Preview

Genij Ortopedii

Advanced search

Evolution of gait in preschool and primary school children after multilevel orthopedic surgeries performed to correct orthopedic complications of spastic diplegia

https://doi.org/10.18019/1028-4427-2025-31-5-602-613

Abstract

Introduction The optimal age for performing multilevel interventions in patients with cerebral palsy is the  period from 10 to 16 years, but indications for eliminating contractures, torsional bone deformities, and foot deformities in children with cerebral palsy of GMFCS level I–III may also occur at an earlier age.

The aim of the work is to evaluate changes in the kinematic and kinetic parameters of gait in children with spastic diplegia who underwent multilevel bilateral surgical interventions for orthopedic complications of cerebral palsy that arose before the onset of pubertal growth acceleration.

Material and Methods 63 children with cerebral palsy, I–III GMFCS. Group 1 (n = 50): average age 7.1 years, no orthopedic interventions had been performed previously. Group 2 (n = 513): average age 7.4 years, isolated interventions were performed at the age of up to 4 years.

Results In group 1: after the operation for two years — an increase in the strength of all extensor muscles with a reliable difference compared to the preoperative level; after 4–5 years — stabilization of the achieved improvements in kinematics. In group 2: after the operation for two years — a decrease in the values of the total working power of the lower limb muscles; after 4 years — decompensation of motor capabilities occurred, the working power of the muscles of the hip and ankle joints did not exceed the initial values, and for the knee joint, the decrease in working power was permanent.

Discussion The positive effect of surgical intervention in both groups is similar and consists of improving the synergistic interaction of muscles.

Conclusion Orthopedic multilevel surgeries performed in children for orthopedic complications before prepubertal growth spurt are associated with functional development only in children who did not undergo early Achilles tendon lengthening or percutaneous fibromyotomies. The result remains stable for 4–5 years after surgery. Isolated Achilles tendon lengthening or percutaneous fibrotomies prevent lower limb muscular development in the long-term follow-up period.

About the Authors

O. I. Gatamov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Orhan I. Gatamov — Candidate of Medical Sciences, orthopaedic surgeon, Head of the Department

Kurgan



T. I. Dolganova
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Tamara I. Dolganova — Doctor of Medical Sciences, leading researcher

Kurgan



A. D. Tomov
Priorov National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Akhmed D. Tomov — Candidate of Medical Sciences

Moscow



D. A. Popkov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics; Priorov National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Dmitry A. Popkov — Doctor of Medical Sciences, Professor of the Russian Academy of Sciences, Corresponding Member of the French
Academy of Medical Sciences, Head of the Clinic

Moscow



References

1. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14.

2. Томов А.Д., Бабайцев А.В., Кадырова М.А. и др. Паттерны роста у детей с церебральным параличом и спектр проводимого лечения: кросс-секционное исследование данных пяти реабилитационных центров. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2025;32(1):35-43. doi: 10.17816/vto626900.

3. Novak I, Morgan C, Fahey M, et all. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi: 10.1007/s11910-020-1022-z.

4. Hägglund G, Andersson S, Düppe H, et all. Prevention of severe contractures might replace multilevel surgery in cerebral palsy: results of a population-based health care programme and new techniques to reduce spasticity. J Pediatr Orthop B. 2005;14(4):269-273. doi: 10.1097/01202412-200507000-00007.

5. Baird G, Chandler S, Shortland A, et all. Acquisition and loss of best walking skills in children and young people with bilateral cerebral palsy. Dev Med Child Neurol. 2022;64(2):235-242. doi: 10.1111/dmcn.15015.

6. Graham HK, Thomason P., Willoughby K, et all. Musculoskeletal Pathology in Cerebral Palsy: A Classification System and Reliability Study. Children (Basel). 2021;8(3):252. doi: 10.3390/children8030252.

7. Dreher T., Thomason P., Švehlík M., et all. Long-term development of gait after multilevel surgery in children with cerebral palsy: a multicentre cohort study. Dev Med Child Neurol. 2018;60(1):88-93. doi: 10.1111/dmcn.13618.

8. Terjesen T, Lofterød B, Skaaret I. Gait improvement surgery in ambulatory children with diplegic cerebral palsy. Acta Orthop. 2015;86(4):511-517. doi: 10.3109/17453674.2015.1011927.

9. Kanashvili B, Miller F, Church C, et all. The change in sagittal plane gait patterns from childhood to maturity in bilateral cerebral palsy. Gait Posture. 2021;90:154-160. doi: 10.1016/j.gaitpost.2021.08.022.

10. Klenø AN, Stisen MB, Cubel CH, et all. Prevalence of knee contractures is high in children with cerebral palsy in Denmark. Physiother Theory Pract. 2023;39(1):200-207. doi: 10.1080/09593985.2021.2007558.

11. Lamberts RP, Burger M, du Toit J, et all. A Systematic Review of the Effects of Single-Event Multilevel Surgery on Gait Parameters in Children with Spastic Cerebral Palsy. PLoS One. 2016;11(10):e0164686. doi: 10.1371/journal.pone.0164686.

12. Ma N, Gould D, Camathias C, Graham K, Rutz E. Single-Event Multi-Level Surgery in Cerebral Palsy: A Bibliometric Analysis. Medicina (Kaunas). 2023;59(11):1922. doi: 10.3390/medicina59111922.

13. Попков Д.А., Змановская В.А., Губина Е.Б. и др. Результаты многоуровневых одномоментных ортопедических операций и ранней реабилитации в комплексе с ботулинотерапией у пациентов со спастическими формами церебрального паралича. Журнал неврологии и психиатрии им. C.C. Корсакова. 2015;115(4):41-48. doi: 10.17116/jnevro20151154141-48.

14. Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016;1(12):448-460. doi: 10.1302/2058-5241.1.000052.

15. Edwards TA, Theologis T, Wright J. Predictors affecting outcome after single-event multilevel surgery in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2018;60(12):1201-1208. doi: 10.1111/dmcn.13981.

16. Rodda JM, Graham HK, Nattrass GR, et all. Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. J Bone Joint Surg Am. 2006;88(12):2653-2664. doi: 10.2106/JBJS.E.00993.

17. Rutz E, Baker R, Tirosh O, Brunner R. Are results after single-event multilevel surgery in cerebral palsy durable? Clin Orthop Relat Res. 2013;471(3):1028-1038. doi: 10.1007/s11999-012-2766-9.

18. Svehlík M, Steinwender G, Kraus T, et all. The influence of age at single-event multilevel surgery on outcome in children with cerebral palsy who walk with flexed knee gait. Dev Med Child Neurol. 2011;53(8):730-735. doi: 10.1111/j.1469-8749.2011.03995.x.

19. Leonchuk SS, Dyachkov KA, Neretin AS., et all. Subtalar arthroereisis for treatment of children with flexible planovalgus foot deformity and analysis of CT data in long-term period. J Orthop. 2020;22:478-484. doi: 10.1016/j.jor.2020.10.005.

20. Graham HK, Aoki KR, Autti-Rämö I, et all. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture. 2000;11(1):67-79. doi: 10.1016/s0966-6362(99)00054-5.

21. Gage JR. The treatment of gait problems in cerebral palsy. Arch Dis Child. 2005;90:655-656. doi: 10.1136/adc.2004.060491.

22. de Morais Filho MC, Kawamura CM, Lopes JA, e all. Most frequent gait patterns in diplegic spastic cerebral palsy. Acta Ortop Bras. 2014;22(4):197-201. doi: 10.1590/1413-78522014220400942.

23. Ong CF, Geijtenbeek T, Hicks JL, Delp SL. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Comput Biol. 2019;15(10):e1006993. doi: 10.1371/journal.pcbi.1006993.

24. Pilloni G, Pau M, Costici PF, et all. Use of 3D gait analysis as predictor of Achilles tendon lengthening surgery outcomes in children with cerebral palsy. Eur J Phys Rehabil Med. 2019;55(2):250-257. doi: 10.23736/S1973-9087.18.05326-1.

25. Kedem P, Scher DM. Evaluation and management of crouch gait. Curr Opin Pediatr. 2016;28(1):55-59. doi: 10.1097/MOP.0000000000000316.

26. Фатхулисламов Р.Р., Гатамов О.И., Мамедов У.Ф., Попков Д.А. Оценка состояния пациентов со спастическими формами церебрального паралича при переходе во взрослую сеть лечебно-профилактических учреждений: кросс-секционное исследование. Гений ортопедии. 2023;29(4):376-381. doi: 10.18019/1028-4427-2023-29-4-376-381.

27. Gómez-Andrés D, Pulido-Valdeolivas I, Martín-Gonzalo JA, et all. External evaluation of gait and functional changes after a singlesession multiple myofibrotenotomy in school-aged children with spastic diplegia. Rev Neurol. 2014;58(6):247-254.

28. Skoutelis VC, Kanellopoulos AD, Vrettos S, et all. Effect of selective percutaneous myofascial lengthening and functional physiotherapy on walking in children with cerebral palsy: Three-dimensional gait analysis assessment. J Orthop Sci. 2024;29(3):885 890. doi: 10.1016/j.jos.2023.03.010.

29. Dietz FR, Albright JC, Dolan L. Medium-term follow-up of Achilles tendon lengthening in the treatment of ankle equinus in cerebral palsy. Iowa Orthop J. 2006;26:27-32.

30. Vuillermin C, Rodda J, Rutz E, et all. Severe crouch gait in spastic diplegia can be prevented: a population-based study. J Bone Joint Surg Br. 2011;93(12):1670-675. doi: 10.1302/0301-620X.93B12.27332.

31. Долганова Т.И., Долганов Д.В., Чибиров Г.М., и др. Количественные параметры кинетики и кинематики ятрогенного crouch паттерна. Гений ортопедии. 2022;28(5):675-683. doi: 10.18019/1028-4427-2022-28-5-675-683.

32. Аксенов А.Ю., Клишковская Т.А. Программа формирования отчета биомеханики ходьбы человека. Патент РФ № 2020665238. 24.11.2020. Бюл. № 12. Доступно по: https://www.fips.ru/registers-doc-view/fips_servlet?DB=EVM&DocNumber=2020665238&TypeFile=html. Ссылка активна на 28.08.2025.

33. Millor N, Cadore EL, Gómez M, et al. High density muscle size and muscle power are associated with both gait and sit-to-stand kinematic parameters in frail nonagenarians. J Biomech. 2020 22;105:109766. doi: 10.1016/j.jbiomech.2020.109766.

34. Norlin R, Tkaczuk H. One session surgery on the lower limb in children with cerebral palsy. A five year follow-up. Int Orthop. 1992;16(3):291-293. doi: 10.1007/BF00182714.

35. Rodda JM, Graham HK, Carson L, et all. Sagittal gait patterns in spastic diplegia. J Bone Joint Surg Br. 2004;86(2):251-258. doi: 10.13 02/0301-620x.86b2.13878.

36. Bohn E, Goren K, Switzer L, et all. Pharmacological and neurosurgical interventions for individuals with cerebral palsy and dystonia: a systematic review update and meta-analysis. Dev Med Child Neurol. 2021;63(9):1038-1050. doi: 10.1111/dmcn.14874.

37. Grunt S, Fieggen AG, Vermeulen RJ, et all. Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: a systematic review of the literature. Dev Med Child Neurol. 2014;56(4):302-312. doi: 10.1111/dmcn.12277.

38. Kumar D, Kumar R, Mudgal SK, et all. The Effects of Botulinum Toxin and Casting in Spastic Children With Cerebral Palsy: A Systematic Review and Meta-Analysis. Cureus. 2023;15(3):e36851. doi: 10.7759/cureus.36851.

39. Khan MA. Outcome of single-event multilevel surgery in untreated cerebral palsy in a developing country. J Bone Joint Surg Br. 2007;89(8):1088-1091. doi: 10.1302/0301-620X.89B8.18475.

40. Godwin EM, Spero CR, Nof L, et all. The gross motor function classification system for cerebral palsy and single-event multilevel surgery: is there a relationship between level of function and intervention over time? J Pediatr Orthop. 2009;29(8):910-915. doi: 10.1097/BPO.0b013e3181c0494f.

41. Davids JR, Ounpuu S, DeLuca PA, Davis RB 3rd. Optimization of walking ability of children with cerebral palsy. Instr Course Lect. 2004;53:511-22.

42. Kerr Graham H, Selber P. Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg Br. 2003;85(2):157-166. doi: 10.1302/0301-620x.85b2.14066.

43. Gough M, Schneider P, Shortland AP. The outcome of surgical intervention for early deformity in young ambulant children with bilateral spastic cerebral palsy. JJ Bone Joint Surg Br. 2008;90(7):946-951. doi: 10.1302/0301-620X.90B7.20577.

44. Thomason P, Selber P, Graham HK. Single Event Multilevel Surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study. Gait Posture. 2013;37(1):23-28. doi: 10.1016/j.gaitpost.2012.05.022.

45. Hägglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord. 2008;9:150. doi: 10.1186/1471-2474-9-150.

46. Rutz E, Tirosh O, Thomason P, et all. Stability of the Gross Motor Function Classification System after single-event multilevel surgery in children with cerebral palsy. Dev Med Child Neurol. 2012;54(12):1109-1113. doi: 10.1111/dmcn.12011.

47. Hua W, Nasir S, Arnold G, Wang W. Analysis of mechanical energy in thigh, calf and foot during gait in children with cerebral palsy. Med Eng Phys. 2022;105:103817. doi: 10.1016/j.medengphy.2022.103817.

48. Van Rossom S, Kainz H, Wesseling M, et all. Single-event multilevel surgery, but not botulinum toxin injections normalize joint loading in cerebral palsy patients. Clin Biomech (Bristol). 2020;76:105025. doi: 10.1016/j.clinbiomech.2020.105025.


Review

For citations:


Gatamov O.I., Dolganova T.I., Tomov A.D., Popkov D.A. Evolution of gait in preschool and primary school children after multilevel orthopedic surgeries performed to correct orthopedic complications of spastic diplegia. Genij Ortopedii. 2025;31(5):602-613. https://doi.org/10.18019/1028-4427-2025-31-5-602-613

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)