Variant of bone restoration in humeral nonunion with a free fibular autograft in the conditions of transosseous osteosynthesis
https://doi.org/10.18019/1028-4427-2025-31-4-502-509
Abstract
Introduction Failures in surgical rehabilitation of patients with humeral fractures result in the formation of a multicomponent complex of pathological symptoms, including nonunion or bone defect, changes in the shape and length of humeral fragments, development of persistent angiotrophic disorders of the upper limb and contractures of the shoulder and elbow joints. Despite the effectiveness of using metal implants, there are risks in surgical osteosynthesis in complex anatomical and functional lesions.
The purpose of the work was to demonstrate a new technology of bone plasty with free fragments of the fibula as a bone-plastic material for restoring the integrity of the humerus in bone nonunion and defects in the conditions of transosseous osteosynthesis and transosseous fixation of the grafts with wires.
Materials and methods A free autograft of the fibula shaped as a cylindrical fragment, which was resected proximally to the ankle joint level at 8.0-9.0-cm distance, was used as a bone plastic material. The fibula graft was fragmented intraoperatively. Fragments were implanted along the periphery of the humerus fragments overlapping of the pseudarthrosis site. Free autografts of the fibula were transosseously fixed with wires. A wire/half-pine Ilizarov apparatus with three external supports was placed to fix the segment.
Discussion The "gold standard" material for bone plasty is autogenous bone. If defects and pseudoarthroses of the humerus are located in the distal metaepiphysis, the application of the fibular cylinder-shaped fragment with intraosseous reinforcement of the humeral bone is technically difficult. Open co-aptation of the humeral fragments with adequate contact between them and application of the optimal autogenous bone-plastic material which overlaps the pseudarthrosis zone to increase the volume of bone mass ensure the restoration of bone regeneration in the pseudarthrosis zone. External fixation is optimal for fixation of bone fragments and grafts.
Conclusion The originality of the developed technology lies in the use of several free bone autografts from the fibula implanted along the periphery of the humeral fragments junction. The area of active osteogenesis is thus created due to the combined effect of open co-aptation of the ends of the humeral fragments with resection of the endplates and bone autogenous grafts that overlap the problematic area. Additional transosseous fixation of bone autografts with wires ensures the stability of free grafts. Controlled fixation of humeral fragments with compression and adequate contact of the fragments is achieved with the Ilizarov apparatus.
About the Authors
Sh. M. DavirovUzbekistan
Sharof M. Davirov — PhD, orthopaedic surgeon, Head of the Department
Samarkand
P. U. Urinbaev
Uzbekistan
Paizilla U. Urinbaev — Doctor of Medical Sciences, Professor of the Department
Samarkand
D. Sh. Mansurov
Uzbekistan
Dzhalolidin Sh. Mansurov — Candidate of Medical Sciences, Head of the Department
Samarkand
F. A. Gafurov
Uzbekistan
Farrukh A. Gafurov — PhD, Assistant of the Department
Samarkand
D. Yu. Borzunov
Russian Federation
Dmitry Yu. Borzunov — Doctor of Medical Sciences, Professor, Professor of the Department
Yekaterinburg
References
1. Campochiaro G, Baudi P, Gialdini M, et al. Humeral shaft non-union after intramedullary nailing. Musculoskelet Surg. 2017;101(2):189-193. doi: 10.1007/s12306-017-0468-x.
2. Shevtsov VI, Makushin VD, Kuftyrev LM, Soldatov YP. Pseudoarthroses, bone defects of the upper limb and contractures of the elbow joint (basic technologies of treatment with the Ilizarov apparatus). Kurgan: TransUrals Publ.; 2001:407. (In Russ.)
3. Pantalone A, Vanni D, Guelfi M, et al. From plate to nail: a case-report of proximal humerus non-union. Injury. 2015;46(Suppl 7):S48-50. doi: 10.1016/S0020-1383(15)30046-2.
4. Wright TW, Miller GJ, Vander Griend RA, et al. Reconstruction of the humerus with an intramedullary fibular graft. A clinical and biomechanical study. J Bone Joint Surg Br. 1993;75(5):804-807. doi: 10.1302/0301-620X.75B5.8376445.
5. Ring D, Jupiter JB, Quintero J, et al. Atrophic ununited diaphyseal fractures of the humerus with a bony defect: treatment by wave-plate osteosynthesis. J Bone Joint Surg Br. 2000;82(6):867-871. doi: 10.1302/0301-620x.82b6.10124.
6. Rubel IF, Kloen P, Campbell D, et al. Open reduction and internal fixation of humeral nonunions: a biomechanical and clinical study. J Bone Joint Surg Am. 2002;84(8):1315-1322. doi: 10.2106/00004623200208000-00004.
7. Weber TW, Cech O. Pseudarthrosis: pathophysiology, biomechanics, therapy, results. New York: Grune and Stratton Publ.; 1976:323.
8. Shevtsov VI. Closed Ilizarov compression-distraction osteosynthesis in the treatment of false joints of the humerus. Kand. Dis. Kurgan; 2001:407. (In Russ.)
9. Shevtsov VI, Sveshnikov AA, Nosova LN, Shaposhnikova GV. Replacing diaphyseal defects of the humerus by lengthening one or both fragments according to Ilizarov method. Traumatology and Orthopedics of Russia. 1995;5:63-64. (In Russ.)
10. Shaposhnikova GV. Treatment of patients with humerus defects by the Ilizarov percutaneous osteosynthesis method. Kand Dis. Kurgan; 1996:209. (In Russ.)
11. Shevtsov VI, Shaposhnikova GV. Anatomo-functional rehabilitation of patients with humerus defects according to Ilizarov method. Genij Ortopedii. 1996;(2-3):73. (In Russ.)
12. Subanbekov E. Rationale for the study of the problem of post-traumatic deformations of the supracondylar and supracondylar fractures of the humerus in children. Synergy of sciences. 2018;(21):325–334. (In Russ.) URL: https://synergy-journal.ru/archive/article1973.
13. Davirov ShM, Urinboev PU. Repair of an open forearm fracture and extensive bony loss (case report). Genij Ortopedii. 2021;27(1):87-91. doi: 10.18019/1028-4427-2021-27-1-87-91.
14. Davirov ShM, Urinboev PU. Repair of open humerus fracture and extensive bone defect using bone grafting (case report). Genij Ortopedii. 2022;28(1):91-96. doi: 10.18019/1028-4427-2022-28-1-91-96.
15. Urinboev PU, Davirov ShM, Urinbaev IP. Surgical treatment of nonunion of the lateral humeral condyle in children using combined methods of bone grafting and the Ilizarov fixation. Genij Ortopedii. 2024;30(1):4658. doi: 10.18019/1028-4427-2024-30-1-46-58.
16. Babhulkar S, Babhulkar S, Vasudev A. Recalcitrant aseptic atrophic non-union of the shaft of the humerus after failure of surgical treatment: management by excision of non-union, bone grafting and stabilization by LCP in different modes. Injury. 2017;48(Suppl 2):S33-S43. doi: 10.1016/S0020-1383(17)30492-8.
17. Kashayi-Chowdojirao S, Vallurupalli A, Chilakamarri VK, et al. Role of autologous non-vascularised intramedullary fibular strut graft in humeral shaft nonunions following failed plating. J Clin Orthop Trauma. 2017;8(Suppl 2):S21-S30. doi: 10.1016/j.jcot.2016.12.006.
18. Balaev II, Kuftyrev LM, Borzunov DY, Zlobin AV. Transosseous osteosynthesis in treatment of a patient with humeral Ewing sarcoma. Genij Ortopedii. 2004;(2):63-65. (In Russ.)
19. Borzunov DYu, Mitrofanov AI, Mokhovikov DS, et al. A rare case of humeral shaft echinococcal involvement. Genij Ortopedii. 2014;(2):64-68. (In Russ.)
20. Crosby LA, Norris BL, Dao KD, McGuire MH. Humeral shaft nonunions treated with fibular allograft and compression plating. Am J Orthop (Belle Mead NJ). 2000;29(1):45-47.
21. Golyana SI, Tikhonenko TI, Galkina NS, Grankin DYu. Microsurgical autologous ffbula transfer as an optimal method for closure of extensive bone defects in children with neuroffbromatosis. Genij Ortopedii. 2023;29(4):368-375. doi: 10.18019/1028-4427-2023-29-4-368-375.
22. Bumbasirevic M, Stevanovic M, Bumbasirevic V, et al. Free vascularised fibular grafts in orthopaedics. Int Orthop. 2014;38(6):1277-1282. doi: 10.1007/s00264-014-2281-6.
23. Van Den Heuvel SCM, Winters HAH, Ultee KH, et al. Combined massive allograft and intramedullary vascularized fibula transfer: the Capanna technique for treatment of congenital pseudarthrosis of the tibia. Acta Orthop. 2020;91(5):605-610. doi: 10.1080/17453674.2020.1773670.
24. Garkavenko YE, Zakharyan EA, Zubairov TF, et al. Microsurgical autotransplantation of fibula fragment in the treatment of bone defects in children – possibilities for further reconstructive surgery. Modern problems of science and education. 2021;(2). (In Russ.) doi: 10.17513/spno.30624.
25. Bae DS, Waters PM, Sampson CE. Use of free vascularized fibular graft for congenital ulnar pseudarthrosis: surgical decision making in the growing child. J Pediatr Orthop. 2005;25(6):755-762. doi: 10.1097/01.bpo.0000186241.29415.df.
26. Bauer AS, Singh AK, Amanatullah D, et al. Free vascularized fibular transfer with langenskiöld procedure for the treatment of congenital pseudarthrosis of the forearm. Tech Hand Up Extrem Surg. 2013;17(3):144150. doi: 10.1097/BTH.0b013e318295238b.
27. Ding DY, LaMartina J, Tai C, Pandya NK. Congenital Pseudoarthrosis of the Distal Radius Treated With PhysealSparing Double-Barrel Vascularized Free Fibula Transfer: A Case Report. Hand (N Y). 2017;12(5):NP140NP144. doi: 10.1177/1558944717702472.
28. Van Den Heuvel SCM, Winters HAH, Ultee KH, et al. Combined massive allograft and intramedullary vascularized fibula transfer: the Capanna technique for treatment of congenital pseudarthrosis of the tibia. Acta Orthop. 2020;91(5):605-610. doi: 10.1080/17453674.2020.1773670.
29. Grishin IT, Golubev VT, Kroshkin MM, et al. Plasty of extensive defects of long bones with vascularized peroneal grafts. N.N. Priorov Journal of Traumatology and Orthopedics. 2001;8(2):61-65. (In Russ.) doi: 10.17816/vto98415.
30. Tu YK, Yen CY, Yeh WL, et al. Reconstruction of posttraumatic long bone defect with free vascularized bone graft: good outcome in 48 patients with 6 years' follow-up. Acta Orthop Scand. 2001;72(4):359-364. doi: 10.1080/000164701753542014.
31. Borzunov DY, Kolchin SN, Malkova TA. Role of the Ilizarov non-free bone plasty in the management of long bone defects and nonunion: Problems solved and unsolved. World J Orthop. 2020;11(6):304-318. doi: 10.5312/wjo.v11.i6.304.
32. Borzunov DYu, Mokhovikov DS, Kolchin SN. New technology for humerus reconstruction with a free fibular autologous graft in hypotrophic pseudarthrosis. Genij Ortopedii. 2020;26(3):408-412. doi: 10.18019/10284427-2020-26-3-408-412.
33. Mokhovikov DS, Kolchin SN, Borzunov DYu. Method of humerus reconstruction in hypotrophic pseudoarthrosis. Patent RF, no. 2695268, 2019. Available at: https://www.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2695268&TypeFile=html. Accessed May 16, 2025. (In Russ.)
34. Mukhametov UF, Lyulin SV, Borzunov DY, et al. Alloplastic and Implant Materials for Bone Grafting: a Literature Review. Creative surgery and oncology. 2021;11(4):343-353. (In Russ.) doi: 10.24060/2076-30932021-11-4-343-353.
35. Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury. 2021;52(Suppl 2):S18-S22. doi: 10.1016/j.injury.2021.01.043.
36. Healy WL, White GM, Mick CA, et al. Nonunion of the humeral shaft. Clin Orthop Relat Res. 1987;(219):206213.
37. Marti RK, Verheyen CC, Besselaar PP. Humeral shaft nonunion: evaluation of uniform surgical repair in fiftyone patients. J Orthop Trauma. 2002;16(2):108-115. doi: 10.1097/00005131-200202000-00007.
38. Sitati FC, Kingori J. Outcome of management of humerus diaphysis non-union. East Cent Afr J Surg. 2009;14(2):13-17.
Review
For citations:
Davirov Sh.M., Urinbaev P.U., Mansurov D.Sh., Gafurov F.A., Borzunov D.Yu. Variant of bone restoration in humeral nonunion with a free fibular autograft in the conditions of transosseous osteosynthesis. Genij Ortopedii. 2025;31(4):502-509. https://doi.org/10.18019/1028-4427-2025-31-4-502-509