Preview

Гений ортопедии

Расширенный поиск

Интеллектуальные ортопедические имплантаты: будущее персонализированной замены суставов и мониторинга

https://doi.org/10.18019/1028-4427-2025-31-3-388-398

Аннотация

Введение. Интеллектуальные ортопедические имплантаты объединяют передовые сенсорные технологии, чтобы произвести революцию в замене суставов и ортопедической помощи. Эти имплантаты позволяют в режиме реального времени контролировать ключевые параметры, такие как износ, распределение нагрузки и показатели инфекции, что облегчает проведение раннего вмешательства и персонализированное лечение.
Цель — оценить текущие достижения, клиническое применение, проблемы и будущие направления интеллектуальных ортопедических имплантатов.
Методы. В соответствии с рекомендациями PRISMA проведен систематический обзор литературы, в котором проанализированы рецензируемые исследования, опубликованные в период с февраля 2015 года по январь 2025 года. Источники отобраны в PubMed, Scopus, Web of Science и Google Scholar. Включены работы, описывающие технологические инновации, клиническое применение и нормативно-правовые аспекты.
Результаты и обсуждение. Технологические достижения в области материалов, интеграции датчиков, беспроводной связи и искусственного интеллекта позволили оптимизировать функциональность имплантатов. Умные имплантаты улучшают послеоперационный мониторинг, прогнозируют износ имплантатов и  персонализируют реабилитацию. Несмотря на их преимущества, широкому внедрению препятствуют такие проблемы, как биосовместимость, безопасность данных, срок службы батарей и одобрение регулирующих органов. Решение этих проблем посредством междисциплинарных исследований имеет решающее значение для будущих разработок.
Заключение. Умные ортопедические имплантаты способны изменить систему лечения заболеваний опорно-двигательной системы обеспечивая мониторинг состояния пациента в реальном времени и персонализированные стратегии лечения. Постоянные инновации в области материалов, аналитика на основе искусственного интеллекта и нормативно-правовой базы будут иметь решающее значение для преодоления существующих ограничений и обеспечения их широкого клинического внедрения.

Об авторе

Э. Киролос
Университет Хелуана
Египет

Факультет медицины и хирургии



Список литературы

1. Abyzova E, Dogadina E, Rodriguez RD, et al. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio. 2023;22:100784. doi: 10.1016/j.mtbio.2023.100784.

2. Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3):031506. doi: 10.1063/5.0152290.

3. Wu Y, Liu J, Kang L, et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon. 2023;9(7):e17718. doi: 10.1016/j.heliyon.2023.e17718.

4. Hossain N, Mahmud MZA, Hossain A, et al. Advances of materials science in MEMS applications: A review. Results Eng. 2024;22(2):102115. doi: 10.1016/j.rineng.2024.102115.

5. Luo Y. Toward Fully Automated Personalized Orthopedic Treatments: Innovations and Interdisciplinary Gaps. Bioengineering (Basel). 2024;11(8):817. doi: 10.3390/bioengineering11080817.

6. Iyengar KP, Kariya AD, Botchu R, et al. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sensors Int. 2022;(3):100163. doi: 10.1016/j.sintl.2022.100163.

7. Kelmers E, Szuba A, King SW, et al. "Smart Knee Implants: An Overview of Current Technologies and Future Possibilities". Indian J Orthop. 2022;57(5):635-642. doi: 10.1007/s43465-022-00810-5.

8. Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol. 2024;12:1270237. doi: 10.3389/fbioe.2024.1270237.

9. Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Materials & Design. 2024;241:112850. doi: 10.1016/j.matdes.2024.112850.

10. Juanola-Feliu E, Miribel-Català PL, Páez Avilés C, et al. Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics. Sensors (Basel). 2014;14(10):19275-19306. doi: 10.3390/s141019275.

11. Cao Z, Chen P, Ma Z, et al. Near-Field Communication Sensors. Sensors (Basel). 2019;19(18):3947. doi: 10.3390/s19183947.

12. Serrano LP, Maita KC, Avila FR, et al. Benefits and Challenges of Remote Patient Monitoring as Perceived by Health Care Practitioners: A Systematic Review. Perm J. 2023;27(4):100-111. doi: 10.7812/TPP/23.022.

13. Windolf M, Varjas V, Gehweiler D, et al. Continuous Implant Load Monitoring to Assess Bone Healing Status-Evidence from Animal Testing. Medicina (Kaunas). 2022;58(7):858. doi: 10.3390/medicina58070858.

14. Fulton II MR, Zubair M, Taghavi S. Laboratory Evaluation of Sepsis. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK594258/. Accessed Feb 5, 2025.

15. Gaobotse G, Mbunge E, Batani J, Muchemwa B. Non-invasive smart implants in healthcare: Redefining healthcare services delivery through sensors and emerging digital health technologies. Sensors Int. 2022;3:100156. doi: 10.1016/j.sintl.2022.100156.

16. Eghan-Acquah E, Bavil AY, Bade D, et al. Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis. Comput Methods Programs Biomed. 2024;257:108480. doi: 10.1016/j.cmpb.2024.108480.

17. Ledet EH, Liddle B, Kradinova K, Harper S. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innov Entrep Health. 2018;5:41-51. doi: 10.2147/IEH.S133518.

18. Tariq A, Gill AY, Hussain HK. Evaluating the potential of artificial intelligence in orthopedic surgery for value-based healthcare. Int J Multidisc Sci Arts. 2023;2(2):27-35. doi: 10.47709/ijmdsa.v2i1.2394.

19. Vora LK, Gholap AD, Jetha K, et al. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023;15(7):1916. doi: 10.3390/pharmaceutics15071916.

20. Wang C, He T, Zhou H, et al. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med. 2023;9(1):17. doi: 10.1186/s42234-023-00118-1.

21. Sumner J, Lim HW, Chong LS, et al. Artificial intelligence in physical rehabilitation: A systematic review. Artif Intell Med. 2023;146:102693. doi: 10.1016/j.artmed.2023.102693.

22. Chirayath A, Dhaniwala N, Kawde K. A Comprehensive Review on Managing Fracture Calcaneum by Surgical and Non-surgical Modalities. Cureus. 2024;16(2):e54786. doi: 10.7759/cureus.54786.

23. Adeniyi NO, Arowoogun JO, Chidi R, et al. The impact of electronic health records on patient care and outcomes: A comprehensive review. World J Adv Res Rev. 2024;21(2):1446-1455. doi: 10.30574/wjarr.2024.21.2.0592

24. Ghazizadeh E, Naseri Z, Deigner HP, et al. Approaches of wearable and implantable biosensor towards of developing in precision medicine. Front Med (Lausanne). 2024;11:1390634. doi: 10.3389/fmed.2024.1390634.

25. Andriollo L, Picchi A, Iademarco G, et al. The Role of Artificial Intelligence and Emerging Technologies in Advancing Total Hip Arthroplasty. J Pers Med. 2025;15(1):21. doi: 10.3390/jpm15010021.

26. Akhtar MN, Haleem A, Javaid M, et al. Artificial intelligence-based orthopaedic perpetual design. J Clin Orthop Trauma. 2024;49:102356. doi: 10.1016/j.jcot.2024.102356.

27. Iyengar KP, Gowers BTV, Jain VK, et al. Smart sensor implant technology in total knee arthroplasty. J Clin Orthop Trauma. 2021;22:101605. doi: 10.1016/j.jcot.2021.101605.

28. Abdulmalek S, Nasir A, Jabbar WA, et al. IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review. Healthcare (Basel). 2022;10(10):1993. doi: 10.3390/healthcare10101993.

29. Li X, He Y, Wang D, Rezaei MJ. Stroke rehabilitation: from diagnosis to therapy. Front Neurol. 2024;15:1402729. doi: 10.3389/fneur.2024.1402729.

30. Jeyaraman M, Jayakumar T, Jeyaraman N, Nallakumarasamy A. Sensor Technology in Fracture Healing. Indian J Orthop. 2023;57(8):1196-1202. doi: 10.1007/s43465-023-00933-3.

31. Al-Shalawi FD, Mohamed Ariff AH, Jung DW, et ak. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel). 2023;15(12):2601. doi: 10.3390/polym15122601.

32. Kim SJ, Wang T, Pelletier MH, Walsh WR. 'SMART' implantable devices for spinal implants: a systematic review on current and future trends. J Spine Surg. 2022;8(1):117-131. doi: 10.21037/jss-21-100.

33. Teo AJT, Mishra A, Park I, et al. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater Sci Eng. 2016;2(4):454-472. doi: 10.1021/acsbiomaterials.5b00429.

34. Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med. 2022;7(3):e10300. doi: 10.1002/btm2.10300.

35. Noskovicova N, Hinz B, Pakshir P. Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction. Cells. 2021;10(7):1794. doi: 10.3390/cells10071794.

36. Roy S, Azad ANMW, Baidya S, et al. Powering solutions for biomedical sensors and implants inside the human body: A comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques. IEEE Transa Power Electron. 2022;37(10):12237-12263. doi: 10.1109/tpel.2022.3164890.

37. Nazir S, Kwon OS. Micro-electromechanical systems-based sensors and their applications. Appl Sci Converg Technol. 2022;31:40-45. doi: 10.5757/ASCT.2022.31.2.40.

38. Ávila BYL, Vázquez CAG, Baluja OP, et al. Energy harvesting techniques for wireless sensor networks: A systematic literature review. Energy Strategy Reviews. 2025;57:101617. doi: 10.1016/j.esr.2024.101617.

39. Jaime FJ, Muñoz A, Rodríguez-Gómez F, Jerez-Calero A. Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare. Sensors (Basel). 2023;23(21):8944. doi: 10.3390/s23218944.

40. Alanazi AT. Clinicians' Perspectives on Healthcare Cybersecurity and Cyber Threats. Cureus. 2023;15(10):e47026. doi: 10.7759/cureus.47026.

41. Williams PA, Woodward AJ. Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem. Med Devices (Auckl). 2015;8:305-316. doi: 10.2147/MDER.S50048.

42. Subramaniam S, Akay M, Anastasio MA, et al. Grand Challenges at the Interface of Engineering and Medicine. IEEE Open J Eng Med Biol. 2024;5:1-13. doi: 10.1109/OJEMB.2024.3351717.

43. Anyanwu EC, Osasona F, Akomolafe OO, et al. Biomedical engineering advances: A review of innovations in healthcare and patient outcomes. Int J Sci Res Arch. 2024;11(1):870-882. doi: 10.30574/ijsra.2024.11.1.0139

44. Rovere G, Bosco F, Miceli A, et al. Adoption of blockchain as a step forward in orthopedic practice. Eur J Transl Myol. 2024;34(2):12197. doi: 10.4081/ejtm.2024.12197.

45. Jazowski SA, Winn AN. The Role of the FDA and Regulatory Approval of New Devices for Diabetes Care. Curr Diab Rep. 2017;17(6):40. doi: 10.1007/s11892-017-0871-6.

46. Premarket notification [510(k)]. In: Wreh E. Medical Device Regulation. Elsevier; 2023:57-89.

47. U.S. Food and Drug Administration. FDA proposes framework to advance credibility of AI models used for drug and biological product submissions. 2025. Available at: https://www.fda.gov/news-events/press-announcements/fda-proposes-framework-advancecredibility-ai-models-used-drug-and-biological-product-submissions. Accessed Feb 5, 2025.

48. Cohen IG, Gerke S, Kramer DB. Ethical and Legal Implications of Remote Monitoring of Medical Devices. Milbank Q. 2020;98(4):1257‑1289. doi: 10.1111/1468-0009.12481.

49. Nijor S, Rallis G, Lad N, Gokcen E. Patient Safety Issues From Information Overload in Electronic Medical Records. J Patient Saf. 2022;18(6):e999-e1003. doi: 10.1097/PTS.0000000000001002.

50. Zhong L, Cao J, Xue F. The paradox of convenience: how information overload in mHealth apps leads to medical service overuse. Front Public Health. 2024;12:1408998. doi: 10.3389/fpubh.2024.1408998.

51. Camara C, Peris-Lopez P, Tapiador JE. Security and privacy issues in implantable medical devices: A comprehensive survey. J Biomed Inform. 2015;55:272-289. doi: 10.1016/j.jbi.2015.04.007.

52. Shah P, Thornton I, Kopitnik NL, Hipskind JE. Informed Consent. 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK430827/. Accessed Feb 5, 2025.

53. Chiruvella V, Guddati AK. Ethical Issues in Patient Data Ownership. Interact J Med Res. 2021;10(2):e22269. doi: 10.2196/22269.

54. Intravaia JT, Graham T, Kim HS, et al. Smart Orthopedic Biomaterials and Implants. Curr Opin Biomed Eng. 2023;25:100439. doi: 10.1016/j.cobme.2022.100439.

55. Bandyopadhyay A, Mitra I, Goodman SB, et al. Improving Biocompatibility for Next Generation of Metallic Implants. Prog Mater Sci. 2023;133:101053. doi: 10.1016/j.pmatsci.2022.101053.

56. Kanu NJ, Gupta E, Vates UK, et al. Self-healing composites: A state-of-the-art review. Compos A Appl Sci Manuf. 2019;121:474-486. doi: 10.1016/j.compositesa.2019.04.012.

57. Yao G, Gan X, Lin Y. Flexible self-powered bioelectronics enables personalized health management from diagnosis to therapy. Sci Bull (Beijing). 2024;69(14):2289-2306. doi: 10.1016/j.scib.2024.05.012.

58. Luo S, Zhang C, Xiong W, et al. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat. 2024;47:191-206. doi: 10.1016/j.jot.2024.06.009.

59. Boys AJ, & Keene ST. Bioelectronic interfacial matching for superior implant design. Cell Rep Phys Sci. 2024;5(8):101877. doi: 10.1016/j. xcrp.2024.101877.

60. Mirshafiei M, Rashedi H, Yazdian F, et al. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Materials & Design. 2024;240:112853. doi: 10.1016/j.matdes.2024.112853.

61. Selim M, Mousa HM, Abdel-Jaber G, et al. Innovative designs of 3D scaffolds for bone tissue regeneration: Understanding principles and addressing challenges. Eur Polym J. 2024;215:113251. doi: 10.1016/j.eurpolymj.2024.113251.

62. Kulkarni PG, Paudel N, Magar S, et al. Overcoming Challenges and Innovations in Orthopedic Prosthesis Design: An Interdisciplinary Perspective. Biomed Mater Devices. 2023:1-12. doi: 10.1007/s44174-023-00087-8.

63. Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors (Basel). 2023;23(23):9498. doi: 10.3390/s23239498.

64. Schrimpff C, Link E, Fisse T, et al. Mental Models of Smart Implant Technology: A Topic Modeling Approach to the Role of Initial Information and Labeling. Health Commun. 2025:1-13. doi: 10.1080/10410236.2024.2447548.

65. Shekhawat D, Singh A, Banerjee M, et al. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceram Int. 2020;47(3):3013–3030. doi: 10.1016/j.ceramint.2020.09.214.

66. Yuan X, Wang Z, Che L, et al. Recent developments and challenges of 3D bioprinting technologies. Int J Bioprinting. 2024;10:1752. doi: 10.36922/ijb.1752.


Рецензия

Для цитирования:


Киролос Э. Интеллектуальные ортопедические имплантаты: будущее персонализированной замены суставов и мониторинга. Гений ортопедии. 2025;31(3):388-398. https://doi.org/10.18019/1028-4427-2025-31-3-388-398

For citation:


Kirolos E. Smart orthopedic implants: the future of personalized joint replacement and monitoring. Genij Ortopedii. 2025;31(3):388-398. https://doi.org/10.18019/1028-4427-2025-31-3-388-398

Просмотров: 179


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)