Preview

Genij Ortopedii

Advanced search

Effect of the Panton – Valentine leukocidin gene Staphylococcus aureus on the course of the infectious process in orthopedic patients

https://doi.org/10.18019/1028-4427-2025-31-6-764-772

Abstract

Introduction Staphylococcus aureus is a leading pathogen causing osteoarticular infections. Panton – Valentine leukocidin (PVL) is considered one of the key of virulence factors with its role being poorly explored in orthopedic infections.
The objective was to evaluate the occurrence of the PVL gene in S. aureus strains, the effect on laboratory markers of inflammation and on the course of the infectious process in orthopedic patients.
Material and methods A retrospective analysis of 130 S. aureus strains isolated from 100 patients was performed. The presence of the lukS-PV and lukF-PV genes was determined using PCR. Laboratory parameters (CRP, ESR, leukocytes, neutrophils, and procalcitonin) and long-term treatment outcomes were assessed.
Results PVL was detected in 15 % of strains S. aureus. No statistically significant effect of PVL on the levels of routine inflammatory markers was found. A key finding was that the presence of the PVL gene was associated with an increased risk of adverse outcome.
Discussion The findings can be associated with debates on the clinical significance of PVL. Despite a significant impact on outcome The absence of significant differences in systemic inflammatory markers suggests that the negative effect of PVL is rather mediated by other mechanisms than by global inflammation activation measured by routine tests. These include direct cytotoxic tissue damage, impaired immune cell function, and the emergence of specific immunological processes. The association identified between PVL and the MRSA phenotype is consistent with the global epidemiological picture, where this toxin is a marker of hypervirulent community-acquired strains.
Conclusion The presence of PVL is a significant risk factor for a poor outcome of orthopedic infection suggesting the need for its detection for risk stratification and optimization of patient management strategy. Conclusion The presence of PVL is a significant risk factor for an unfavorable outcome of orthopedic infection, which indicates the need for its detection for risk stratification and optimization of patient management tactics.

About the Authors

A. D. Shakhmatova
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Aleksandra D. Shakhmatova — biologist, junior researcher

St. Petersburg



O. S. Tufanova
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Olga S. Tufanova — clinical pharmacologist, junior researcher

St. Petersburg



E. M. Gordina
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Ekaterina M. Gordina — Candidate of Medical Sciences, senior researcher

St. Petersburg



A. R. Kasimova
Vreden National Medical Research Center of Traumatology and Orthopedics; Academician I.P. Pavlov First St. Petersburg State Medical University
Russian Federation

Alina R. Kasimova — Candidate of Medical Sciences, clinical pharmacologist, Associate Professor

St. Petersburg



V. V. Shabanova
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Valentina V. Shabanova — bacteriologist

St. Petersburg



S. A. Bozhkova
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Svetlana A. Bozhkova — Doctor of Medical Sciences, Professor, Head of the Department

St. Petersburg



References

1. Kasimova AR, Tufanova OS, Gordina EM, et al. Twelve-Year Dynamics of Leading Pathogens Spectrum Causing Orthopedic Infection: A Retrospective Study. Traumatology and Orthopedics of Russia. 2024;30(1):66-75. (In Russ.) https://doi.org/10.17816/2311-2905-16720.

2. Tsiskarashvili AV, Melikova RE, Novozhilova EA. Analysis of six-year monitoring of common pathogens causing periprosthetic joint infection of major joints and the tendency to resistance. Genij Ortopedii. 2022;28(2):179-188. doi: 10.18019/1028-4427-2022-28-2-179-188.

3. Bozhkova SA, Gordina EM, Markov MA, et al. The Effect of Vancomycin and Silver Combination on the Duration of Antibacterial Activity of Bone Cement and Methicillin-Resistant Staphylococcus aureusBiofilm Formation. Traumatology and Orthopedics of Russia. 2021;27(2):54-64. (In Russ.) doi: 10.21823/2311-2905-2021-27-2-54-64.

4. Senneville E, Brière M, Neut C, et al. First report of the predominance of clonal complex 398 Staphylococcus aureus strains in osteomyelitis complicating diabetic foot ulcers: a national French study. Clin Microbiol Infect. 2014;20(4):O274-O277. doi: 10.1111/1469-0691.12375.

5. Dunyach-Remy C, Courtais-Coulon C, DeMattei C, et al. Link between nasal carriage of Staphylococcus aureus and infected diabetic foot ulcers. Diabetes Metab. 2017;43(2):167-171. doi: 10.1016/j.diabet.2016.09.003.

6. Chen H, Zhang J, He Y, et al. Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel). 2022;14(7):464. doi: 10.3390/toxins14070464.

7. Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010;67(18):3057-3071. doi: 10.1007/s00018-010-0389-4.

8. Linz MS, Mattappallil A, Finkel D, Parker D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics (Basel). 2023;12(3):557. doi: 10.3390/antibiotics12030557.

9. Hofstee MI, Siverino C, Saito M, et al. Staphylococcus aureus Panton-Valentine Leukocidin worsens acute implantassociated osteomyelitis in humanized BRGSF mice. JBMR Plus. 2024 4;8(2):ziad005. doi: 10.1093/jbmrpl/ziad005.

10. Qu MD, Kausar H, Smith S, et al. Epidemiological and clinical features of Panton-Valentine Leukocidin positive Staphylococcus aureus bacteremia: A case-control study. PLoS One. 2022;17(3):e0265476. doi: 10.1371/journal.pone.0265476.

11. Diaz-Ledezma C, Higuera CA, Parvizi J. Success after treatment of periprosthetic joint infection: a Delphi-based international multidisciplinary consensus. Clin Orthop Relat Res. 2013;471(7):2374-2382. doi: 10.1007/s11999-013-2866-1.

12. McClure JA, Conly JM, Lau V, et al. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. J Clin Microbiol. 2006;44(3):1141-1144. doi: 10.1128/JCM.44.3.1141-1144.2006.

13. Vlaeminck J, Raafat D, Surmann K, et al. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel). 2020;12(11):721. doi: 10.3390/toxins12110721.

14. Urish KL, Cassat JE. Staphylococcus aureus Osteomyelitis: Bone, Bugs, and Surgery. Infect Immun. 2020;88(7):e00932-19. doi: 10.1128/IAI.00932-19.

15. Costa CA, Inácio H, Trevas S, Simas Â. Panton-Valentine Leukocidin in Necrotizing Pneumonia: A Case Report. Cureus. 2025;17(2):e78774. doi: 10.7759/cureus.78774.

16. van Hal SJ, Jensen SO, Vaska VL, et al. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2012;25(2):362-386. doi: 10.1128/CMR.05022-11.

17. Kailasan S, Kant R, Noonan-Shueh M, et al. Antigenic landscapes on Staphylococcus aureus pore-forming toxins reveal insights into specificity and cross-neutralization. MAbs. 2022;14(1):2083467. doi: 10.1080/19420862.2022.2083467.

18. Touaitia R, Mairi A, Ibrahim NA, et al. Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. Antibiotics. 2025;14(5):470. doi: 10.3390/antibiotics14050470.

19. Harada S, Kawada H, Maehana S, et al. Panton-Valentine Leukocidin Induces Cytokine Release and Cytotoxicity Mediated by the C5a Receptor on Rabbit Alveolar Macrophages. Jpn J Infect Dis. 2021;74(4):352-358. doi: 10.7883/yoken.JJID.2020.657.

20. Jiang J-H, Cameron DR, Nethercott C, et al. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev. 2023;36(4):e0014822. doi: 10.1128/cmr.00148-22.

21. Mohamadou M, Essama SR, Ngonde Essome MC, et al. High prevalence of Panton-Valentine leukocidin positive, multidrug resistant, Methicillin-resistant Staphylococcus aureus strains circulating among clinical setups in Adamawa and Far North regions of Cameroon. PLoS One. 2022;17(7):e0265118. doi: 10.1371/journal.pone.0265118.

22. Shohayeb M, El-Banna T, Elsawy LE, El-Bouseary MM. Panton-Valentine Leukocidin (PVL) genes may not be a reliable marker for community-acquired MRSA in the Dakahlia Governorate, Egypt. BMC Microbiol. 2023;23(1):315. doi: 10.1186/s12866-023-03065-8.

23. Kawakami T, Yokoyama K, Ikeda T, et al. Severity and intractableness of skin infections caused by Panton–Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus. J Cutan Immunol Allergy. 2023;6(3):94-97. doi: 10.1002/cia2.12294.

24. Grebe T, Sarkari MT, Cherkaoui A, Schaumburg F. Exploration of compounds to inhibit the Panton-Valentine leukocidin of Staphylococcus aureus. Med Microbiol Immunol. 2024;213(1):19. doi: 10.1007/s00430-024-00803-1.

25. Monteith AJ, Miller JM, Maxwell CN, et al. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Sci Adv. 2021;7(37):eabj2101. doi: 10.1126/sciadv.abj2101.

26. Jhelum H, Čerina D, Harbort CJ, et al. Panton-Valentine leukocidin-induced neutrophil extracellular traps lack antimicrobial activity and are readily induced in patients with recurrent PVL + -Staphylococcus aureus infections. J Leukoc Biol. 2024;115(2):222-234. doi: 10.1093/jleuko/qiad137.

27. Chung EJ, Luo CH, Thio CL, Chang YJ. Immunomodulatory Role of Staphylococcus aureus in Atopic Dermatitis. Pathogens. 2022;11(4):422. doi: 10.3390/pathogens11040422.

28. Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, et al. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens. 2025;14(2):185. https://doi.org/10.3390/pathogens14020185.

29. Motomura Y, Miyazaki M, Kamada M, et al. Genotypic Shift and Diversification of MRSA Blood Stream Isolates in a University Hospital Setting: Evidence from a 12-Year Observational Study. Antibiotics (Basel). 2024;13(7):670. doi: 10.3390/antibiotics13070670.

30. Olaniyi RO, Pancotto L, Grimaldi L, Bagnoli F. Deciphering the Pathological Role of Staphylococcal α-Toxin and Panton-Valentine Leukocidin Using a Novel Ex Vivo Human Skin Model. Front Immunol. 2018;9:951. doi: 10.3389/fimmu.2018.00951.

31. Bennett MR, Thomsen IP. Epidemiological and Clinical Evidence for the Role of Toxins in S. aureus Human Disease. Toxins (Basel). 2020;12(6):408. doi: 10.3390/toxins12060408.


Review

For citations:


Shakhmatova A.D., Tufanova O.S., Gordina E.M., Kasimova A.R., Shabanova V.V., Bozhkova S.A. Effect of the Panton – Valentine leukocidin gene Staphylococcus aureus on the course of the infectious process in orthopedic patients. Genij Ortopedii. 2025;31(6):764-772. https://doi.org/10.18019/1028-4427-2025-31-6-764-772

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)