Antibiotic therapy for orthopedic infections caused by gram-negative pathogens over a 12-year observation period
https://doi.org/10.18019/1028-4427-2025-31-5-587-601
Abstract
Introduction Treatment of patients with orthopedic infection includes a combination of the optimal surgical debridement and adequate antibacterial therapy. Gram-negative bacteria are encountered in 13–28 % of orthopedic infections, and A. baumannii, K. pneumoniae, P. aeruginosa are significant bacteria notorious for its high and intrinsic antibiotic resistance and can be associated with worse outcomes.
The objective was to substantiate the choice of drug for targeted empirical and etiotropic antibacterial therapy based on the analysis of antibiotic resistance in leading gram-negative bacteria (A. baumannii, K. pneumoniae, P. aeruginosa) isolated from patients with orthopedic infection.
Material and methods Antibiotic sensitivity of leading Gram(–) microorganisms isolated from patients with orthopedic infection was retrospectively examined between 01.01.2011 and 31.12.2022. The average frequency of isolated resistant strains was examined and resistance trends of leading Gram(–) pathogens to various antimicrobialbacterial drugs (fluoroquinolones, co-trimoxazole, cephalosporins, carbapenems, monobactams, aminoglycosides, fosfomycin, colistin) determined.
Results Over a 12-year period, statistically significant trends were revealed towards an increase in the proportion of A. baumannii strains resistant to ciprofloxacin (p = 0.024) and levofloxacin (p = 0.012), and P. aeruginosa (p = 0.018) and K. pneumoniae (p = 0.018) strains resistant to ciprofloxacin. The predicted proportion of A. baumannii strains resistant to fluoroquinolones tends to 100 %. There was a significant increase in A. baumannii and P. aeruginosa strains resistant to cefoperazone+[sulbactam] (p = 0.027 and p = 0.010, respectively), K. pneumoniae strains resistant to meropenem and imipenem (p = 0.037 and p = 0.003, respectively), and P. aeruginosa strains resistant to imipenem (p = 0.001). No statistically significant trends were found for the remaining antibiotics; drug resistance of the pathogens remained stable or had a wave-like course over the 12-year period. Cefoperazone + [sulbactam] was the optimal drug active against Gram(–) bacteria.
Discussion There is an authoritative list of antimicrobiall drugs active against A. baumannii, K. pneumoniae, P. aeruginosa strains, mainly containing drugs for parenteral administration. The list is limited to one or two groups for resistant strains, and there are no drugs available in oral form. This causes difficulties in the infection control and a high rate of relapses. The negative dynamics in increasing antibiotic resistance of leading Gram(–) pathogens to fluoroquinolones, cephalosporins and carbapenems is a global problem necessitating the use of reserve antibiotics.
Conclusion Protected cephalosporin is more practical for targeted empirical initial antimicrobial therapy due to the lower risk of selected resistant strains. Fluoroquinolones and carbapenems can be used with the sensitivity known. Polymyxin B and fosfomycin should be considered as reserve drugs for the treatment of infections caused by strains resistant to other AB, and prescribed as part of combination therapy. Aminoglycosides and unprotected cephalosporins can be an alternative due to the pharmacokinetic characteristics and high level of resistance when more active drugs cannot be administered.characteristics and high level of resistance when more active drugs cannot be administered.
About the Authors
O. S. TufanovaRussian Federation
Olga S. Tufanova — Clinical Pharmacologist
Saint Petersburg
S. A. Bozhkova
Russian Federation
Svetlana A. Bozhkova — Doctor of Medical Sciences, Head of the Scientific Department, Professor of Department
Saint Petersburg
A. R. Kasimova
Russian Federation
Alina R. Kasimova — Candidate of Medical Sciences, Clinical Pharmacologist, Associate Professor of the Department
Saint Petersburg
E. M. Gordina
Russian Federation
Ekaterina M. Gordina — Candidate of Medical Sciences, senior researcher
Saint Petersburg
A. N. Gvozdetsky
Russian Federation
Anton N. Gvozdetsky — Candidate of Medical Sciences, Assistant Professor at the Department
Saint Petersburg
R. M. Tikhilov
Russian Federation
Rashid M. Tikhilov — Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Director
Saint Petersburg
References
1. Божкова С.А., Тихилов Р.М., Артюх В.А. Перипротезная инфекция суставов как социально-экономическая проблема современной ортопедии. Вестник Российской академии медицинских наук. 2023;78(6):601-608. doi:10.15690/vramn8370.
2. Цискарашвили А.В., Меликова Р.Э., Новожилова Е.А. Анализ шестилетнего мониторинга основных возбудителей перипротезной инфекции крупных суставов и их тенденция к резистентности. Гений Ортопедии. 2022;28(2):179-188. doi: 10.18019/1028-4427-2022-28-2-179-188.
3. Fisher C, Patel R. Rifampin, Rifapentine, and Rifabutin Are Active against Intracellular Periprosthetic Joint Infection-Associated Staphylococcus epidermidis. Antimicrob Agents Chemother. 2021;65(2):e01275-20. doi: 10.1128/AAC.01275-20.
4. Sebastian S, Malhotra R, Sreenivas V, et al. A Clinico-Microbiological Study of Prosthetic Joint Infections in an Indian Tertiary Care Hospital: Role of Universal 16S rRNA Gene Polymerase Chain Reaction and Sequencing in Diagnosis. Indian J Orthop. 2019;53(5):646- 654. doi: 10.4103/ortho.IJOrtho_551_18.
5. Bozhkova S, Tikhilov R, Labutin D, et al. Failure of the first step of two-stage revision due to polymicrobial prosthetic joint infection of the hip. J Orthop Traumatol. 2016;17(4):369-376. doi: 10.1007/s10195-016-0417-8.
6. Pfang BG, García-Cañete J, García-Lasheras J, et al. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J Clin Med. 2019;8(2):220. doi: 10.3390/jcm8020220.
7. Papadopoulos A, Ribera A, Mavrogenis AF, et al. Multidrug-resistant and extensively drug-resistant Gram-negative prosthetic joint infections: Role of surgery and impact of colistin administration. Int J Antimicrob Agents. 2019 Mar;53(3):294-301. doi: 10.1016/j.ijantimicag.2018.10.018.
8. Касимова А.Р., Туфанова О.С., Гордина Е.М. и др. Двенадцатилетняя динамика спектра ведущих возбудителей ортопедической инфекции: ретроспективное исследование. Травматология и ортопедия России. 2024;30(1):66-75. doi: 10.17816/2311-2905-16720.
9. Benito N, Franco M, Ribera A, et al. Time trends in the aetiology of prosthetic joint infections: a multicentre cohort study. Clin Microbiol Infect. 2016;22(8):732.e1-8. doi: 10.1016/j.cmi.2016.05.004.
10. Drago L, De Vecchi E, Bortolin M, et al. Epidemiology and Antibiotic Resistance of Late Prosthetic Knee and Hip Infections. J Arthroplasty. 2017;32(8):2496-2500. doi: 10.1016/j.arth.2017.03.005.
11. Morgan JR, Paull A, O'Sullivan M, Williams BD. The penetration of ceftriaxone into synovial fluid of the inflamed joint. J Antimicrob Chemother. 1985;16(3):367-371. doi: 10.1093/jac/16.3.367.
12. Azamgarhi T, Scarborough M, Peter-Akhigbe V, et al. Fluoroquinolones in orthopaedic infection: balancing risks and rewards. J Antimicrob Chemother. 2024;79(10):2413-2416. doi: 10.1093/jac/dkae286.
13. Hussen NHA, Qadir SH, Rahman HS, et al. Long-term toxicity of fluoroquinolones: a comprehensive review. Drug Chem Toxicol. 2024;47(5):795-806. doi: 10.1080/01480545.2023.2240036.
14. Белов БС. Ципрофлоксацин в ревматологии: вопросы эффективности и безопасности. Научно-практическая ревматология. 2004;42(1):43-47. doi: 10.14412/1995-4484-2004-1382.
15. Sukasem C, Pratoomwun J, Satapornpong P, et al. Genetic Association of Co-Trimoxazole-Induced Severe Cutaneous Adverse Reactions Is Phenotype-Specific: HLA Class I Genotypes and Haplotypes. Clin Pharmacol Ther. 2020;108(5):1078-1089. doi: 10.1002/cpt.1915.
16. Thabit AK, Fatani DF, Bamakhrama MS, et al. Antibiotic penetration into bone and joints: An updated review. Int J Infect Dis. 2019;81:128-136. doi: 10.1016/j.ijid.2019.02.005.
17. Chen RZ, Lu PL, Yang TY, et al. Efficacy of cefoperazone/sulbactam for ESBL-producing Escherichia coli and Klebsiella pneumoniae bacteraemia and the factors associated with poor outcomes. J Antimicrob Chemother. 2024;79(3):648-655. doi: 10.1093/jac/dkae022.
18. Gergs U, Clauss T, Ihlefeld D, et al. Pharmacokinetics of ceftriaxone in plasma and bone of patients undergoing hip or knee surgery. J Pharm Pharmacol. 2014;66(11):1552-1558. doi: 10.1111/jphp.12282.
19. Wang Q, Wu Y, Chen B, Zhou J. Drug concentrations in the serum and cerebrospinal fluid of patients treated with cefoperazone/ sulbactam after craniotomy. BMC Anesthesiol. 2015;15:33. doi: 10.1186/s12871-015-0012-1.
20. Miao W, Guo J, Cheng H, Zhao Q. Risk Factors for Cefoperazone/Sulbactam-Induced Coagulation Disorder. Infect Drug Resist. 2023;16:6277-6284. doi: 10.2147/IDR.S429706.
21. Tamma PD, Heil EL, Justo JA, et al. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin Infect Dis. 2024:ciae403. doi: 10.1093/cid/ciae403.
22. Бондарева Б.И., Зырянов С.К., Ченкуров М.С. Фармакокинетический анализ данных терапевтического лекарственного мониторинга меропенема в крови у взрослых пациентов, находящихся в критическом состоянии. Антибиотики и химиотерапия. 2021;66(11-12):31-38. doi: 10.37489/0235-2990-2021-66-11-12-31-38.
23. Сидоренко С.В., Партина И.В., Агеевец В.А. Имипенем: 30 лет терапии. Антибиотики и химиотерапия. 2013;58(5-6):55-61.
24. Попов Д.А., Зубарева Н.А., Паршаков А.А. Азтреонам: клинико-фармакологическая характеристика на современном этапе. Клиническая микробиология и антимикробная химиотерапия. 2023;25(1):19-25. doi:10.36488/cmac.2023.1.19-25.
25. Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin-induced nephrotoxicity: Do we have a promising therapeutic approach to blunt it? Pharmacol Res. 2010;62(3):179-186. doi: 10.1016/j.phrs.2010.04.004.
26. Rutka J. Aminoglycoside Vestibulotoxicity. Adv Otorhinolaryngol. 2019;82:101-110. doi: 10.1159/000490277.
27. Елисеева Е.В., Азизов И.С., Зубарева Н.А. Обзор международных согласительных рекомендаций по оптимальному использованию полимиксинов. Клиническая микробиология и антимикробная химиотерапия. 2019;21(4):282-309. doi:10.36488/cmac.2019.4.282-309.
28. Zhao Y, Chen H, Yu Z. Trough concentration may not be a good target for polymyxin B therapeutic drug monitoring. Crit Care. 2023;27(1):41. doi: 10.1186/s13054-023-04326-8.
29. Silva KED, Rossato L, Leite AF, Simionatto S. Overview of polymyxin resistance in Enterobacteriaceae. Rev Soc Bras Med Trop. 2022;55:e0349. doi: 10.1590/0037-8682-0349-2021.
30. Lora-Tamayo J, Murillo O, Ariza J. Clinical Use of Colistin in Biofilm-Associated Infections. Adv Exp Med Biol. 2019;1145:181-195. doi: 10.1007/978-3-030-16373-0_13.
31. Mancheño-Losa M, Murillo O, Benavent E, et al. Efficacy and safety of colistin plus beta-lactams for bone and joint infection caused by fluoroquinolone-resistant gram-negative bacilli: a prospective multicenter study. Infection. 2025;53(1):359-372. doi: 10.1007/s15010-024-02379-7.
32. Леонова М.В. Фосфомицин: старый антибиотик и новые перспективы. Обзор литературы. Consilium Medicum. 2023;25(7):433- 438. doi: 10.26442/20751753.2023.7.202284.
33. Schintler MV, Traunmüller F, Metzler J, et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother. 2009;64(3):574-578. doi: 10.1093/jac/dkp230.
34. Hashemian SMR, Farhadi Z, Farhadi T. Fosfomycin: the characteristics, activity, and use in critical care. Ther Clin Risk Manag. 2019;15:525-530. doi: 10.2147/TCRM.S199119.
35. Morata L, Soriano A. The role of fosfomycin in osteoarticular infection. Rev Espanola Quimioter Publicacion Of Soc Espanola Quimioter. 2019;32 Suppl 1(Suppl 1):30-36.
36. Kowalska-Krochmal B, Mączyńska B, Rurańska-Smutnicka D, et al. Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens. 2022;11(12):1441. doi: 10.3390/pathogens11121441.
37. Конев В.А., Божкова С.А., Нетылько Г.И. et al. Результаты применения фосфомицина для импрегнации остеозамещающих материалов при лечении хронического остеомиелита. Травматология и ортопедия России. 2016;22(2):43-56. https://doi.org/10.21823/2311-2905-2016-0-2-43-56
38. Кузьменков А.Ю., Виноградова А.Г., Трушин И.В. и др. AMRmap – система мониторинга антибиотикорезистентности в России. Клиническая микробиология и антимикробная химиотерапия. 2021;23(2):198-204. doi:10.36488/cmac.2021.2.198-204.
39. Sulayyim HJA, Ismail R, Hamid AA, Ghafar NA. Antibiotic Resistance during COVID-19: A Systematic Review. Int J Environ Res Public Health. 2022;19(19):11931. doi: 10.3390/ijerph191911931.
40. Grossi O, Asseray N, Bourigault C, et al. Gram-negative prosthetic joint infections managed according to a multidisciplinary standardized approach: risk factors for failure and outcome with and without fluoroquinolones. J Antimicrob Chemother. 2016;71(9):2593-2597. doi: 10.1093/jac/dkw202.
41. Eyler RF, Shvets K. Clinical Pharmacology of Antibiotics. Clin J Am Soc Nephrol. 2019;14(7):1080-1090. doi: 10.2215/CJN.08140718.
42. Deconinck L, Dinh A, Nich C, et al. Efficacy of cotrimoxazole (Sulfamethoxazole-Trimethoprim) as a salvage therapy for the treatment of bone and joint infections (BJIs). PLoS One. 2019;14(10):e0224106. doi: 10.1371/journal.pone.0224106.
43. Туфанова О.С., Касимова А.Р., Астахов Д.И. и др. Факторы, влияющие на течение и прогноз имплантат-ассоциированной инфекции, вызванной Klebsiella spp. Травматология и ортопедия России. 2024;30(2):40-53. doi: 10.17816/2311-2905-16719.
44. Божкова С.А., Касимова А.Р., Тихилов Р.М. и др. Неблагоприятные тенденции в этиологии ортопедической инфекции: результаты 6-летнего мониторинга структуры и резистентности ведущих возбудителей. Травматология и ортопедия России. 2018;24(4):20-31. doi:10.21823/2311-2905-2018-24-4-20-31.
Review
For citations:
Tufanova O.S., Bozhkova S.A., Kasimova A.R., Gordina E.M., Gvozdetsky A.N., Tikhilov R.M. Antibiotic therapy for orthopedic infections caused by gram-negative pathogens over a 12-year observation period. Genij Ortopedii. 2025;31(5):587-601. https://doi.org/10.18019/1028-4427-2025-31-5-587-601