Preview

Genij Ortopedii

Advanced search

Efficiency of using antibacterial coatings on titanium implants in the treatment of gunshot fractures

https://doi.org/10.18019/1028-4427-2025-31-4-520-536

Abstract

Introduction High risk of infectious complications in gunshot wounds remains a pressing issue in military medicine. Analysis of the structure of sanitary losses shows that limb injuries account for 55 % to 81.4 %, with about 35 % of them accompanied by bone fractures. Performing operations for the final stabilization of these fractures under the conditions of primary microbial contamination is associated with a high risk of infectious complications. However, the use of antibacterial coatings on internal implants significantly reduces the risk of such complications.

The purpose of the work, based on the analysis of Russian and foreign literary sources, is to determine the effectiveness of using antibacterial coatings on titanium implants for gunshot fractures.

Materials and methods The search for scientific publications was carried out in the search engines eLibrary, PubMed and Connected Papers using the keywords: antibacterial coatings, gunshot fractures, implant-associated infection, internal osteosynthesis, infectious complications, antibacterial coating, gunshot fractures, infectious complications, peri-implant infection. The sources were selected based on the hypothesis of the possibility of using antibacterial coatings in clinical practice. The search depth was from 2009 to 2025.

Results and discussion The existing systems for delivering antibacterial drugs to the surgical intervention area demonstrate high clinical efficacy in the prevention of peri-implant infection. To date, the most studied agents for creating coatings are metal ions, polymers, as well as composites containing antibacterial / antiseptic drugs. The most effective are multifunctional and intelligent coatings that have a combined effect on microbial biofilms due to their pronounced anti-adhesive and biocidal properties. There is a shortage of research on the use of multifunctional coatings in traumatological and orthopedic practice. There are no publications in the world literature devoted to the use of antibacterial coatings in the treatment of gunshot fractures and their consequences.

Conclusion The use of polymer and multifunctional antibacterial coatings, hydrogels, as well as oxides of silver, iodine and zinc demonstrate high efficiency in the prevention of infectious complications after internal osteosynthesis, and, in our opinion, can be considered for use in clinical practice in the treatment of gunshot fractures of limb bones.

About the Authors

D. V. Davydov
Burdenko Main Military Clinical Hospital; Patrice Lumumba Peoples' Friendship University of Russia
Russian Federation

Denis V. Davydov — Doctor of Medical Sciences, Professor

Moscow



L. K. Brizhan
Burdenko Main Military Clinical Hospital
Russian Federation

Leonid K. Brizhan — Doctor of Medical Sciences, Professor

Moscow



A. A. Kerimov
Burdenko Main Military Clinical Hospital
Russian Federation

Artur A. Kerimov — Candidate of Medical Sciences

Moscow



I. V. Khominets
Burdenko Main Military Clinical Hospital
Russian Federation

Igor V. Khominets — Candidate of Medical Sciences

Moscow



K. K. Bekshokov
Patrice Lumumba Peoples' Friendship University of Russia
Russian Federation

Kazbek K. Bekshokov — Resident of the Department

Moscow



А. A. Gritsyuk
Burdenko Main Military Clinical Hospital; Sechenov First Moscow State Medical University
Russian Federation

Andrey A. Gritsyuk — Doctor of Medical Sciences, Professor

Moscow



E. A. Kukushk
Burdenko Main Military Clinical Hospital
Russian Federation

Evgeniy A. Kukushko

Moscow



V. D. Besedin
Burdenko Main Military Clinical Hospital
Russian Federation

Vladimir D. Besedin 

Moscow



References

1. Oprishchenko AA, Shtutin AA, Koktyshev IV. Tactics of plastic closure of gunshot wound defects of the lower limb. University Clinic. 2019;(1(30)):48-53. (In Russ.) doi: 10.26435/uc.v0i1(30).290.

2. Oprishchenko AA, Shtutin AA. Clinical-epidemiological characteristic of open combat injuries of lower limbs in the conditions of the military conflict in Donbass. University Clinic. 2018;(1(26):20-25. (In Russ.) doi: 10.26435/uc.v0i1(26).131.

3. Korol SA, Matveychuk BV, Domansky AN. The scope of surgical care for wounded with gunshot fractures of the forearm bones during the stages of medical evacuation during an anti-terrorist operation. Trauma. 2016;17(6):76-80. (In Ukr.) doi: 10.22141/1608-1706.6.17.2016.88621

4. Ovdenko AG. Modern methods of treatment of purulent complications in traumatology and orthopedics. Church and medicine. 2017;(1(17)):65-73. (In Russ.)

5. Khominets VV, Shchukin AV, Mikhailov SV, Foos IV. Features of consecutive osteosynthesis in treatment of patients with gunshot fractures of long bones of the extremities. Polytrauma. 2017;(3):12-22. (In Russ.)

6. Lee C, Brodke DJ, Engel J, et al. Low-energy Gunshot-induced Tibia Fractures: What Proportion Develop Complications? Clin Orthop Relat Res. 2021;479(8):1793-1801. doi: 10.1097/CORR.0000000000001736.

7. Kryukov EV, Golovko KP, Markevich VYu, et al. Characteristics of antibiotic resistance of pathogens causing infectious complications in the wounded. Bulletin of the Russian Military Medical Academy. 2023;25(2):193-202. doi: 10.17816/brmma207771.

8. Brizhan LK, Khominets VV, Shapovalov VM, et al. Modern treatment of wounded with gunshot wounds to the extremities. Opinion Leader. 2018;2(8(16):48-56. (In Russ.)

9. Guda T, Stukel Shah JM, Lundquist BD, et al. An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration. J Biomed Mater Res B Appl Biomater. 2024;112(12):e35516. doi: 10.1002/jbm.b.35516.

10. Kozelskaya AI, Früh A, Rutkowski S, et all. Antibacterial double-layer calcium phosphate/chitosan composite coating on metal implants for tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2025;705(Part 2):135652. doi: 10.1016/j.colsurfa.2024.135652.

11. Huang CY, Hsieh RW, Yen HT, et al. Short- versus long-course antibiotics in osteomyelitis: A systematic review and meta-analysis. Int J Antimicrob Agents. 2019;53(3):246-260. doi: 10.1016/j.ijantimicag.2019.01.007.

12. Baumfeld D, Brito ASP, Torres MS, et al. Firearm-Related Fractures: Epidemiology and Infection Rate. Rev Bras Ortop (Sao Paulo). 2020;55(5):625-628. doi: 10.1055/s-0040-1702960.

13. Murylev V, Kukovenko G, Elizarov P, et al. Periprosthetic infection during hip arthroplasty. Doctor. 2018;(3):17-22. (In Russ.) doi: 10.29296/25877305-2018-03-04.

14. Cooper C, Horner C, Barlow G, et al. A survey of practice and opinions on the use of topical antibiotics to prevent surgical site infection: more confusion than consensus. J Antimicrob Chemother. 2018;73(7):1978-1983. doi: 10.1093/ jac/dky097.

15. Amin Yavari S, Castenmiller SM, van Strijp JAG, Croes M. Combating Implant Infections: Shifting Focus from Bacteria to Host. Adv Mater. 2020;32(43):e2002962. doi: 10.1002/adma.202002962.

16. Coppola GA, Onsea J, Moriarty TF, et al. An Improved 2-Aminoimidazole Based Anti-Biofilm Coating for Orthopedic Implants: Activity, Stability, and in vivo Biocompatibility. Front Microbiol. 2021;12:658521. doi: 10.3389/fmicb.2021.658521.

17. Zheng Y, He L, Asiamah TK, Otto M. Colonization of medical devices by staphylococci. Environ Microbiol. 2018;20(9):3141-3153. doi: 10.1111/1462-2920.14129.

18. Rupp M, Baertl S, Walter N, et al. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study. Antibiotics (Basel). 2021;10(8):921. doi: 10.3390/antibiotics10080921.

19. Mirzaei R, Mohammadzadeh R, Alikhani MY, et al. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020;72(7):1271-1285. doi: 10.1002/iub.2266.

20. Beschatnov VV. Features of NATO’s soldiers limbs combat trauma treatment during armed conflicts on the territory of Iraq and Afghanistan (literature review). Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2021;8(3):8-12. (In Russ.) doi: 10.25199/2408-9613-2021-8-3-6-10.

21. Kaspiris A, Vasiliadis E, Pantazaka E, et al. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect Dis Rep. 2024;16(2):298-316. doi: 10.3390/idr16020025.

22. Ma T, Lyu J, Ma J, et al. Comparative analysis of pathogen distribution in patients with fracture-related infection and periprosthetic joint infection: a retrospective study. BMC Musculoskelet Disord. 2023;24(1):123. doi: 10.1186/s12891023-06210-6.

23. Dudareva M, Hotchen AJ, Ferguson J, et al. The microbiology of chronic osteomyelitis: Changes over ten years. J Infect. 2019;79(3):189-198. doi: 10.1016/j.jinf.2019.07.006.

24. Vijayakumar В, Reddy Y, Suphala B, et al. Microbiological and antibiotic profile of osteomyelitis in tertiary care hospital. Int Surg J. 2021:8(3):910-914. doi: 10.18203/2349-2902.isj20210926.

25. Ardehali B, Geoghegan L, Khajuria A, et al. Microbiological and functional outcomes after open extremity fractures sustained overseas: The experience of a UK level I trauma centre. JPRAS Open. 2017;15:36-45. doi: 10.1016/j.jpra.2017.09.003.

26. Cerioli M, Batailler C, Conrad A, et al. Pseudomonas aeruginosa Implant-Associated Bone and Joint Infections: Experience in a Regional Reference Center in France. Front Med (Lausanne). 2020;7:513242. doi: 10.3389/fmed.2020.513242.

27. Knabl L, Kuppelwieser B, Mayr A, et al. High percentage of microbial colonization of osteosynthesis material in clinically unremarkable patients. Microbiologyopen. 2019;8(3):e00658. doi: 10.1002/mbo3.658.

28. Hanawa T. Titanium-Tissue Interface Reaction and Its Control With Surface Treatment. Front Bioeng Biotechnol. 2019;7:170. doi: 10.3389/fbioe.2019.00170.

29. Wang Y, Zhang Y, Miron RJ. Health, Maintenance, and Recovery of Soft Tissues around Implants. Clin Implant Dent Relat Res. 2016;18(3):618-34. doi: 10.1111/cid.12343.

30. Li B, Thebault P, Labat B, et al. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J Orthop Translat. 2024;45:24-35. doi: 10.1016/j.jot.2023.12.006.

31. Bruellhoff K, Fiedler J, Möller M, et al. Surface coating strategies to prevent biofilm formation on implant surfaces. Int J Artif Organs. 2010;33(9):646-653. doi: 10.1177/039139881003300910.

32. Nichol T, Callaghan J, Townsend R, et al. The antimicrobial activity and biocompatibility of a controlled gentamicinreleasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Bone Joint J. 2021;103-B(3):522-529. doi: 10.1302/0301-620X.103B3.BJJ-2020-0347.R1.

33. Hu Y, Wang Z, Ai J, Bu S, et al. Preparation of Coating on the Titanium Surface by Micro-Arc Oxidation to Improve Corrosion Resistance. Coatings. 2021:11(2):230. doi: 10.3390/coatings11020230.

34. Ständert V, Borcherding K, Bormann N, et al. Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections. Bioact Mater. 2021;6(8):2331-2345. doi: 10.1016/j.bioactmat.2021.01.012.

35. Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules. 2024;29(5):1172. doi: 10.3390/molecules29051172.

36. Harris MA, Beenken KE, Smeltzer MS, et al. Phosphatidylcholine Coatings Deliver Local Antimicrobials and Reduce Infection in a Murine Model: A Preliminary Study. Clin Orthop Relat Res. 2017;475(7):1847-1853. doi: 10.1007/s11999016-5211-7.

37. Metsemakers WJ, Emanuel N, Cohen O, et al. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus. J Control Release. 2015;209:47-56. doi: 10.1016/j.jconrel.2015.04.022.

38. Aguilera-Correa JJ, Garcia-Casas A, Mediero A, et al. A New Antibiotic-Loaded Sol-Gel Can Prevent Bacterial Prosthetic Joint Infection: From in vitro Studies to an in vivo Model. Front Microbiol. 2020;10:2935. doi: 10.3389/fmicb.2019.02935.

39. Gulcu A, Akman A, Demirkan AF, et al. Fosfomycin Addition to Poly(D,L-Lactide) Coating Does Not Affect Prophylaxis Efficacy in Rat Implant-Related Infection Model, But That of Gentamicin Does. PLoS One. 2016;11(11):e0165544. doi: 10.1371/journal.pone.0165544.

40. Popov AV, Shastov AL, Shipitsyna IV, et al. Bactericidal activity of experimental samples of titanium alloy implants with a calcium phosphate coating and an antibacterial component against gram-negative pathogens (experimental study). N.N. Priorov Journal of Traumatology and Orthopedics. 2024;31(4):517-526. (In Russ.) doi: 10.17816/vto630216.

41. Winkler H, Haiden P. Allograft Bone as Antibiotic Carrier. J Bone Jt Infect. 2017;2(1):52-62. doi: 10.7150/jbji.17466.

42. Ivanov PA, Sokolov VA, Byalik EI, et al. Use of intramedullary locking pins with active antibacterial coating in the treatment of severe open fractures and their complications. N.N. Priorov Journal of Traumatology and Orthopedics. 2009;16(1):13-18. (In Russ.)

43. Zhou D, Yuan H, Han T, et al. Open Distal Femur Fractures Treated with Bone Cement Intramedullary Support Combined with Locked Plate Fixation. Altern Ther Health Med. 2024;30(9):72-77.

44. Melikova RE, Tsiskarashvili AV. Local antibacterial depot systems in the treatment of bone and joint infection (literature review). N.N. Priorov Journal of Traumatology and Orthopedics. 2024;31(4):677-695. (In Russ.) doi: 10.17816/vto632032

45. Lollobrigida M, Filardo S, Sessa R, et al. Antibacterial Activity and Impact of Different Antiseptics on BiofilmContaminated Implant Surfaces (2019). Appl. Sci. 2019;9(24):5467. doi: 10.3390/app9245467.

46. Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017;49(2):137-152. doi: 10.1016/j.ijantimicag.2016.11.011.

47. Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Adv Therap. 2018;(1):1700033. doi: 10.1002/adtp.201700033.

48. Zhang E, Zhao X, Hu J, et al. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater. 2021;6(8):2569-2612. doi: 10.1016/j.bioactmat.2021.01.030.

49. Jia Z, Zhou W, Yan J, et al. Constructing Multilayer Silk Protein/Nanosilver Biofunctionalized Hierarchically Structured 3D Printed Ti6Al4 V Scaffold for Repair of Infective Bone Defects. ACS Biomater Sci Eng. 2019;5(1):244-261. doi: 10.1021/acsbiomaterials.8b00857.

50. Matai I, Sachdev A, Dubey P, et al. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B Biointerfaces. 2014;115:359-367. doi: 10.1016/j.colsurfb.2013.12.005.

51. Yang Q, Chen L. Antibacterial surface coatings of fracture fixation implants. Materials Express. 2022;12(8):1013-1019. doi: 10.1166/mex.2022.2255.

52. Hao W, Xiong C, Yu Z, et al. Research Progress on Antibacterial Coatings for Preventing Implant-Related Infection in Fractures: A Literature Review. Coatings. 2022:12(12):1921. doi: 10.3390/coatings12121921.

53. Tukkaram M, Cools P, Nikiforov A, et al. Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation. Appl Surf Sci. 2019;(500):144235. doi: 10.1016/j.apsusc.2019.144235.

54. Zhu WQ, Shao SY, Xu LN, et al. Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment. J Nanobiotechnology. 2019;17(1):55. doi: 10.1186/s12951-019-0488-9.

55. Wang LJ, Ni XH, Zhang F, et al. Osteoblast Response to Copper-Doped Microporous Coatings on Titanium for Improved Bone Integration. Nanoscale Res Lett. 2021;16(1):146. doi: 10.1186/s11671-021-03602-2.

56. Tran PA, O'Brien-Simpson N, Palmer JA, et al. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomedicine. 2019; 14:4613-4624. doi: 10.2147/IJN.S197737.

57. Zhou J, Wang X. The osteogenic, anti-oncogenic and antibacterial activities of selenium-doped titanium dioxide coatings on titanium. Surf Coat Technol. 2020;403:126408. doi: 10.1016/j.surfcoat.2020.126408.

58. Ohtsu N, Yuko K, Ohtsuki T. Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl Surf Sci. 2017;445:596-600. doi: 10.1016/j.apsusc.2017.09.101.

59. Shirai T, Tsuchiya H, Terauchi R, et al. A retrospective study of antibacterial iodine-coated implants for postoperative infection. Medicine (Baltimore). 2019;98(45):e17932. doi: 10.1097/MD.0000000000017932.

60. Inoue D, Kabata T, Kajino Y, et al. Iodine-supported titanium implants have good antimicrobial attachment effects. J Orthop Sci. 2019;24(3):548-551. doi: 10.1016/j.jos.2018.10.010.

61. Yamaguchi S, Le PTM, Shintani SA, et al. Iodine-Loaded Calcium Titanate for Bone Repair with Sustainable Antibacterial Activity Prepared by Solution and Heat Treatment. Nanomaterials (Basel). 2021;11(9):2199. doi: 10.3390/nano11092199.

62. Katunar MR, Pastore JI, Cisilino AP, et al. Early osseointegration of strontium-doped coatings on titanium implants in an osteoporotic rat model. Surf Coat Technol. 2022;433(SUPPL.4):128159. doi: 10.1016/j.surfcoat.2022.128159.

63. Zhao Q, Yi L, Jiang L, et al. Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation. Nanomedicine. 2019;(16):149-161. doi: 10.1016/j.nano.2018.12.006.

64. Arcos D, Vallet-Regí M. Substituted hydroxyapatite coatings of bone implants. J Mater Chem B. 2020;8(9):1781-1800. doi: 10.1039/c9tb02710f.

65. Batebi K, Khazaei BA, Afshar A. Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate. Surf Coat Technol. 201;352:522-528. doi: 10.1016/j.surfcoat.2018.08.021.

66. Turkoz M, Atilla AO, Evis Z. Silver and fluoride doped hydroxyapatites: Investigation by microstructure, mechanical and antibacterial properties. Ceram Int. 2013:39( 8):8925-8931. doi: 10.1016/j.ceramint.2013.04.088.

67. Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res. 2022;26(1):26. doi: 10.1186/s40824-022-00269-3.

68. Pogorielov M, Husak E, Solodivnik A, Zhdanov S. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements. Interv Med Appl Sci. 2017;9(1):27-38. doi: 10.1556/1646.9.2017.1.04.

69. Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules. 2020;25(13):3048. doi: 10.3390/molecules25133048.

70. Caselli L, Parra-Ortiz E, Micciulla S, et al. Boosting Membrane Interactions and Antimicrobial Effects of Photocatalytic Titanium Dioxide Nanoparticles by Peptide Coating. Small. 2024;20(30):e2309496. doi: 10.1002/smll.202309496.

71. Keikhosravani P, Jahanmard F, Bollen T, et al. (2023). Antibacterial CATH-2 Peptide Coating to Prevent Bone ImplantRelated Infection. Adv Mater Technol. 2023;8(18): 2300500. doi: 10.1002/admt.202300500.

72. Ozdil D, & Aydin HM. Polymers for Medical and Tissue Engineering Applications. J Chem Technol Biotechnol. 2014;89(12):1793-1810. doi: 10.1002/jctb.4505.

73. Kaleli-Can G, Ozguzar HF, Kahriman S, et al. Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification, Mater Today Commun. 2020;25:101565. doi: 10.1016/j.mtcomm.2020.10156.

74. Peng J, Liu P, Peng W, et al. Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for titanium substrates. J Hazard Mater. 2021;411:125110. doi: 10.1016/j.jhazmat.2021.125110.

75. Peng ZX, Tu B, Shen Y, et al. Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob Agents Chemother. 2011;55(2):860-866. doi: 10.1128/AAC.01005-10.

76. Li B, Thebault P, Labat B, et al. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J Orthop Translat. 2024;45:24-35. doi: 10.1016/j.jot.2023.12.006.

77. Zhang Y, Hu K, Xing X, et al. Smart Titanium Coating Composed of Antibiotic Conjugated Peptides as an InfectionResponsive Antibacterial Agent. Macromol Biosci. 2021;21(1):e2000194. doi: 10.1002/mabi.202000194.

78. Zhang F, Hu Q, Wei Y, Meng W et al. Surface modification of titanium implants by pH-Responsive coating designed for Self-Adaptive antibacterial and promoted osseointegration. Chem Eng J. 2022:435(Part 2):134802, doi: 10.1016/j.cej.2022.134802.

79. Pressato D, Battista A, Govoni M, et al. The Intraoperative Use of Defensive Antibacterial Coating (DAC®) in the Form of a Gel to Prevent Peri-Implant Infections in Orthopaedic Surgery: A Clinical Narrative Review. Materials (Basel). 2023;16(15):5304. doi: 10.3390/ma16155304.

80. Melikova RE, Tsiskarashvili AV, Artyukhov AA, Sokolova NV. In vitro study of the dynamics of elution of antibacterial drugs impregnated into polymer hydrogel-based matrices. Genij ortopedii. 2023;29(1):64 70. 2023;29(1):64-70. doi: 10.18019/1028-4427-2023-29-1-64-70.

81. Koptyug A, Rännar LE, Bäckström M et al. Additive manufacturing technology applications targeting practical surgery. IJLSR. 2013;3(1):15-24. doi: 10.5963/LSMR0301003.

82. Golovko KP, Yudin VE, Ovchinnikov DV, et al. Antibacterial wound coating based on chitosan and povidone, obtained by 3D printing. Russian Military Medical Academy Reports. 2024;43(1):23-34. doi: 10.17816/rmmar626501.

83. Inzana JA, Trombetta RP, Schwarz EM, et al. 3D printed bioceramics for dual antibiotic delivery to treat implantassociated bone infection. Eur Cell Mater. 2015;30:232-247. doi: 10.22203/ecm.v030a16.

84. Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater. 2024;38:225-257. doi: 10.1016/j.bioactmat.2024.04.033.

85. He X, Guo C, Liu X, et al. Progress in antibacterial coatings of titanium implants surfaces. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024;41(1):191-198. Chinese. doi: 10.7507/1001-5515.202209051.


Review

For citations:


Davydov D.V., Brizhan L.K., Kerimov A.A., Khominets I.V., Bekshokov K.K., Gritsyuk А.A., Kukushk E.A., Besedin V.D. Efficiency of using antibacterial coatings on titanium implants in the treatment of gunshot fractures. Genij Ortopedii. 2025;31(4):520-536. https://doi.org/10.18019/1028-4427-2025-31-4-520-536

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)