Preview

Genij Ortopedii

Advanced search

Experimental topographic and anatomical substantiation of hybrid osteosynthesis of the fibula in patients with ankle fractures

https://doi.org/10.18019/1028-4427-2025-31-4-495-501

Abstract

Introduction Ankle fractures are one of the common injuries treated by orthopaedic surgeons. The lack of a standard medical care can be associated with poor outcomes, high disability rates with conservative treatments. Reported outcomes following operative fixation vary widely in the literature and infectious complications can complicate the rehabilitation process.

The objective was to show a clinical possibility, safety and feasibility of a new method of fibula fixation in ankle fractures using necropsy material and to reduce negative consequences after surgical treatment.

Material and methods Major vessels and nerves were isolated in the lower third of tibia in 11 biomannequins, AO 44C1 and 44C2 fractures obtained mechanically and fibula fixed using the technique offered. Forces were applied to the injury site through mechanical stress tests.

Results The fixation method did not lead to a conflict between fixing screws and major vessels and nerves. No visible changes in the fibula position were noted in the biomannequins with the foot brought to extreme positions of plantar and dorsal flexion, with stress tests causing valgus and varus deformities.

Discussion As opposed to conventional surgical treatments of ankle fractures, no large incisions are required with the technique to place implants. There is no need to use plates, and the fracture can be fixed using the paired bone of the injured segment instead. Fixation screws can be inserted transcutaneously through soft tissue punctures. The new method is associated with less trauma, less quantity of metal needed and reduced probability of infectious complications. It can be used for AO 44C1 and 44C2 fractures in medical institutions with different availability of equipment.

Conclusions Ankle fractures can be repaired with the technique offered causing no damage to the major vessels and nerves at the surgical site. Stress tests showed stable fibula fixation achieved in all cases avoiding mobility at the fracture site. The new technique can facilitate normal reparative osteogenesis in clinical practice.

About the Authors

V. O. Tsapenko
St. Petersburg Research Institute of Emergency Medicine named after I.I. Dzhanelidze
Russian Federation

Vladimir O. Tsapenko — Junior Researcher

Saint Petersburg



Yu. B. Kashansky
St. Petersburg Research Institute of Emergency Medicine named after I.I. Dzhanelidze
Russian Federation

Yuri B. Kashansky — Doctor of Medical Sciences, Leading Researcher

Saint Petersburg



R. V. Vashetko
St. Petersburg Research Institute of Emergency Medicine named after I.I. Dzhanelidze
Russian Federation

Rostislav V. Vashetko — Doctor of Medical Sciences, Leading Researcher

Saint Petersburg



I. P. Kondratyev
St. Petersburg Research Institute of Emergency Medicine named after I.I. Dzhanelidze
Russian Federation

Igor P. Kondratyev — Candidate of Medical Sciences, senior researcher

Saint Petersburg



A. V. Polikarpov
St. Petersburg Research Institute of Emergency Medicine named after I.I. Dzhanelidze
Russian Federation

Anatoly V. Polikarpov — Candidate of Medical Sciences, orthopaedic surgeon

Saint Petersburg



References

1. Li X, Moskaliov VP. Review of treatment modalities of malleolar fractures. The Scientific Notes of the Pavlov University. 2015;22(3):6-10. (In Russ.) doi: 10.24884/1607-4181-2015-22-3-6-10.

2. Slastinin VV, Klyukvin IYu, Filippov OP, Bogolyubsky YuA. Intra-articular fractures of the distal tibia: evolving of views on surgical treatment. Russian Sklifosovsky Journal "Emergency Medical Care". 2015;(3):23-29. (In Russ.)

3. Lehtonen H, Järvinen TL, Honkonen S, et al. Use of a cast compared with a functional ankle brace after operative treatment of an ankle fracture. A prospective, randomized study. J Bone Joint Surg Am. 2003;85(2):205-211. doi: 10.2106/00004623-200302000-00004.

4. Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury. 2006;37(8):691-697. doi: 10.1016/j.injury.2006.04.130.

5. Franke J, von Recum J, Suda AJ, et al. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am. 2012;94(15):1386-1390. doi: 10.2106/JBJS.K.01122.

6. Omelchenko TN. Ankle fractures and rapidly progressive osteoarthrosis of the ankle: prevention and treatment. Orthopedics, traumatology and prosthetics. 2013;(4):35-40. (In Russ.)

7. Yaremenko DA, Shevchenko EG, Tarshis VB. Intra-articular injuries of the lower extremities as causes of persistent loss of working capacity. Orthopedics, traumatology and prosthetics. 1994;(Supplement):46-47. (In Russ.)

8. Rolik OV, Zasadnyuk IA. Failure of long bones to grow (analysis, risk factors, therapeutic tactics). Orthopedics, traumatology and prosthetics. 2005;(2):61-65. (In Ukr.)

9. Thomas RH, Daniels TR. Ankle arthritis. J Bone Joint Surg Am. 2003;85(5):923-936. doi: 10.2106/00004623-20030500000026.

10. Valderrabano V, Hintermann B, Horisberger M, Fung TS. Ligamentous posttraumatic ankle osteoarthritis. Am J Sports Med. 2006;34(4):612-620. doi: 10.1177/0363546505281813.

11. Elsoe R, Ostgaard SE, Larsen P. Population-based epidemiology of 9767 ankle fractures. Foot Ankle Surg. 2018;24(1):34-39. doi: 10.1016/j.fas.2016.11.002.

12. Martijn HA, Lambers KTA, Dahmen J, et al. High incidence of (osteo)chondral lesions in ankle fractures. Knee Surg Sports Traumatol Arthrosc. 2021;29(5):1523-1534. doi: 10.1007/s00167-020-06187-y.

13. Leontaritis N, Hinojosa L, Panchbhavi VK. Arthroscopically detected intra-articular lesions associated with acute ankle fractures. J. Bone Joint. Surg. Am. 2009;91(2):333-339. doi: 10.2106/JBJS.H.00584.

14. Assal M, Ray A, Stern R. Strategies for surgical approaches in open reduction internal fixation of pilon fractures. J Orthop Trauma. 2015;29(2):69-79. doi: 10.1097/BOT.0000000000000218.

15. McFerran MA, Smith SW, Boulas HJ, Schwartz HS. Complications encountered in the treatment of pilon fractures. J Orthop Trauma. 1992;6(2):195-200. doi: 10.1097/00005131-199206000-00011.

16. Teeny SM, Wiss DA. Open reduction and internal fixation of tibial plafond fractures. Variables contributing to poor results and complications. Clin Orthop Relat Res. 1993;(292):108-117.

17. Toleukhanov BO, Dolgov AA, Abilmazhinov MT, et al. On the guestion of compound ankle fractures. Astana Medical Journal. 2019;3(101):259-264. (In Russ.)

18. Telicin PN, Zhila NG. Tactics of treatment of ankle joint fractures and fracture-dislocations. Far East Medical Journal. 2016;(3):31-35. (In Russ.).

19. Gorbatov RO, Pavlov DV, Malyshev EE. Modern Operative Treatment of Malleolar Fractures and Associated Consequences (Review). Modern technologies in medicine. 2015;7(2):153-167. doi: 10.17691/stm2015.7.2.20.

20. Ruedy TP, Buckley RE, Moran CG. AO — Principles of fracture treatment. Second revised and supplemented edition. Vassa Media; 2007;2:870-896. (In Russ.).

21. Marazzi C, Wittauer M, Hirschmann MT, Testa EA. Minimally invasive plate osteosynthesis (MIPO) versus open reduction and internal fixation (ORIF) in the treatment of distal fibula Danis-Weber types B and C fractures. J Orthop Surg Res. 2020;15(1):491. doi: 10.1186/s13018-020-02018-5.

22. Kashansky YuB, Kondratyev IP, Kucheev IO, et al. Mathematical justification of transosseous osteosynthesis with short wires with open external supports. Medline.ru. 2019;20:373-384. (In Russ.).

23. 23. Tsapenko VO, Kashansky YuB, Kondratiev IP, et al. Method for treating fractures of the shin and forearm bones. Patent RF, no. 2691015. 2019. Available at: https://patentimages.storage.googleapis.com/dc/a8/8c/183f543c027b09/RU2302835C1.pdf. Accessed May 06, 2025. (In Russ.).

24. Michelson JD, Wright M, Blankstein M. Syndesmotic Ankle Fractures. J Orthop Trauma. 2018;32(1):10-14. doi: 10.1097/BOT.0000000000000937.

25. Buyukkuscu MO, Basilgan S, Mollaomeroglu A, et al. Splinting vs temporary external fixation in the initial treatment of ankle fracture-dislocations. Foot Ankle Surg. 2022;28(2):235-239. doi: 10.1016/j.fas.2021.03.018.

26. Sanders DW, Tieszer C, Corbett B; Canadian Orthopedic Trauma Society. Operative versus nonoperative treatment of unstable lateral malleolar fractures: a randomized multicenter trial. J Orthop Trauma. 2012;26(3):129-134. doi: 10.1097/BOT.0b013e3182460837.

27. Aiyer AA, Zachwieja EC, Lawrie CM, Kaplan JRM. Management of Isolated Lateral Malleolus Fractures. J Am Acad Orthop Surg. 2019;27(2):50-59. doi: 10.5435/JAAOS-D-17-00417.

28. Jain S, Haughton BA, Brew C. Intramedullary fixation of distal fibular fractures: a systematic review of clinical and functional outcomes. J Orthop Traumatol. 2014;15(4):245-254. doi: 10.1007/s10195-014-0320-0.

29. Smith G, Mackenzie SP, Wallace RJ, et al. Biomechanical Comparison of Intramedullary Fibular Nail Versus Plate and Screw Fixation. Foot Ankle Int. 2017;38(12):1394-1399. doi: 10.1177/1071100717731757.

30. Lazko FL, Zahorodnii NV, Semenov AYu, et al. Operative therapy of malleolar fracture with distal tibiofibular articulation damage. Static and dynamic fixation of tibiofibular syndesmosis, comparison of results. Surgical practice (Russia). 2018;(2):15-21. (In Russ.) doi: 10.17238/issn2223-2427.2018.2.15-21.

31. Gafurov FA, Khodzhanov IYu, Mansurov DSh, Eranov ShN. Intramedullary osteosynthesis for ankle fractures and distal tibiofibular syndesmotic disruption. Genij Ortopedii. 2024;30(1):142-152. doi: 10.18019/1028-4427-2024-30-1-142152.

32. Murphy SC, Murphy B, O'Loughlin P. Syndesmotic injury with ankle fracture: A systematic review of screw vs dynamic fixation. Ir J Med Sci. 2024;193(3):1323-1330. doi: 10.1007/s11845-024-03619-3.


Review

For citations:


Tsapenko V.O., Kashansky Yu.B., Vashetko R.V., Kondratyev I.P., Polikarpov A.V. Experimental topographic and anatomical substantiation of hybrid osteosynthesis of the fibula in patients with ankle fractures. Genij Ortopedii. 2025;31(4):495-501. https://doi.org/10.18019/1028-4427-2025-31-4-495-501

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)