior to titanium wires coated with hydroxyapatite in regard to the degree of osteoinduction and do not require repeated surgical intervention to remove them.

About the Authors

A. V. Popkov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Arnold V. Popkov – Doctor of Medical Sciences, Professor, Chief Researcher



E. S. Gorbach
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Evgenii S. Gorbach – postgraduate student



U. F. Mamedov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Ulvi F. Mamedov – postgraduate student



R. V. Stepanov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Roman V. Stepanov – radiotherapist



References

1. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989;(238):249-281.

2. Morcos MW, Al-Jallad H, Hamdy R. Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration. Biomed Res Int. 2015;2015:842975. doi: 10.1155/2015/842975

3. Hosny GA. Limb lengthening history, evolution, complications and current concepts. J Orthop Traumatol. 2020;21(1):3. doi: 10.1186/s10195-019- 0541-3

4. Fenton C, Henderson D, Samchukov M, et al. Comparative Stiffness Characteristics of Ilizarov- and Hexapod-type External Frame Constructs. Strategies Trauma Limb Reconstr. 2021;16(3):138-143. doi: 10.5005/jp-journals-10080-1539

5. Black SR, Kwon MS, Cherkashin AM, et al. Lengthening in Congenital Femoral Deficiency: A Comparison of Circular External Fixation and a Motorized Intramedullary Nail. J Bone Joint Surg Am. 2015;97(17):1432-40. doi: 10.2106/JBJS.N.00932

6. Sun XT, Easwar TR, Manesh S, et al. Complications and outcome of tibial lengthening using the Ilizarov method with or without a supplementary intramedullary nail: a case-matched comparative study. J Bone Joint Surg Br. 2011;93(6):782-787. doi: 10.1302/0301-620X.93B6.25521

7. Koczewski P, Shadi M. Factors influencing bone regenerate healing in distraction osteogenesis. Ortop Traumatol Rehabil. 2013;15(6):591-599. doi: 10.5604/15093492.1091515

8. Pejin Z. Femoral lengthening in children and adolescents. Orthop Traumatol Surg Res. 2017;103(1S):S143-S149. doi: 10.1016/j.otsr.2016.05.020

9. Hasler CC, Krieg AH. Current concepts of leg lengthening. J Child Orthop. 2012;6(2):89-104. doi: 10.1007/s11832-012-0391-5

10. Popkov D, Lascombes P, Journeau P, Popkov A. Current approaches to flexible intramedullary nailing for bone lengthening in children. J Child Orthop. 2016;10(6):499-509. doi: 10.1007/s11832-016-0781-1

11. Shevtsov VI, Erofeev SA, Gorbach EN, Yemanov AA. Osteogenesis features for leg lengthening using automatic distractors with the rate by 3 mm for 180 times (experimental study). Genij Ortopedii. 2006;(1):10-16. (In Russ.)

12. Popkov A, Foster P, Gubin A, et al. The use of flexible intramedullary nails in limb lengthening. Expert Rev Med Devices. 2017;14(9):741-753. doi: 10.1080/17434440.2017.1367284

13. Popkov DA, Popkov AV, Kononovich NA, et al. Experimental study of progressive tibial lengthening in dogs using the Ilizarov technique. Comparison with and without associated intramedullary K-wires. Orthop Traumatol Surg Res. 2014;100(7):809-814. doi: 10.1016/j.otsr.2014.06.021

14. Standard Specification for Titanium and Titanium Alloy Bars and Billets [Electronic resource]. doi: 10.1520/B0348_B0348M-21. Available at: https://www.astm.org/b0348_b0348m-21.html. Accessed Sept 28, 2023.

15. Rokkanen PU, Böstman O, Hirvensalo E, et al. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials. 2000;21(24):2607-13. doi: 10.1016/s0142-9612(00)00128-129

16. Gaiarsa GP, Dos Reis PR, Mattar R Jr, et al. Comparative study between osteosynthesis in conventional and bioabsorbable implants in ankle fractures. Acta Ortop Bras. 2015;23(5):263-267. doi: 10.1590/1413-785220152305121124

17. Kuru T, Mutlu I, Bilge A, et al. Biomechanical Comparison of Headless Compression Screws, Kirschner Wires and Bioabsorbable Pins in Distal Oblique Metatarsal Osteotomy for Correction of Hallux Valgus. J Am Podiatr Med Assoc. 2022:1-21. doi: 10.7547/21-204

18. Popkov AV, Kulbakin DE, Popkov DA, et al. Solution blow spinning of PLLA/hydroxyapatite composite scaffolds for bone tissue engineering. Biomed Mater. 2021;16(5). doi: 10.1088/1748-605X/ac11ca

19. Su Y, Nan G. Treatment of medial humeral epicondyle fractures in children using absorbable self-reinforced polylactide pins. Medicine (Baltimore). 2020;99(17):e19861. doi: 10.1097/MD.0000000000019861

20. Bahraminasab M, Doostmohammadi N, Talebi A, et al. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Biomed Eng Online. 2022;21(1):86. doi: 10.1186/s12938-022-01056-w

21. Ghayor C, Bhattacharya I, Guerrero J, et al. 3D-Printed HA-Based Scaffolds for Bone Regeneration: Microporosity, Osteoconduction and Osteoclastic Resorption. Materials (Basel). 2022;15(4):1433. doi: 10.3390/ma15041433

22. Sanders J, Goldstein RY. Open Reduction and Pin Fixation of Pediatric Lateral Humeral Condylar Fractures. JBJS Essent Surg Tech. 2020;10(4):e19.00066. doi: 10.2106/JBJS.ST.19.00066

23. Popkov A, Aranovich A, Antonov A, et al. Lower limb lengthening and deformity correction in polyostotic fibrous dysplasia using external fixation and flexible intramedullary nailing. J Orthop. 2020;21:192-198. doi: 10.1016/j.jor.2020.03.014


Review

For citations:


Popkov A.V., Gorbach E.S., Mamedov U.F., Stepanov R.V. Tibial lengthening over a bioactive degradable intramedullary implant: a case report. Genij Ortopedii. 2023;29(6):645-649. https://doi.org/10.18019/1028-4427-2023-29-6-645-649. EDN: YQMVTP

Views: 432


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)