Preview

Genij Ortopedii

Advanced search

Audiogram of ceramic friction noises in total hip arthroplasty and their relationship with acetabular component position

https://doi.org/10.18019/1028-4427-2025-31-5-639-647

Abstract

Introduction Noise from a total hip replacement's ceramic friction pair is known as hip squeaking. Acoustic arthrometry in total hip replacement (THR) involves using acoustic emission technology to visualize sound characteristics.

The objective was to identify the possibility of identifying noises of a THR ceramic friction pair using the acoustic arthrometry and to determine the relationship of noises with the position of the acetabular component.

Material and methods The retrospective study included 36 patients who underwent THR with a ceramic bearing pair. Seven patients (19.44 %) reported noise at the site of the THR joint. The patients were divided into two groups based on the noise (n = 7) and no noise reported (n = 29). Clinical and radiological parameters were reviewed through online survey considering age, follow-up period, BMI, inclination and anteversion of  the  acetabular component. Acoustic arthrometry was performed for 10 patients with the pulse height, PEAK, ASYMMETRY and WIDTH measured and compared.

Results Comparative analysis of individual clinical and radiological parameters showed no statistically significant differences in the two groups. However, deviations by any of the two criteria in the acetabular component position was 20.7 % in the no-noise group and 57.1 % in the noise reported group (p = 0.048). Acoustic emission of THR with noise had visual differences in acoustic signature with the mean PEAK measuring 0.492 in the no-noise group and 0.488 in the noise reported group; ASYMMETRY being 0.012 versus 0.015 and WIDTH measuring 479.2 versus 486.5, respectively. Discussion The findings correlated with the results of previous studies and confirmed the relationship between the angles of the implanted acetabular component and the noise. In contrast to previous studies of  acoustic arthrometry, the method offered facilitated objective statistical noise assessment in addition to visualization and analysis of acoustic signatures.

Conclusion The study demonstrated possibilities of acoustic arthrometry in identification of different states of the ceramic friction pair, characterization of the noise detected and its quantification.

About the Authors

B. R. Tashtanov
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Russian Federation

Baikozho R. Tashtanov — orthopaedic surgeon, postgraduate student

Novosibirsk



V. V. Pavlov
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Russian Federation

Vitaly V. Pavlov — Doctor of Medical Sciences, Associate Professor, Head of the Research Department

Novosibirsk



M. A. Raifeld
Novosibirsk State Technical University
Russian Federation

Mikhail A. Raifeld — Doctor of Technical Sciences, Associate Professor, Head of the Department

Novosibirsk



V. N. Vasyukov
Novosibirsk State Technical University
Russian Federation

Vasily N. Vasyukov — Doctor of Technical Sciences, Professor of the Department

Novosibirsk



N. B. Baktyyarov
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Russian Federation

Nurzhan B. Baktyyarov — Resident

Novosibirsk



A. A. Korytkin
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Russian Federation

Andrey A. Korytkin — Candidate of Medical Sciences, Associate Professor, Director

Novosibirsk



References

1. Callaghan JJ, Cuckler JM, Huddleston JI, et al. How have alternative bearings (such as metal-on-metal, highly cross-linked polyethylene, and ceramic-on-ceramic) affected the prevention and treatment of osteolysis? J Am Acad Orthop Surg. 2008;16 Suppl 1:S33-S38. doi: 10.5435/00124635-200800001-00008.

2. Шубняков И.И., Тихилов Р.М., Гончаров М.Ю. и др. Достоинства и недостатки современных пар трения эндопротезов тазобедренного сустава (обзор иностранной литературы). Травматология и ортопедия России. 2010;16(3):147-156. doi: 10.21823/2311-2905-2010-0-3-147-156.

3. Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev Chir Orthop Reparatrice Appar Mot. 1972;58(3):229-246.

4. Hannouche D, Nich C, Bizot P, et al. Fractures of ceramic bearings: history and present status. Clin Orthop Relat Res. 2003;(417):19-26. doi: 10.1097/01.blo.0000096806.78689.50.

5. Zhao CC, Qu GX, Yan SG, Cai XZ. Squeaking in fourth-generation ceramic-on-ceramic total hip replacement and the relationship with prosthesis brands: meta-analysis and systematic review. J Orthop Surg Res. 2018;13(1):133. doi: 10.1186/s13018-018-0841-y.

6. Stanat SJ, Capozzi JD. Squeaking in third- and fourth-generation ceramic-on-ceramic total hip arthroplasty: meta-analysis and systematic review. J Arthroplasty. 2012;27(3):445-453. doi: 10.1016/j.arth.2011.04.031.

7. Holleyman RJ, Critchley RJ, Mason JM, et al. Ceramic bearings are associated with a significantly reduced revision rate in primary hip arthroplasty: an analysis from the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man. J Arthroplasty. 2021;36(10):3498-3506. doi: 10.1016/j.arth.2021.05.027.

8. Yoon BH, Park JW, Cha YH, et al. Incidence of ceramic fracture in contemporary ceramic-on-ceramic total hip arthroplasty: a meta analysis of proportions. J Arthroplasty. 2020;35(5):1437-1443.e3. doi: 10.1016/j.arth.2019.12.013.

9. Шубняков И.И., Риахи А., Денисов А.О. и др. Основные тренды в эндопротезировании тазобедренного сустава на основании данных регистра артропластики НМИЦ ТО им. Р.Р. Вредена с 2007 по 2020 г. Травматология и ортопедия России. 2021;27(3):119- 142. doi: 10.21823/2311-2905-2021-27-3-119-142.

10. Таштанов Б.Р., Райфельд М.А., Васюков В.Н. и др. Возможности акустической артрометрии в эндопротезировании тазобедренного сустава: обзор литературы. Травматология и ортопедия России. 2025;31(1):133-143. doi: 10.17816/2311-2905-17552.

11. Lee C, Zhang L, Morris D, et al. Non-invasive early detection of failure modes in total hip replacements (THR) via acoustic emission (AE). J Mech Behav Biomed Mater. 2021;118:104484. doi: 10.1016/j.jmbbm.2021.104484.

12. FitzPatrick AJ, Rodgers GW, Hooper GJ, Woodfield TB. Development and validation of an acoustic emission device to measure wear in total hip replacements in-vitro and in-vivo. Biomed Signal Process Control. 2017;33:281-288. doi: 10.1016/j.bspc.2016.12.011.

13. Васюков В.Н., Райфельд М.А., Соколова Д.О. и др. Обработка и анализ сигналов для диагностики состояния эндопротеза тазобедренного сустава. Доклады АН ВШ РФ. 2024;(4):48-63.

14. Atrey A, Wolfstadt JI, Hussain N, et al. The ideal total hip replacement bearing surface in the young patient: a prospective randomized trial comparing alumina ceramic-on-ceramic with ceramic-on-conventional polyethylene: 15-year follow-up. J Arthroplasty. 2018;33(6):1752-1756. doi: 10.1016/j.arth.2017.11.066.

15. Shah SM, Deep K, Siramanakul C, et al. Computer navigation helps reduce the incidence of noise after ceramic-on-ceramic total hip arthroplasty. J Arthroplasty. 2017;32(9):2783-2787. doi: 10.1016/j.arth.2017.04.019.

16. Sarrazin J, Halbaut M, Martinot P, et al. Are CPR (Contact Patch to Rim) distance anomalies associated with the occurrence of abnormal noises from ceramic-on-ceramic THA? Orthop Traumatol Surg Res. 2023;109(1):103438. doi: 10.1016/j.otsr.2022.103438.

17. McDonnell SM, Boyce G, Baré J, et al. The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. Bone Joint J. 2013;95-B(2):160-165. doi: 10.1302/0301-620X.95B2.30450.

18. Таштанов Б.Р., Кирилова И.А., Павлова Д.В., Павлов В.В. «Шум керамики» как нежелательное явление в эндопротезировании тазобедренного сустава. Гений ортопедии. 2023;29(5):565-573. doi: 10.18019/1028-4427-2023-29-5-565-573.

19. Walter WL, Insley GM, Walter WK, Tuke MA. Edge loading in third generation alumina ceramic-on-ceramic bearings: stripe wear. J Arthroplasty. 2004;19(4):402-413. doi: 10.1016/j.arth.2003.09.018.

20. Таштанов Б.Р., Корыткин А.А., Павлов В.В., Шубняков И.И. Раскол керамического вкладыша эндопротеза тазобедренного сустава: клинический случай. Травматология и ортопедия России. 2022;28(3):63-73. doi: 10.17816/2311-2905-1804.

21. Lucchini S, Baleani M, Giardina F, et al. A case-driven hypothesis for multi-stage crack growth mechanism in fourth-generation ceramic head fracture. J Orthop Surg Res. 2022;17(1):293. doi: 10.1186/s13018-022-03190-6.

22. Wakayama S, Jibiki T, Ikeda J. Quantitative detection of microcracks in bioceramics by acoustic emission source characterization. J Acoustic Emission. 2006;24:173-179.

23. Yamada Y, Wakayama S, Ikeda J, Miyaji F. Fracture analysis of ceramic femoral head in hip arthroplasty based on microdamage monitoring using acoustic emission. J Mater Sci. 2011;46:6131-6139. doi: 10.1007/s10853-011-5578-5.

24. Glaser D, Komistek RD, Cates HE, Mahfouz MR. Clicking and squeaking: in vivo correlation of sound and separation for different bearing surfaces. J Bone Joint Surg Am. 2008;90 Suppl 4:112-120. doi: 10.2106/JBJS.H.00627.

25. Roffe L, FitzPatrick AJ, Rodgers GW, et al. Squeaking in ceramic-on-ceramic hips: no evidence of contribution from the trunnion morse taper. J Orthop Res. 2017;35(8):1793-1798. doi: 10.1002/jor.23458.

26. Kummer F, Jaffe WL. Feasibility of using ultrasonic emission for clinical evaluation of prosthetic hips. Bull NYU Hosp Jt Dis. 2010;68(4):262-265.

27. Rodgers GW, Young JL, Fields A V, Shearer RZ, et al. Acoustic Emission Monitoring of Total Hip Arthroplasty Implants. IFAC Proceedings Volumes. 2014;47(3):4796-4800. doi: 10.3182/20140824-6-ZA-1003.00928.

28. Rodgers GW, Welsh RJ, King LJ, et al. Signal processing and event detection of hip implant acoustic emissions. Control Engineering Practice. 2017;58:287-297. doi: 10.1016/J.CONENGPRAC.2016.09.013.


Review

For citations:


Tashtanov B.R., Pavlov V.V., Raifeld M.A., Vasyukov V.N., Baktyyarov N.B., Korytkin A.A. Audiogram of ceramic friction noises in total hip arthroplasty and their relationship with acetabular component position. Genij Ortopedii. 2025;31(5):639-647. https://doi.org/10.18019/1028-4427-2025-31-5-639-647

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)