Preview

Гений ортопедии

Расширенный поиск

Механические способы стимуляции дистракционного регенерата: мини-обзор современных концепций

https://doi.org/10.18019/1028-4427-2023-29-6-656-661

EDN: MOXATQ

Аннотация

Введение. Серьезным ограничением применения дистракционного остеогенеза является риск отсутствия или задержки формирования дистракционного регенерата, что ведет к значительному увеличению сроков лечения аппаратом внешней фиксации.

Цель. Рассмотреть различные способы стимуляции дистракционного регенерата (ДР) с акцентом на модуляцию механической среды, необходимой для формирования и созревания ДР.

Материалы и методы. При подготовке обзора для поиска информации использованы научные платформы PubMed, Scopus, ResearchGate, RSCI. Поисковыми словами и словосочетаниями были: mechanical bone union stimulation, axial dynamization, distraction regenerate. Результаты. Последние достижения в области механобиологии доказывают эффективность осевой нагрузки и механической стимуляции образования костной мозоли при сращении переломов. Дальнейшие исследования требуют разработки надлежащих протоколов и способов применения инвазивной и неинвазивной стимуляции ДР. Понимание роли динамизации как метода механической стимуляции невозможно без консенсуса по использованию терминов и протоколов.

Обсуждение. Мы предлагаем определять осевую динамизацию как возможность обеспечения осевой нагрузки на костный регенерат с минимальным смещением по ширине или изгибающими усилиями. Осевая динамизация может осуществляться через непосредственную стимуляцию регенерата осевыми циклическими нагрузками и исключением изгибающих и смещающих усилий.

Заключение. Осевая динамизация наряду с другими неинвазивными методами механической стимуляции дистракционного регенерата должна стать стандартным компонентом протоколов удлинения конечностей.

Об авторе

А. Черкашин
Texas Scottish Rite Hospital for Children
Соединённые Штаты Америки

Alexander Cherkashin – MD, PhD, Co-Director Center for Excellence in Limb Lengthening and Reconstruction

Dallas, Texas



Список литературы

1. Ilizarov GA. The principles of the Ilizarov method. Bull Hosp Jt Dis Orthop Inst. 1988;48(1):1-11.

2. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res. 1990;(250):8-26.

3. Birch JG, Samchukov ML. Use of the Ilizarov method to correct lower limb deformities in children and adolescents. J Am Acad Orthop Surg. 2004;12(3):144-154. doi: 10.5435/00124635-200405000-00002

4. Sheridan GA, Fragomen AT, Rozbruch SR. Integrated Limb Lengthening Is Superior to Classical Limb Lengthening: A Systematic Review and Meta-analysis of the Literature. J Am Acad Orthop Surg Glob Res Rev. 2020;4(6):e20.00054. doi: 10.5435/JAAOSGlobal-D-20-00054

5. Cherkashin AM, Samchukov ML, Birch JG, Da Cunha AL. Evaluation of complications of treatment of severe Blount's disease by circular external fixation using a novel classification scheme. J Pediatr Orthop B. 2015;24(2):123-130. doi: 10.1097/BPB.0000000000000138

6. Black SR, Kwon MS, Cherkashin AM, et al.. Lengthening in Congenital Femoral Deficiency: A Comparison of Circular External Fixation and a Motorized Intramedullary Nail. J Bone Joint Surg Am. 2015;97(17):1432-1440. doi: 10.2106/JBJS.N.00932

7. Blum AL, BongioVanni JC, Morgan SJ, et al. Complications associated with distraction osteogenesis for infected nonunion of the femoral shaft in the presence of a bone defect: a retrospective series. J Bone Joint Surg Br. 2010;92(4):565-570. doi: 10.1302/0301-620X.92B4.23475

8. Biz C, Crimì A, Fantoni I, et al. Functional outcome and complications after treatment of comminuted tibial fractures or deformities using Ilizarov bone transport: a single-center study at 15- to 30-year follow-up. Arch Orthop Trauma Surg. 2021;141(11):1825-1833. doi: 10.1007/s00402-020- 03562-9

9. Saleh M., Scott BW. The Complications of Leg Lengthening. In: De Bastiani, G., Apley, A.G., Goldberg, A. (eds) Orthofix External Fixation in Trauma and Orthopaedics. Springer, London; 2000:496-510. doi: 10.1007/978-1-4471-0691-3_47

10. Li R, Saleh M, Yang L, Coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339-347. doi: 10.1002/jor.20026

11. Sabharwal S. Enhancement of bone formation during distraction osteogenesis: pediatric applications. J Am Acad Orthop Surg. 2011;19(2):101-111. doi: 10.5435/00124635-201102000-00005

12. Sangkaew C. Distraction osteogenesis for the treatment of post traumatic complications using a conventional external fixator. A novel technique. Injury. 2005;36(1):185-193. doi: 10.1016/j.injury.2004.04.012

13. Borzunov DY, Kolchin SN, Malkova TA. Role of the Ilizarov non-free bone plasty in the management of long bone defects and nonunion: Problems solved and unsolved. World J Orthop. 2020;11(6):304-318. doi: 10.5312/wjo.v11.i6.304

14. Hvid I, Horn J, Huhnstock S, Steen H. The biology of bone lengthening. J Child Orthop. 2016;10(6):487-492. doi: 10.1007/s11832-016-0780-2

15. Akçay H, Kuru K, Tatar B, Şimşek F. Vitamin E Promotes Bone Formation in a Distraction Osteogenesis Model. J Craniofac Surg. 2019;30(8):2315- 2318. doi: 10.1097/SCS.0000000000005685

16. Kurklu M, Yildiz C, Kose O, et al. Effect of alpha-tocopherol on bone formation during distraction osteogenesis: a rabbit model. J Orthop Traumatol. 2011;12(3):153-8. doi: 10.1007/s10195-011-0145-z

17. Sax OC, Nequesha M, Rivera JC, et al. Prevalence of Vitamin D Deficiency in Adult Limb Lengthening and Deformity Correction Patients. J Limb Lengthen Reconstr. 2021;7(2):110-113. doi: 10.4103/jllr.jllr_4_21

18. Gebauer D, Correll J. Pulsed low-intensity ultrasound: a new salvage procedure for delayed unions and nonunions after leg lengthening in children. J Pediatr Orthop. 2005;25(6):750-754. doi: 10.1097/01.bpo.0000173245.12184.7e

19. Song MH, Kim TJ, Kang SH, Song HR. Low-intensity pulsed ultrasound enhances callus consolidation in distraction osteogenesis of the tibia by the technique of lengthening over the nail procedure. BMC Musculoskelet Disord. 2019;20(1):108. doi: 10.1186/s12891-019-2490-7

20. Harrison A, Alt V. Low-intensity pulsed ultrasound (LIPUS) for stimulation of bone healing - A narrative review. Injury. 2021;52 Suppl 2:S91-S96. doi: 10.1016/j.injury.2021.05.002

21. Jauregui JJ, Ventimiglia AV, Grieco PW, et al. Regenerate bone stimulation following limb lengthening: a meta-analysis. BMC Musculoskelet Disord. 2016;17(1):407. doi: 10.1186/s12891-016-1259-5

22. Lee DH, Ryu KJ, Kim JW, et al. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789-9377. doi: 10.1007/s11999-014-3548-3

23. Karakayalı M, Alpay Y, Sarısözen B. Effect of platelet-rich plasma on bone regenerate consolidation in distraction osteogenesis: An experimental study in rabbits. Acta Orthop Traumatol Turc. 2022;56(1):8-13. doi: 10.5152/j.aott.2022.20443

24. Li Y, Pan Q, Xu J, et al. Overview of methods for enhancing bone regeneration in distraction osteogenesis: Potential roles of biometals. J Orthop Translat. 2021;27:110-118. doi: 10.1016/j.jot.2020.11.008

25. Glenske K, Donkiewicz P, Köwitsch A, et al. Applications of Metals for Bone Regeneration. Int J Mol Sci. 2018;19(3):826. doi: 10.3390/ijms19030826

26. Eralp L, Ozkan K, Kocaoglu M, et al. Effects of hyperbaric oxygen therapy on distraction osteogenesis. Adv Ther. 2007;24(2):326-32. doi: 10.1007/ BF02849901

27. Wang IC, Wen-Neng Ueng S, Yuan LJ, et al. Early administration of hyperbaric oxygen therapy in distraction osteogenesis--a quantitative study in New Zealand rabbits. J Trauma. 2005;58(6):1230-1235. doi: 10.1097/01.ta.0000169872.38849.b0

28. Sailhan F, Gleyzolle B, Parot R, et al. Rh-BMP-2 in distraction osteogenesis: dose effect and premature consolidation. Injury. 2010;41(7):680-6. doi: 10.1016/j.injury.2009.10.010

29. Mizumoto Y, Moseley T, Drews M, et al. Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am. 2003;85-A Suppl 3:124-30. doi: 10.2106/00004623-200300003-00019

30. Wei H, Zili L, Yuanlu C, et al. Effect of icariin on bone formation during distraction osteogenesis in the rabbit mandible. Int J Oral Maxillofac Surg. 2011;40(4):413-8. doi: 10.1016/j.ijom.2010.10.015

31. Bereket C, Özan F, Şener İ, et al. Propolis accelerates the consolidation phase in distraction osteogenesis. J Craniofac Surg. 2014;25(5):1912-1916. doi: 10.1097/SCS.0000000000000946

32. Taylor KF, Inoue N, Rafiee B, et al. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res. 2006;24(1):2-10. doi: 10.1002/jor.20014

33. Yong Y, Ming ZD, Feng L, et al. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med. 2016;10(10):E537-E545. doi: 10.1002/term.1864

34. Makhdom AM, Hamdy RC. The role of growth factors on acceleration of bone regeneration during distraction osteogenesis. Tissue Eng Part B Rev. 2013;19(5):442-53. doi: 10.1089/ten.TEB.2012.0717

35. Raschke MJ, Bail H, Windhagen HJ, et al. Recombinant growth hormone accelerates bone regenerate consolidation in distraction osteogenesis. Bone. 1999;24(2):81-88. doi: 10.1016/s8756-3282(98)00158-6

36. Kiely P, Ward K, Bellemore C M, et al. Bisphosphonate rescue in distraction osteogenesis: a case series. J Pediatr Orthop. 2007;27(4):467-71. doi: 10.1097/01.bpb.0000271326.41363.d1

37. Saghieh S, Khoury NJ, Tawil A, et al. The impact of zoledronic acid on regenerate and native bone after consolidation and removal of the external fixator: an animal model study. Bone. 2010;46(2):363-8. doi: 10.1016/j.bone.2009.10.010

38. Alp YE, Taskaldiran A, Onder ME, et al. Effects of Local Low-Dose Alendronate Injections Into the Distraction Gap on New Bone Formation and Distraction Rate on Distraction Osteogenesis. J Craniofac Surg. 2017;28(8):2174-2178. doi: 10.1097/SCS.0000000000002615

39. Hübler R, Blando E, Gaião L, et al. Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci. 2010;25(2):213- 9. doi: 10.1007/s10103-009-0691-2

40. Gurler G, Gursoy B. Investigation of effects of low level laser therapy in distraction osteogenesis. J Stomatol Oral Maxillofac Surg. 2018;119(6):469- 476. doi: 10.1016/j.jormas.2018.05.006

41. Xu J, Wang B, Sun Y, et al. Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther. 2016;7(1):134. doi: 10.1186/s13287-016-0392-2

42. Yang Y, Pan Q, Zou K, et al. Administration of allogeneic mesenchymal stem cells in lengthening phase accelerates early bone consolidation in rat distraction osteogenesis model. Stem Cell Res Ther. 2020;11(1):129. doi: 10.1186/s13287-020-01635-5

43. Kitoh H, Kawasumi M, Kaneko H, Ishiguro N. Differential effects of culture-expanded bone marrow cells on the regeneration of bone between the femoral and the tibial lengthenings. J Pediatr Orthop. 2009;29(6):643-649. doi: 10.1097/BPO.0b013e3181b2afb2

44. Liang W, Ding P, Qian J, et al. Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment. Cell Tissue Res. 2021;386(3):585-603. doi: 10.1007/s00441-021-03533-5

45. Fang TD, Salim A, Xia W, et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res. 2005;20(7):1114-1124. doi: 10.1359/JBMR.050301

46. Moore DC, Leblanc CW, Müller R, et al. Physiologic weight-bearing increases new vessel formation during distraction osteogenesis: a micro- tomographic imaging study. J Orthop Res. 2003;21(3):489-96. doi: 10.1016/S0736-0266(02)00234-6

47. Sinnesael M, Claessens F, Boonen S, Vanderschueren D. Novel insights in the regulation and mechanism of androgen action on bone. Curr Opin Endocrinol Diabetes Obes. 2013;20(3):240-244. doi: 10.1097/MED.0b013e32835f7d04

48. Popkov A, Foster P, Gubin A, et al. The use of flexible intramedullary nails in limb lengthening. Expert Rev Med Devices. 2017;14(9):741-753. doi: 10.1080/17434440.2017.1367284

49. Popkov A, Pietrzak S, Antonov A, et al. Limb Lengthening for Congenital Deficiencies Using External Fixation Combined With Flexible Intramedullary Nailing: A Multicenter Study. J Pediatr Orthop. 2021;41(6):e439-e447. doi: 10.1097/BPO.0000000000001816

50. Radomisli TE, Moore DC, Barrach HJ, et al. Weight-bearing alters the expression of collagen types I and II, BMP 2/4 and osteocalcin in the early stages of distraction osteogenesis. J Orthop Res. 2001;19(6):1049-1456. doi: 10.1016/S0736-0266(01)00044-4

51. Makhdom AM, Cartaleanu AS, Rendon JS, et al. The Accordion Maneuver: A Noninvasive Strategy for Absent or Delayed Callus Formation in Cases of Limb Lengthening. Adv Orthop. 2015;2015:912790. doi: 10.1155/2015/912790

52. Liu Y, Cai F, Liu K, et al. Cyclic Distraction-Compression Dynamization Technique Enhances the Bone Formation During Distraction Osteogenesis. Front Bioeng Biotechnol. 2022;9:810723. doi: 10.3389/fbioe.2021.810723

53. Makhdom AM, Cartaleanu AS, Rendon JS, et al. The Accordion Maneuver: A Noninvasive Strategy for Absent or Delayed Callus Formation in Cases of Limb Lengthening. Adv Orthop. 2015;2015:912790. doi: 10.1155/2015/912790

54. Waanders NA, Richards M, Steen H, et al. Evaluation of the mechanical environment during distraction osteogenesis. Clin Orthop Relat Res. 1998;(349):225-34. doi: 10.1097/00003086-199804000-00028

55. Mori S, Akagi M, Kikuyama A, et al. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system. J Orthop Res. 2006;24(4):653-63. doi: 10.1002/jor.20076

56. Kim UK, Chung IK, Lee KH, et al. Bone regeneration in mandibular distraction osteogenesis combined with compression stimulation. J Oral Maxillofac Surg. 2006;64(10):1498-505. doi: 10.1016/j.joms.2006.03.028

57. Li R, Saleh M, Yang L, Coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339-347. doi: 10.1002/jor.20026

58. Donnan LT, Saleh M, Rigby AS, McAndrew A. Radiographic assessment of bone formation in tibia during distraction osteogenesis. J Pediatr Orthop. 2002;22(5):645-651.

59. Shevtsov V, Popkov A, Popkov D, Prévot J. Réduction de la durée du traitement dans les allongements osseux progressifs. Technique et advantage [Reduction of the period of treatment for leg lengthening. Technique and advantages]. Rev Chir Orthop Reparatrice Appar Mot. 2001;87(3):248- 256. (In French)

60. Eldridge JC, Bell DF. Problems with substantial limb lengthening. Orthop Clin North Am. 1991;22(4):625-631.

61. Simpson AH, Kenwright J. Fracture after distraction osteogenesis. J Bone Joint Surg Br. 2000;82(5):659-665. doi: 10.1302/0301-620x.82b5.9945

62. Krishnan A, Pamecha C, Patwa JJ. Modified Ilizarov technique for infected nonunion of the femur: the principle of distraction-compression osteogenesis. J Orthop Surg (Hong Kong). 2006;14(3):265-272. doi: 10.1177/230949900601400307

63. Mofid MM, Inoue N, Atabey A, et al. Callus stimulation in distraction osteogenesis. Plast Reconstr Surg. 2002;109(5):1621-1629. doi: 10.1097/00006534-200204150-00020

64. Schmidt EC, Judkins LM, Manogharan G, et al. Current concepts in fracture healing: temporal dynamization and applications for additive manufacturing. OTA Int. 2022 M;5(1 Suppl):e164. doi: 10.1097/OI9.0000000000000164

65. Cardozo CP. Mechanotransduction: Overview. In: Zaidi M, ed. Encyclopedia of Bone Biology. Academic Press; 2020:217.

66. Isaksson H, Comas O, van Donkelaar CC, et al. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J Biomech. 2007;40(9):2002-2011. doi: 10.1016/j.jbiomech.2006.09.028

67. Pouliquen JC, Glorion C, Ceolin JL, et al. Allongement métaphysaire supérieur du tibia. 57 cas effectués par la méthode du callotasis chez l'enfant et l'adolescent [Upper metaphyseal lengthening of the tibia. Report of 57 cases in children and adolescents]. Rev Chir Orthop Reparatrice Appar Mot. 1994;80(6):532-541. (In French)

68. Claes L. Dynamisierung der Osteosynthese : Zeitpunkt und Methoden [Dynamization of fracture fixation : Timing and methods]. Unfallchirurg. 2018;121(1):3-9. (In German) doi: 10.1007/s00113-017-0455-6

69. Alzahrani MM, Anam E, AlQahtani SM, et al. Strategies of enhancing bone regenerate formation in distraction osteogenesis. Connect Tissue Res. 2018;59(1):1-11. doi: 10.1080/03008207.2017.1288725

70. Honcharuk EM, Cherkashin AM, Pierce WA, et al. Effect of axial dynamization in circular external fixation on bone segment vertical and lateral displacements. J Limb Lengthening Reconstr. 2021;7(1):37-44.

71. Fenton C, Henderson D, Samchukov M, et al. Comparative Stiffness Characteristics of Ilizarov- and Hexapod-type External Frame Constructs. Strategies Trauma Limb Reconstr. 2021;16(3):138-143. doi: 10.5005/jp-journals-10080-1539

72. Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon). 2003;18(2):166-172. doi: 10.1016/s0268-0033(02)00175-4

73. Claes L, Meyers N, Schülke J, et al. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction. PLoS One. 2018;13(8):e0202702. doi: 10.1371/journal.pone.0202702

74. Claes LE, Wilke HJ, Augat P, et al. Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon). 1995;10(5):227-234. doi: 10.1016/0268-0033(95)99799-8


Рецензия

Для цитирования:


Черкашин А. Механические способы стимуляции дистракционного регенерата: мини-обзор современных концепций. Гений ортопедии. 2023;29(6):656-661. https://doi.org/10.18019/1028-4427-2023-29-6-656-661. EDN: MOXATQ

For citation:


Cherkashin A. Mechanical stimulation of distraction regenerate. Mini-review of current concepts. Genij Ortopedii. 2023;29(6):656-661. https://doi.org/10.18019/1028-4427-2023-29-6-656-661. EDN: MOXATQ

Просмотров: 359


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)