Биосовместимые имплантаты в ортопедии: инженерия костной ткани
https://doi.org/10.18019/1028-4427-2023-29-6-662-668
EDN: JIAIND
Аннотация
Введение. Технологический прогресс в течение последних 30 лет способствовал исследованиям и прогрессу в области имплантов для реконструктивной ортопедии. Это направление позволило практически полностью отказаться от применения аутоимплантов из-за недостатков их использования.
Цель. Продемонстрировать достижения последних 30 лет в разработке биоимплантатов, являющихся альтернативой костной пластике в реконструктивной ортопедии.
Материалы и методы. При подготовке обзора для поиска информации использовались научные платформы PubMed, Scopus, ResearchGate, RSCI. Поисковыми словами и словосочетаниями были: биоактивные остеоиндуктивные импланты, костные трансплантаты, костная реконструкция, гидроксиапатит, костные скаффолды, bioactive osteoinductive implants, bone grafting, bone reconstruction, hydroxyapatite, bone scaffolds.
Результаты. Основные направления тканевой инженерии в области ортопедии представлены 3D-имплантами, обеспечивающими детерминированную клеточную миграцию, пролиферацию и дифференцировку и сохраняющие на протяжении требуемого времени достаточную механическую прочность своей структуры. Сочетание биодеградируемых имплантов с импрегнацией их костным морфогенетическим белком стимулирует регенерацию реконструируемой кости. Программируемая и контролируемая резорбция имплантов в сочетании с замещением их новой костной тканью является основным вектором развития инженеринга костной ткани.
Обсуждение. Данный обзор включил в себя представление и критическое обсуждение экспериментального и клинического применения биотолерантных, биоинертных и биоактивных материалов, разрабатываемых и применяемых в настоящее время для реконструктивной ортопедии. Существует консенсусное мнение, что биоматериалы будущего, применяемые в ортопедии, должны обладать остеоиндуктивными и остеокондуктивными свойствами.
Заключение. Свойства поликапролактона, импрегнированного гидроксиапатитом (от 10 дo 50 wt %) в сочетании с контролируемой и прогнозируемой абсорбцией, делают этот гибридный материал наиболее перспективным для изготовления имплантов в сравнении с иными композитными материалами.
Об авторах
А. В. ПопковРоссия
Арнольд Васильевич Попков – доктор медицинских наук, профессор, главный научный сотрудник
Д. А. Попков
Россия
Дмитрий Арнольдович Попков – доктор медицинских наук, профессор РАН, член-корреспондент Французской академии медицинских наук, врач травматолог-ортопед, руководитель Клиники
Список литературы
1. Shevtsov VI, Popkov AV. Operative lengthening of the lower extremities. M.: Medicine; 1998:192. (In Russ.)
2. Shevtsov VI. Shved SI, Sysenko YM. Transosseous osteosynthesis in the treatment of comminuted fractures. Kurgan; 2002:331. (In Russ.)
3. Lascombes P, Popkov D, Huber H, et al. Classification of complications after progressive long bone lengthening: proposal for a new classification. Orthop Traumatol Surg Res. 2012;98(6):629-637. doi: 10.1016/j.otsr.2012.05.010
4. Curran AR, Kuo KN, Lubicky JP. Simultaneous ipsilateral femoral and tibial lengthening with the Ilizarov method. J Pediatr Orthop. 1999;19(3):386-390.
5. Vargas Barreto B, Caton J, Merabet Z, et al. Complications of Ilizarov leg lengthening: a comparative study between patients with leg length discrepancy and short stature. Int Orthop. 2007;31(5):587-591. doi: 10.1007/s00264-006-0236-2
6. Launay F, Jouve JL, Guillaume JM, et al. Les allongements progressifs de l'avant-bras chez l'enfant [Progressive forearm lengthening in children: 14 cases]. Rev Chir Orthop Reparatrice Appar Mot. 2001;87(8):786-795. (In French)
7. Song HR, Myrboh V, Oh CW, et al. Tibial lengthening and concomitant foot deformity correction in 14 patients with permanent deformity after poliomyelitis. Acta Orthop. 2005;76(2):261-269. doi: 10.1080/00016470510030670
8. Sluga M, Pfeiffer M, Kotz R, Nehrer S. Lower limb deformities in children: two-stage correction using the Taylor spatial frame. J Pediatr Orthop B. 2003;12(2):123-128. doi: 10.1097/01.bpb.0000049578.53117.03
9. Stanitski DF, Shahcheraghi H, Nicker DA, Armstrong PF. Results of tibial lengthening with the Ilizarov technique. J Pediatr Orthop. 1996;16(2):168- 172. doi: 10.1097/00004694-199603000-00006
10. Eralp L, Kocaoğlu M, Ozkan K, Türker M. A comparison of two osteotomy techniques for tibial lengthening. Arch Orthop Trauma Surg. 2004;124(5):298-300. doi: 10.1007/s00402-004-0646-9
11. Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci. 2022;23(17):9721. doi: 10.3390/ijms23179721
12. Kaspiris A, Hadjimichael AC, Vasiliadis ES, et al. Therapeutic Efficacy and Safety of Osteoinductive Factors and Cellular Therapies for Long Bone Fractures and Non-Unions: A Meta-Analysis and Systematic Review. J Clin Med. 2022;11(13):3901. doi: 10.3390/jcm11133901
13. Calcium phosphate-based ceramic and composite materials for medicine. Russian Chemical Reviews. 2010;79(1):13-29. doi: 10.1070/RC2010v079n01ABEH004098
14. Chaturvedi TP. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(1):91-98. doi: 0.4103/0970-9290.49068
15. Filip DG, Surdu VA, Paduraru AV, Andronescu E. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J Funct Biomater. 2022;13(4):248. doi: 10.3390/jfb13040248
16. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research.1998;13(1), 94-117. doi: 10.1557/JMR.1998.0015
17. Steinemann SG. Corrosion of surgical implants - in vivo and in vitro tests, eds. Winter GD, Leray JL, de Goot K. Evaluation of biomaterials, advances in biomaterials. Chichester: Wiley; 1980;1:1-34.
18. Thull R. Titan in der Zahnheikunde – Grundlangen. Z. Mitteilungen. 1992;82:39-45.
19. Gross U, Brandes J, Strunz V, et al. The ultrastructure of the interface between a glass ceramic and bone. J Biomed Mater Res. 1981;15(3):291-305. doi: 10.1002/jbm.820150302
20. Bauer IW, Li SP, Han YC, et al. Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater Med. 2008;19(3):1091-1095. doi: 10.1007/s10856-007-3124-4
21. Hulbert SF, Cooke FW, Klawitter JJ, et al. Attachment of prostheses to the musculoskeletal system by tissue ingrowth and mechanical interlocking. J Biomed Mater Res. 1973;7(3):1-23. doi: 10.1002/jbm.820070303
22. Greenspan DC, Hench LL. Chemical and mechanical behavior of bioglass-coated alumina. J Biomed Mater Res. 1976;10(4):503-509. doi: 10.1002/jbm.820100405
23. Gross KA, Ray N, Røkkum M. The contribution of coating microstructure to degradation and particle release in hydroxyapatite coated prostheses. J Biomed Mater Res. 2002;63(2):106-114. doi: 10.1002/jbm.10090
24. Saravanapavan P, Jones JR, Pryce RS, Hench LL. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5- SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J Biomed Mater Res A. 2003;66(1):110-119. doi: 10.1002/jbm.a.10532
25. Plenk H Jr. Prosthesis-bone interface. J Biomed Mater Res. 1998;43(4):350-355. doi: 10.1002/(sici)1097-4636(199824)43:4<350::aid- jbm2>3.0.co;2-s
26. Anselme K, Noël B, Hardouin P. Human osteoblast adhesion on titanium alloy, stainless steel, glass and plastic substrates with same surface topography. J Mater Sci Mater Med. 1999;10(12):815-819. doi: 10.1023/a:1008992109670
27. Keller JC, Collins JG, Niederauer GG, McGee TD. In vitro attachment of osteoblast-like cells to osteoceramic materials. Dent Mater. 1997;13(1):62- 8. doi: 10.1016/s0109-5641(97)80010-3
28. Zinger O, Anselme K, Denzer A, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale- resolved topography. Biomaterials. 2004;25(14):2695-711. doi: 10.1016/j.biomaterials.2003.09.111
29. Thomas KA, Cook SD, Haddad RJ Jr, et al. Biologic response to hydroxylapatite-coated titanium hips. A preliminary study in dogs. J Arthroplasty. 1989;4(1):43-53. doi: 10.1016/s0883-5403(89)80053-1
30. Jansen JA, van de Waerden JP, Wolke JG, de Groot K. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res. 1991;25(8):973-989. doi: 10.1002/jbm.820250805
31. Dhert WJ, Klein CP, Jansen JA, et al. A histological and histomorphometrical investigation of fluorapatite, magnesiumwhitlockite, and hydroxylapatite plasma-sprayed coatings in goats. J Biomed Mater Res. 1993;27(1):127-38. doi: 10.1002/jbm.820270116
32. Søballe K, Hansen ES, Brockstedt-Rasmussen H, et al. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop Relat Res. 1991;(272):300-307.
33. Stephenson PK, Freeman MA, Revell PA, et al. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. J Arthroplasty. 1991;6(1):51-58. doi: 10.1016/s0883-5403(06)80157-9
34. Oliveira AS, Silva JC, Figueiredo L, et al. High-performance bilayer composites for the replacement of osteochondral defects. Biomater Sci. 2022;10(20):5856-5875. doi: 10.1039/d2bm00716a
35. Zaed I, Cardia A, Stefini R. From Reparative Surgery to Regenerative Surgery: State of the Art of Porous Hydroxyapatite in Cranioplasty. Int J Mol Sci. 2022;23(10):5434. doi: 10.3390/ijms23105434
36. Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med. 2015;30(3):279- 293. doi: 10.3904/kjim.2015.30.3.279
37. Nakamura T. Biomaterial osteoinduction. J Orthop Sci. 2007;12(2):111-112. doi: 10.1007/s00776-007-1109-2
38. Dorozhkin SV. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl. 2015;55:272-326. doi: 10.1016/j.msec.2015.05.033
39. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742-53. doi: 10.1021/cr800427g
40. Popkov AV, Popkov DA. Bioactive implants in traumatology and orthopaedics. Irkutsk: NTsRVKH SO RAMS; 2012:438. (In Russ.)
41. Popkov AV, Popkov DA, Borzunov DYu. Directed osteoinduction for bone fibrous dysplasia. Genij Ortopedii. 2013;(1):81-86. (In Russ.)
42. Popkov A, Kononovich N, Gorbach E, Popkov D. Osteointegration technology in long bone defect reconstruction: experimental study. Acta Bioeng Biomech. 2020;22(4):85-91.
43. Agadzhanyan VV, Tverdokhlebov SI, Bolbasov EN, Ignatov VP, Shesterikov EV. Osteoinductive coatings based on calcium phosphates and prospects for their usage in polytrauma treatment. Polytrauma. 2011;(3):5-13. (In Russ.)
44. Aronov AM, Bolbasov EN, Guzeev VV. Biocomposites based on a copolymer of tetrafluoroethylene with vinylidene fluoride filled with hydroxyapatite and the possibility of their use as a coating for intramedullary implants. Med Technol. 2010;(3):5-13. (In Russ.)
45. Aronov AM, Pichugin VF, Tverdokhlebov SI. Methodological bases for the development and organization of the production of medical products. Tomsk: Veter; 2007:334. (In Russ.)
46. Yannas IV. What criteria should be used for designing artificial skin replacements and how well do the current grafting materials meet these criteria? J Trauma. 1984;24(9 Suppl):S29-39.
47. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998;16(3):247-252. doi: 10.1038/nbt0398-247
48. Khoninov BV, Sergunin ON, Skoroglyadov PA. Biodegradable materials application in traumatology and orthopedics (Review). Bulletin of the Russian State Medical University. 2014;(1):20-24. (In Russ.)
49. Rokkanen PU, Böstman O, Hirvensalo E, et al. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials. 2000;21(24):2607- 2613. doi: 10.1016/s0142-9612(00)00128-9
50. Ruedi T. AO Principles of Fracture Management: Vol. 1: Principles. Buckley RE (Ed., Contrib.), Moran CG (Ed., Contrib.). 2013; Berlin, Wassa Media. 1:1-8,32-46,212-226.
51. Khoninov BV, Sergunin ON, Skoroglyadov PA. Clinical efficacy analysis of biodegradable implants application on the surgical treatment of hallux valgus. Bulletin of the Russian State Medical University. 2015;(3):20-24. (In Russ.)
52. Nishizuka T, Kurahashi T, Hara T, et al. Novel intramedullary-fixation technique for long bone fragility fractures using bioresorbable materials. PLoS One. 2014;9(8):e104603. doi: 10.1371/journal.pone.0104603
53. Gaiarsa GP, Dos Reis PR, Mattar R Jr, et al. Comparative study between osteosynthesis in conventional and bioabsorbable implants in ankle fractures. Acta Ortop Bras. 2015;23(5):263-267. doi: 10.1590/1413-785220152305121124
54. Zhang J, Ebraheim N, Lausé GE, et al. A comparison of absorbable screws and metallic plates in treating calcaneal fractures: a prospective randomized trial. J Trauma Acute Care Surg. 2012;72(2):E106-10. doi: 10.1097/ta.0b013e3182231811
55. Agadzhanyan VV, Pronskikh AA, Demina VA, et al. Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma. 2016;(4):85-93.
56. Zamora R, Jackson A, Seligson D. Correct techniques for the use of bioabsorbable implants in orthopaedic trauma. Current Orthopaedic Practice. 2016;27(4): 469-73. doi: 10.1097/BCO.0000000000000378
57. Castaño O, Sachot N, Xuriguera E, et al. Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. ACS Appl Mater Interfaces. 2014;6(10):7512-22. doi: 10.1021/am500885v
58. Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg. 1966;93(5):839-43. doi: 10.1001/archsurg.1966.01330050143023
59. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res. 1971;5(3):169-81. doi: 10.1002/jbm.820050305
60. Waris E, Konttinen YT, Ashammakhi N, et al. Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing. Expert Rev Med Devices. 2004;1(2):229-40. doi: 10.1586/17434440.1.2.229
61. Vainionpää S, Rokkanen P, Törmälä P. Surgical applications of biodegradable polymers in human tissues. Progress Polymer Science. 1989;14(5):679- 716. doi: 10.1016/0079-6700(89)90013-0
62. Speer KP, Warren RF. Arthroscopic shoulder stabilization. A role for biodegradable materials. Clin Orthop Relat Res. 1993;(291):67-74.
63. Merolli A, Nicolais L, Ambrosio L, Santin M. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit. Biomed Mater. 2010;5(1):15008. doi: 10.1088/1748-6041/5/1/015008
64. Isyar M, Yilmaz I, Nusran G, et al. Safety of bioabsorbable implants in vitro. BMC Surg. 2015;15:127. doi: 10.1186/s12893-015-0111-4
65. Yakimov LA, Slinyakov LYu, Bobrov DS, et al. Biodegradable implants. Formation and development. Advantages and disadvantages. (review of literature). Department of Traumatology and Orthopedics. 2017;1:47-52. (In Russ.)
66. Andriano KP, Pohjonen T, Törmälä P. Processing and characterization of absorbable polylactide polymers for use in surgical implants. J Appl Biomater. 1994;5(2):133-140. doi: 10.1002/jab.770050206
67. Eglin D, Alini M. Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater. 2008;16:80-91. doi: 10.22203/ecm.v016a09
68. Kontakis GM, Pagkalos JE, Tosounidis TI, et al. Bioabsorbable materials in orthopaedics. Acta Orthop Belg. 2007;73(2):159-169.
69. Pina S, Ferreira JMF. Bioresorbable Plates and Screws for Clinical Applications: A Review. J Healthcare Engineering. 2012;3(2):243-260. doi: 10.1260/2040-2295.3.2.243
70. Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials (Basel). 2015;8(9):5744-5794. doi: 10.3390/ma8095273
71. Landes CA, Ballon A, Roth C. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience. Plast Reconstr Surg. 2006;117(7):2347-2360. doi: 10.1097/01.prs.0000218787.49887.73
72. Shilova AN, Ilarionov SA. Biopolymers based on lactide. Bulletin of Perm University. 2015;1(17):86-92. (In Russ.)
73. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-2543. doi: 10.1016/s0142-9612(00)00121-6
74. Strycker ML. Biodegradable internal fixation. J Foot Ankle Surg. 1995;34(1):82-88. doi: 10.1016/S1067-2516(09)80107-5
75. Ciccone WJ 2nd, Motz C, Bentley C, Tasto JP. Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg. 2001;9(5):280-188. doi: 10.5435/00124635-200109000-00001
76. Daniels AU, Chang MK, Andriano KP. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater. 1990;1(1):57-78. doi: 10.1002/jab.770010109
77. Young A, Maia R, Moraga C, et al. Latarjet-Bristow Procedure Performed With Bioabsorbable Screws: Computed Tomography Evidence of Healing. Techniques in Shoulder and Elbow Surgery. 2010;11(3):85-89. doi: 10.1097/BTE.0b013e3181edf171
78. Washington MA, Swiner DJ, Bell KR, et al. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials. 2017;117:66-76. doi: 10.1016/j.biomaterials.2016.11.037
79. Välimaa T, Laaksovirta S. Degradation behaviour of self-reinforced 80L/20G PLGA devices in vitro. Biomaterials. 2004;25(7-8):1225-32. doi: 10.1016/j.biomaterials.2003.08.072
80. Golubev VG, Starostenkov AN. Bioabsorbable screws as a new facility for calcaneal fractures treatment. Department of Traumatology and Orthopedics. 2017;(2):25-30. (In Russ.)
81. Böstman O, Hirvensalo E, Mäkinen J, Rokkanen P. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br. 1990;72(4):592-596. doi: 10.1302/0301-620X.72B4.2199452
82. Böstman OM. Metallic or absorbable fracture fixation devices. A cost minimization analysis. Clin Orthop Relat Res. 1996;(329):233-9.
83. Golubev VG, Starostenkov AN. Operative technique features in application of bioabsorbable implants for limb fractures treatment. Surgical practice. 2017;(2):5-13. (In Russ.)
84. Golubev VG, Zelenyak KB, Starostenkov AN. Bioabsorbable implants in treatment Of ankle fractures (comparative study). Department of Traumatology and Orthopedics. 2018;(2): 66-73. (In Russ.) doi: 10.17238/issn2226-2016.2018.2.66-73
85. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80(7):985-96. doi: 10.2106/00004623-199807000-00007
86. Ivanov SY, Panasyuk AF, Panin AM et al. Experience in the use of biocomposite osteoplastic materials. Nizhny Novgorod Medical Journal. Supplement to NMG (dentistry 2003). 2003;(2):244-50. (In Russ.)
87. Kuz'minykh IA. Clinical experience in osteoplastic material Allomatrix-implant and fibrin rich platelets use in surgical treatment of jaw radicular cysts. Stomatologiia (Mosk). 2009;88(1):51-53. (In Russ.)
88. Ivanov SY, Kuznetsov RK, Chailakhyan RK. Prospects for the use of Biomatrix and Allomatrix-implant materials in combination with bone marrow osteogenic progenitor cells in dentistry. Clinical implantology and dentistry. 2000;(3-4):17-18. (In Russ.)
89. Grudyanov AI, Panasuk AF, Larionov EV, Biakova SF. The use of biocomposite osteoplastic material "Allomatrix-implant" in the surgical treatment of inflammatory periodontal diseases. Periodontology. 2003;4(29):39-43. (In Russ.)
90. Litvinov SD, Rakhimov RI. [Tooth bud fixation by the material LitAr]. Stomatologiia (Mosk). 2005;84(2):62-65. (In Russ.)
91. Asnina SA, Agapov VS, Savchenko ZI, Ignatiev EV. The use of biocomposite material "Osteomatrix" for the prevention of complications in the removal of impacted third molars. Institute of Dentistry. 2004;(1):46-49. (In Russ.)
92. Chekmazov IA, Riabov AL, Skalozub OI, Lapin RV. [Biocomposite nanostructured materials for the bone defects filling by osteomyelitis]. Khirurgiia (Mosk). 2013;(8):56-8. (In Russ.)
93. Protsenko AI, Gazhev AKh, Gordeev GG, Zheltikov DI. [The use of hydroxyapatite substance for the ostheosynthesis after comminuted thigh fractures]. Khirurgiia (Mosk). 2012;(1):10-4. (In Russ.)
94. Roberts SJ, Geris L, Kerckhofs G, et al. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials. 2011;32(19):4393-4405. doi: 10.1016/j.biomaterials.2011.02.047
95. Furukawa T, Matsusue Y, Yasunaga T, et al. Bone bonding ability of a new biodegradable composite for internal fixation of bone fractures. Clin Orthop Relat Res. 2000;(379):247-58. doi: 10.1097/00003086-200010000-00030
96. Shikinami Y, Matsusue Y, Nakamura T. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA). Biomaterials. 2005;26(27):5542-51. doi: 10.1016/j.biomaterials.2005.02.016
97. Popkov AV, Stogov MV, Gorbach EN, et al. Hydrolysis of Bone-Replacing Materials Based on Polylactic Acid and Containing Hydroxyapatite in an In Vitro Experiment. Bull Exp Biol Med. 2022;174(1):99-103. doi: 10.1007/s10517-022-05656-3
98. Popkov AV, Popkov DA, Kononovich NA et al. Bioactive implants in the treatment of long bone nonunion and defects. Tomsk: Publishing House of Tomsk Polytechnic University; 2021:312.
Рецензия
Для цитирования:
Попков А.В., Попков Д.А. Биосовместимые имплантаты в ортопедии: инженерия костной ткани. Гений ортопедии. 2023;29(6):662-668. https://doi.org/10.18019/1028-4427-2023-29-6-662-668. EDN: JIAIND
For citation:
Popkov A.V., Popkov D.A. Biocompatible implants in orthopedics: bone tissue engineering. Genij Ortopedii. 2023;29(6):662-668. https://doi.org/10.18019/1028-4427-2023-29-6-662-668. EDN: JIAIND