Smart orthopedic implants: the future of personalized joint replacement and monitoring
https://doi.org/10.18019/1028-4427-2025-31-3-388-398
Abstract
Introduction Smart orthopedic implants integrate advanced sensor technologies to revolutionize joint replacement and orthopedic care. These implants enable real-time monitoring of key parameters such as wear, load distribution, and infection indicators, facilitating early intervention and personalized treatment.
This review aims to evaluate the current advancements, clinical applications, challenges, and future directions of smart orthopedic implants.
Methods A systematic literature review was conducted following PRISMA guidelines, analyzing peer-reviewed studies published between February 2015 and January 2025. Sources were retrieved from PubMed, Scopus, Web of Science, and Google Scholar. Inclusion criteria focused on technological innovations, clinical applications, and regulatory considerations.
Results & Discussion Technological advancements in materials, sensor integration, wireless communication, and artificial intelligence have optimized implant functionality. Smart implants enhance postoperative monitoring, predict implant wear, and personalize rehabilitation. Despite their benefits, challenges such as biocompatibility, data security, battery life, and regulatory approval hinder widespread adoption. Addressing these issues through interdisciplinary research is critical for future developments.
Conclusion Smart orthopedic implants have the potential to transform musculoskeletal healthcare by enabling real-time patient monitoring and personalized treatment strategies. Continued innovation in materials, AI‑driven analytics, and regulatory frameworks will be crucial for overcoming current limitations and ensuring their widespread clinical adoption.
About the Author
E. KirolosEgypt
Eskandar Kirolos — BSc, MBBCh, and MA
Faculty of Medicine and Surgery
References
1. Abyzova E, Dogadina E, Rodriguez RD, et al. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio. 2023;22:100784. doi: 10.1016/j.mtbio.2023.100784.
2. Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3):031506. doi: 10.1063/5.0152290.
3. Wu Y, Liu J, Kang L, et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon. 2023;9(7):e17718. doi: 10.1016/j.heliyon.2023.e17718.
4. Hossain N, Mahmud MZA, Hossain A, et al. Advances of materials science in MEMS applications: A review. Results Eng. 2024;22(2):102115. doi: 10.1016/j.rineng.2024.102115.
5. Luo Y. Toward Fully Automated Personalized Orthopedic Treatments: Innovations and Interdisciplinary Gaps. Bioengineering (Basel). 2024;11(8):817. doi: 10.3390/bioengineering11080817.
6. Iyengar KP, Kariya AD, Botchu R, et al. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sensors Int. 2022;(3):100163. doi: 10.1016/j.sintl.2022.100163.
7. Kelmers E, Szuba A, King SW, et al. "Smart Knee Implants: An Overview of Current Technologies and Future Possibilities". Indian J Orthop. 2022;57(5):635-642. doi: 10.1007/s43465-022-00810-5.
8. Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol. 2024;12:1270237. doi: 10.3389/fbioe.2024.1270237.
9. Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Materials & Design. 2024;241:112850. doi: 10.1016/j.matdes.2024.112850.
10. Juanola-Feliu E, Miribel-Català PL, Páez Avilés C, et al. Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics. Sensors (Basel). 2014;14(10):19275-19306. doi: 10.3390/s141019275.
11. Cao Z, Chen P, Ma Z, et al. Near-Field Communication Sensors. Sensors (Basel). 2019;19(18):3947. doi: 10.3390/s19183947.
12. Serrano LP, Maita KC, Avila FR, et al. Benefits and Challenges of Remote Patient Monitoring as Perceived by Health Care Practitioners: A Systematic Review. Perm J. 2023;27(4):100-111. doi: 10.7812/TPP/23.022.
13. Windolf M, Varjas V, Gehweiler D, et al. Continuous Implant Load Monitoring to Assess Bone Healing Status-Evidence from Animal Testing. Medicina (Kaunas). 2022;58(7):858. doi: 10.3390/medicina58070858.
14. Fulton II MR, Zubair M, Taghavi S. Laboratory Evaluation of Sepsis. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK594258/. Accessed Feb 5, 2025.
15. Gaobotse G, Mbunge E, Batani J, Muchemwa B. Non-invasive smart implants in healthcare: Redefining healthcare services delivery through sensors and emerging digital health technologies. Sensors Int. 2022;3:100156. doi: 10.1016/j.sintl.2022.100156.
16. Eghan-Acquah E, Bavil AY, Bade D, et al. Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis. Comput Methods Programs Biomed. 2024;257:108480. doi: 10.1016/j.cmpb.2024.108480.
17. Ledet EH, Liddle B, Kradinova K, Harper S. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innov Entrep Health. 2018;5:41-51. doi: 10.2147/IEH.S133518.
18. Tariq A, Gill AY, Hussain HK. Evaluating the potential of artificial intelligence in orthopedic surgery for value-based healthcare. Int J Multidisc Sci Arts. 2023;2(2):27-35. doi: 10.47709/ijmdsa.v2i1.2394.
19. Vora LK, Gholap AD, Jetha K, et al. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023;15(7):1916. doi: 10.3390/pharmaceutics15071916.
20. Wang C, He T, Zhou H, et al. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med. 2023;9(1):17. doi: 10.1186/s42234-023-00118-1.
21. Sumner J, Lim HW, Chong LS, et al. Artificial intelligence in physical rehabilitation: A systematic review. Artif Intell Med. 2023;146:102693. doi: 10.1016/j.artmed.2023.102693.
22. Chirayath A, Dhaniwala N, Kawde K. A Comprehensive Review on Managing Fracture Calcaneum by Surgical and Non-surgical Modalities. Cureus. 2024;16(2):e54786. doi: 10.7759/cureus.54786.
23. Adeniyi NO, Arowoogun JO, Chidi R, et al. The impact of electronic health records on patient care and outcomes: A comprehensive review. World J Adv Res Rev. 2024;21(2):1446-1455. doi: 10.30574/wjarr.2024.21.2.0592
24. Ghazizadeh E, Naseri Z, Deigner HP, et al. Approaches of wearable and implantable biosensor towards of developing in precision medicine. Front Med (Lausanne). 2024;11:1390634. doi: 10.3389/fmed.2024.1390634.
25. Andriollo L, Picchi A, Iademarco G, et al. The Role of Artificial Intelligence and Emerging Technologies in Advancing Total Hip Arthroplasty. J Pers Med. 2025;15(1):21. doi: 10.3390/jpm15010021.
26. Akhtar MN, Haleem A, Javaid M, et al. Artificial intelligence-based orthopaedic perpetual design. J Clin Orthop Trauma. 2024;49:102356. doi: 10.1016/j.jcot.2024.102356.
27. Iyengar KP, Gowers BTV, Jain VK, et al. Smart sensor implant technology in total knee arthroplasty. J Clin Orthop Trauma. 2021;22:101605. doi: 10.1016/j.jcot.2021.101605.
28. Abdulmalek S, Nasir A, Jabbar WA, et al. IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review. Healthcare (Basel). 2022;10(10):1993. doi: 10.3390/healthcare10101993.
29. Li X, He Y, Wang D, Rezaei MJ. Stroke rehabilitation: from diagnosis to therapy. Front Neurol. 2024;15:1402729. doi: 10.3389/fneur.2024.1402729.
30. Jeyaraman M, Jayakumar T, Jeyaraman N, Nallakumarasamy A. Sensor Technology in Fracture Healing. Indian J Orthop. 2023;57(8):1196-1202. doi: 10.1007/s43465-023-00933-3.
31. Al-Shalawi FD, Mohamed Ariff AH, Jung DW, et ak. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel). 2023;15(12):2601. doi: 10.3390/polym15122601.
32. Kim SJ, Wang T, Pelletier MH, Walsh WR. 'SMART' implantable devices for spinal implants: a systematic review on current and future trends. J Spine Surg. 2022;8(1):117-131. doi: 10.21037/jss-21-100.
33. Teo AJT, Mishra A, Park I, et al. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater Sci Eng. 2016;2(4):454-472. doi: 10.1021/acsbiomaterials.5b00429.
34. Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med. 2022;7(3):e10300. doi: 10.1002/btm2.10300.
35. Noskovicova N, Hinz B, Pakshir P. Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction. Cells. 2021;10(7):1794. doi: 10.3390/cells10071794.
36. Roy S, Azad ANMW, Baidya S, et al. Powering solutions for biomedical sensors and implants inside the human body: A comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques. IEEE Transa Power Electron. 2022;37(10):12237-12263. doi: 10.1109/tpel.2022.3164890.
37. Nazir S, Kwon OS. Micro-electromechanical systems-based sensors and their applications. Appl Sci Converg Technol. 2022;31:40-45. doi: 10.5757/ASCT.2022.31.2.40.
38. Ávila BYL, Vázquez CAG, Baluja OP, et al. Energy harvesting techniques for wireless sensor networks: A systematic literature review. Energy Strategy Reviews. 2025;57:101617. doi: 10.1016/j.esr.2024.101617.
39. Jaime FJ, Muñoz A, Rodríguez-Gómez F, Jerez-Calero A. Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare. Sensors (Basel). 2023;23(21):8944. doi: 10.3390/s23218944.
40. Alanazi AT. Clinicians' Perspectives on Healthcare Cybersecurity and Cyber Threats. Cureus. 2023;15(10):e47026. doi: 10.7759/cureus.47026.
41. Williams PA, Woodward AJ. Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem. Med Devices (Auckl). 2015;8:305-316. doi: 10.2147/MDER.S50048.
42. Subramaniam S, Akay M, Anastasio MA, et al. Grand Challenges at the Interface of Engineering and Medicine. IEEE Open J Eng Med Biol. 2024;5:1-13. doi: 10.1109/OJEMB.2024.3351717.
43. Anyanwu EC, Osasona F, Akomolafe OO, et al. Biomedical engineering advances: A review of innovations in healthcare and patient outcomes. Int J Sci Res Arch. 2024;11(1):870-882. doi: 10.30574/ijsra.2024.11.1.0139
44. Rovere G, Bosco F, Miceli A, et al. Adoption of blockchain as a step forward in orthopedic practice. Eur J Transl Myol. 2024;34(2):12197. doi: 10.4081/ejtm.2024.12197.
45. Jazowski SA, Winn AN. The Role of the FDA and Regulatory Approval of New Devices for Diabetes Care. Curr Diab Rep. 2017;17(6):40. doi: 10.1007/s11892-017-0871-6.
46. Premarket notification [510(k)]. In: Wreh E. Medical Device Regulation. Elsevier; 2023:57-89.
47. U.S. Food and Drug Administration. FDA proposes framework to advance credibility of AI models used for drug and biological product submissions. 2025. Available at: https://www.fda.gov/news-events/press-announcements/fda-proposes-framework-advancecredibility-ai-models-used-drug-and-biological-product-submissions. Accessed Feb 5, 2025.
48. Cohen IG, Gerke S, Kramer DB. Ethical and Legal Implications of Remote Monitoring of Medical Devices. Milbank Q. 2020;98(4):1257‑1289. doi: 10.1111/1468-0009.12481.
49. Nijor S, Rallis G, Lad N, Gokcen E. Patient Safety Issues From Information Overload in Electronic Medical Records. J Patient Saf. 2022;18(6):e999-e1003. doi: 10.1097/PTS.0000000000001002.
50. Zhong L, Cao J, Xue F. The paradox of convenience: how information overload in mHealth apps leads to medical service overuse. Front Public Health. 2024;12:1408998. doi: 10.3389/fpubh.2024.1408998.
51. Camara C, Peris-Lopez P, Tapiador JE. Security and privacy issues in implantable medical devices: A comprehensive survey. J Biomed Inform. 2015;55:272-289. doi: 10.1016/j.jbi.2015.04.007.
52. Shah P, Thornton I, Kopitnik NL, Hipskind JE. Informed Consent. 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK430827/. Accessed Feb 5, 2025.
53. Chiruvella V, Guddati AK. Ethical Issues in Patient Data Ownership. Interact J Med Res. 2021;10(2):e22269. doi: 10.2196/22269.
54. Intravaia JT, Graham T, Kim HS, et al. Smart Orthopedic Biomaterials and Implants. Curr Opin Biomed Eng. 2023;25:100439. doi: 10.1016/j.cobme.2022.100439.
55. Bandyopadhyay A, Mitra I, Goodman SB, et al. Improving Biocompatibility for Next Generation of Metallic Implants. Prog Mater Sci. 2023;133:101053. doi: 10.1016/j.pmatsci.2022.101053.
56. Kanu NJ, Gupta E, Vates UK, et al. Self-healing composites: A state-of-the-art review. Compos A Appl Sci Manuf. 2019;121:474-486. doi: 10.1016/j.compositesa.2019.04.012.
57. Yao G, Gan X, Lin Y. Flexible self-powered bioelectronics enables personalized health management from diagnosis to therapy. Sci Bull (Beijing). 2024;69(14):2289-2306. doi: 10.1016/j.scib.2024.05.012.
58. Luo S, Zhang C, Xiong W, et al. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat. 2024;47:191-206. doi: 10.1016/j.jot.2024.06.009.
59. Boys AJ, & Keene ST. Bioelectronic interfacial matching for superior implant design. Cell Rep Phys Sci. 2024;5(8):101877. doi: 10.1016/j. xcrp.2024.101877.
60. Mirshafiei M, Rashedi H, Yazdian F, et al. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Materials & Design. 2024;240:112853. doi: 10.1016/j.matdes.2024.112853.
61. Selim M, Mousa HM, Abdel-Jaber G, et al. Innovative designs of 3D scaffolds for bone tissue regeneration: Understanding principles and addressing challenges. Eur Polym J. 2024;215:113251. doi: 10.1016/j.eurpolymj.2024.113251.
62. Kulkarni PG, Paudel N, Magar S, et al. Overcoming Challenges and Innovations in Orthopedic Prosthesis Design: An Interdisciplinary Perspective. Biomed Mater Devices. 2023:1-12. doi: 10.1007/s44174-023-00087-8.
63. Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors (Basel). 2023;23(23):9498. doi: 10.3390/s23239498.
64. Schrimpff C, Link E, Fisse T, et al. Mental Models of Smart Implant Technology: A Topic Modeling Approach to the Role of Initial Information and Labeling. Health Commun. 2025:1-13. doi: 10.1080/10410236.2024.2447548.
65. Shekhawat D, Singh A, Banerjee M, et al. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceram Int. 2020;47(3):3013–3030. doi: 10.1016/j.ceramint.2020.09.214.
66. Yuan X, Wang Z, Che L, et al. Recent developments and challenges of 3D bioprinting technologies. Int J Bioprinting. 2024;10:1752. doi: 10.36922/ijb.1752.
Review
For citations:
Kirolos E. Smart orthopedic implants: the future of personalized joint replacement and monitoring. Genij Ortopedii. 2025;31(3):388-398. https://doi.org/10.18019/1028-4427-2025-31-3-388-398