Preview

Genij Ortopedii

Advanced search

Antistaphylococcal activity of 3D-printed titanium implants with magnesium-containing multicomponent coating

https://doi.org/10.18019/1028-4427-2025-31-4-487-494

Abstract

Introduction Titanium has been successfully employed as artificial implants in orthopedic surgery for decades. Surgical intervention, specifically the implantation of medical devices, carries a risk of implant-associated infection (IAI), the causative agents of which are staphylococci in more than half of the cases.

The objective was to evaluate the antibacterial, antibiofilm activity and cytocompatibility of a multicomponent coating with magnesium and silver oxides on the surface of 3D titanium samples.

Material and methods The MgO-AgO-MgO complex The MgO-AgO-MgO complex was applied to 3D samples of medical titanium. Elemental analysis was performed using a TM 4000 Plus scanning electron microscope. The samples were incubated with bacteria for 24 hours to identify antibacterial activity against S. aureus. S. aureus biofilms were formed by immersing the test samples in a nutrient medium with bacteria. After a 24-hour incubation, the samples were washed, placed in an ultrasonic washer, and then sonication fluid was seeded using the sector seeding method. The cytocompatibility of the coating was assessed on a culture of eukaryotic cells of the Vero line.

Results Elemental analysis and mapping confirmed the uniform distribution of oxides on the surface of 3D titanium samples. The coating was characterized by antibacterial activity against S. aureus for three days. The MgO-AgO-MgO complex effectively prevented S. aureus adhesion and microbial film formation, while the control samples showed biofilm formation by staphylococci. However, cytocompatibility analysis of the 3D samples showed no viable cells after 72 h of incubation in a medium with an extract from coated titanium samples.

Discussion Despite a decrease in antibacterial properties on day 4, the MgO-AgO-MgO complex prevented microbial adhesion to the surface of the samples which ensured protection of the implant from the formation of microbial biofilm. The cytotoxicity of the complex was caused by significant activation of lipid peroxidation reactions, which resulted in suppression of the viability of eukaryotic cells.

Conclusion The MgO-AgO-MgO coating prevents primary interaction between the pathogen and the abiotic surface, which is one of the main factors in preventing the development of IAI and the relapses after revision surgeries with implant replacement. However, the high level of cytotoxicity requires further modification of the coating application technique and its composition.

About the Authors

E. M. Gordina
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Ekaterina M. Gordina — Candidate of Medical Sciences, Senior Researcher

Saint Petersburg



S. A. Bozhkova
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Svetlana A. Bozhkova — Doctor of Medical Sciences, Professor, Head of the Scientific Department

Saint Petersburg



D. V. Labutin
Vreden National Medical Research Center of Traumatology and Orthopedics
Russian Federation

Dmitry V. Labutin — Junior Researcher

Saint Petersburg

 



M. V. Bogma
JSC "Radiotekhkomplekt"
Russian Federation

Marina V. Bogma — Candidate of Pharmaceutical Sciences, specialist in low-temperature plasma

Saint Petersburg



A. A. Eruzin
JSC "Radiotekhkomplekt"
Russian Federation

Alexander A. Eruzin — Candidate of Technical Sciences, engineer, vacuum metallization section, specialist in low-temperature plasma

Saint Petersburg



References

1. Nelson SB, Pinkney JA, Chen AF, Tande AJ. Periprosthetic Joint Infection: Current Clinical Challenges. Clin Infect Dis. 2023;77(7):e34-e45. doi: 10.1093/cid/ciad360.

2. Tabaja H, Abu Saleh OM, Osmon DR. Periprosthetic Joint Infection: What's New? Infect Dis Clin North Am. 2024;38(4):731-756. doi: 10.1016/j.idc.2024.07.007.

3. Rudelli BA, Giglio PN, de Carvalho VC, et al. Bacteria drug resistance profile affects knee and hip periprosthetic joint infection outcome with debridement, antibiotics and implant retention. BMC Musculoskelet Disord. 2020;21(1):574. doi: 10.1186/s12891-020-03570-1.

4. Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780-785. doi: 10.2106/JBJS.F.00222.

5. Miller R, Higuera CA, Wu J, et al. Periprosthetic Joint Infection: A Review of Antibiotic Treatment. JBJS Rev. 2020;8(7):e1900224. doi: 10.2106/JBJS.RVW.19.00224.

6. Masters EA, Ricciardi BF, Bentley KLM, et al. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol. 2022;20(7):385-400. doi: 10.1038/s41579-022-00686-0.

7. Ghimire A, Song J. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS Appl Mater Interfaces. 2021;13(18):20921-20937. doi: 10.1021/acsami.1c01389.

8. Jeong M, Radomski K, Lopez D, et al. Materials and applications of 3D printing technology in dentistry: an overview. Dent J (Basel). 2023;12(1):1. doi: 10.3390/dj12010001.

9. Celi S, Gasparotti E, Capellini K, et al. 3D Printing in Modern Cardiology. Curr Pharm Des. 2021;27(16):1918-1930. doi: 10.2174/1381612826666200622132440.

10. Sun X, Zhong R, Wu C, et al. 3D printed titanium scaffolds with bi-directional gradient QK-functionalized surface. Adv Mater. 2025;37(8):e2406421. doi: 10.1002/adma.202406421.

11. Phuoc HD, Hoang PN, Yang S, et al. Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit model. PLoS One. 2023;18(9):e0282457. doi: 10.1371/journal.pone.0282457.

12. Resnik M, Benčina M, Levičnik E, et al. Strategies for improving antimicrobial properties of stainless steel. Materials. 2020;13:2944. doi: 10.3390/ma13132944.

13. Lee UL, Yun S, Lee H, et al. Osseointegration of 3D-printed titanium implants with surface and structure modifications. Dent Mater. 2022;38(10):1648-1660. doi: 10.1016/j.dental.2022.08.003.

14. Jiang P, Zhang Y, Hu R, et al. Advanced surface engineering of titanium materials for biomedical applications: from static modification to dynamic responsive regulation. Bioact Mater. 2023;27:15-57. doi: 10.1016/j.bioactmat.2023.03.006.

15. Teulé-Trull M, Altuna P, Arregui M, et al. Antibacterial coatings for dental implants: a systematic review. Dent Mater. 2025;41(3):229-247. doi: 10.1016/j.dental.2024.12.001.

16. Feng P, He R, Gu Y, et al. Construction of antibacterial bone implants and their application in bone regeneration. Mater Horiz. 2024;11(3):590-625. doi: 10.1039/d3mh01298k.

17. Chen ZY, Gao S, Zhang YW, et al. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B. 2021;9(11):25942612. doi: 10.1039/d0tb02983a.

18. Pan Z, Dai C, Li W. Material-based treatment strategies against intraosseous implant biofilm infection. Biochem Biophys Rep. 2024;39:101764. doi: 10.1016/j.bbrep.2024.101764.

19. Bozhkova SA, Gordina EM, Markov MA, et al. The effect of vancomycin and silver combination on the duration of antibacterial activity of bone cement and methicillin-resistant Staphylococcus aureus biofilm formation. Traumatology and Orthopedics of Russia. 2021;27(2):54-64. (In Russ.). doi: 10.21823/2311-2905-2021-27-2-54-64.

20. Kranjec C, Morales Angeles D, Torrissen Mårli M, et al. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel). 2021;10(2):131. doi: 10.3390/antibiotics10020131.

21. François P, Schrenzel J, Götz F. Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci. 2023;24(6):5218. doi: 10.3390/ijms24065218.

22. Kasimova AR, Tufanova OS, Gordina EM, et al. Twelve-year dynamics of leading pathogens spectrum causing orthopedic infections from 2011 to 2022: A Retrospective Study. Traumatology and Orthopedics of Russia. 2024;30(1):66-75. doi: 10.17816/2311-2905-16720.

23. Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun. 2023;15(1):499-515. doi: 10.1159/000530385.

24. Zhang Y, Xu J, Qin L, Jiang Q. Magnesium and osteoarthritis: from a new perspective. Ann Jt. 2016;1:29. doi: 10.21037/aoj.2016.11.04

25. Zhang JL, Tang L, Qi HN, et al. Dual function of magnesium in bone biomineralization. Adv Healthc Mater. 2019;8(21):e1901030. doi: 10.1002/adhm.201901030.

26. S A, Kavitha HP. Magnesium Oxide Nanoparticles: Effective Antilarvicidal and Antibacterial Agents. ACS Omega. 2023;8(6):5225-5233. doi: 10.1021/acsomega.2c01450.

27. Rodríguez-Hernández AP, Vega-Jiménez AL, Vázquez-Olmos AR, et al. Antibacterial properties in vitro of magnesium oxide nanoparticles for dental applications. Nanomaterials (Basel). 2023;13(3):502. doi: 10.3390/nano13030502.

28. Coelho CC, Padrão T, Costa L, et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep. 2020;10(1):19098. doi: 10.1038/s41598-020-76063-9.

29. Zhao Q, Yi L, Jiang L, et al. Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesiumdoped titanium dioxide coating. Nanomedicine (Lond). 2019;14(9):1109-1133. doi: 10.2217/nnm-2018-0413.

30. Xiang S, Zhang C, Guan Z, et al. Preparation of a novel antibacterial magnesium carbonate coating on a titanium surface and its in vitro biocompatibility. RSC advances. 2024;14(15):10516-10525. doi: 10.1039/d4ra00399c.

31. Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52(4):1701-1718. doi: 10.1007/s42770-021-00624-x.

32. Kamyab H, Chelliapan S, Hayder G, et al. Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. Chemosphere. 2023;335:139103. doi: 10.1016/j.chemosphere.2023.139103.


Review

For citations:


Gordina E.M., Bozhkova S.A., Labutin D.V., Bogma M.V., Eruzin A.A. Antistaphylococcal activity of 3D-printed titanium implants with magnesium-containing multicomponent coating. Genij Ortopedii. 2025;31(4):487-494. https://doi.org/10.18019/1028-4427-2025-31-4-487-494

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)