Preview

Genij Ortopedii

Advanced search

Biocompatibility and osteointegrative characteristics of zirconium ceramic implants for diaphyseal defect filling

https://doi.org/10.18019/1028-4427-2025-31-3-350-360

Abstract

Introduction The development of new ceramic materials with high osteointegrative characteristics and  experimental substantiation of their application is an important issue in traumatology. The purpose of the work was to study the biological compatibility and osteointegrative characteristics of implants made of zirconium ceramics stabilized with yttrium, ytterbium and gadolinium for filling diaphyseal bone defects in an experiment.
Material and methods The study was performed on 18 male Chinchilla rabbits. Diaphyseal defects with intramedullary implantation of a rod made of a new ceramic porous (PC), non-porous (NPC) material and titanium alloy (TA) were modelled. The animals were divided into 3 groups based on the rod used: PC, NPC and TA (n = 6 in each). Hematological parameters were studied one day before and 8 weeks after the operation.    Withdrawal of animals from the experiment, X-ray control and tissue sampling with subsequent histological and morphometric examination were performed at 8 weeks after the operation. Statistical data processing was performed using the Statistica 10 software. The Kruskal – Wallis test with subsequent intergroup analysis was used to compare the study groups. The Wilcoxon criterion was used to assess changes in dynamics in individual groups. The results are presented as median and interquartile range.
Results Eight weeks after the surgery, in the PC group compared to the NPC and TA groups the levels of  leukocytes, monocytes and granulocytes were significantly lower (p = 0.025; p = 0.022; p = 0.005, respectively); no significant differences were found in other hematological parameters. The results of histomorphological studies showed that better integration of implants was observed when using PC rods compared to TA and  NPC  implants. The thickness of the bone trabecula in the implantation area was
significantly higher in the PC group compared to the TA and NPC groups (86.2 [55.8; 109.9], 56.0 [47.2; 75.9] and 33.1 [19.0; 84.5], respectively, in both cases p < 0.001).
Discussion We studied the biocompatibility and osteointegrative properties of implants made of a new ceramic material in two versions, nonporous and porous (pore size of 10–50 μm), and compared them with titanium alloy implants. It was previously proven that alloyed ceramic materials are attractive for tissue regeneration due to their functional properties, biological activity, and therapeutic effects provided by the introduced ions. The results of our histological and morphometric studies confirmed the better biocompatibility and  osteointegration of implants made of porous zirconium ceramics (PC) containing yttrium, ytterbium, and gadolinium ions, compared to implants made of NPC and TA.
Conclusion A new zirconium-based ceramic demonstrates biological compatibility. Implants with pore sizes of 10–50 μm have good osteointegrative characteristics which determine their possible use in the treatment of bone defects.

About the Authors

E. A. Volokitina
Urals State Medical University
Russian Federation

Elena A. Volokitina — Doctor of Medical Sciences, Professor, Head of the Department

Ekaterinburg



M. V. Saushkin
Urals State Medical University
Russian Federation

Maksim V. Saushkin — assistant

Ekaterinburg



I. P. Antropova
Urals State Medical University
Russian Federation

Irina P. Antropova — Doctor of Biological Sciences, Leading Researcher

Ekaterinburg



S. M. Kutepov
Urals State Medical University
Russian Federation

Sergey M. Kutepov — Corresponding Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Chief Researcher

Ekaterinburg



S. A. Brilliant
Institute of Immunology and Physiology Ural Branch of the Russian Academy of Sciences
Russian Federation

Svetlana A. Brilliant — Candidate of Biological Sciences, Researcher

Ekaterinburg



References

1. Healthcare in Russia. 2021: Stat.sb./Rosstat. Moscow; 2021:171. Available at: https://youthlib.mirea.ru/ru/reader/1357. Accessed Mar 18, 2025. (In Russ.)

2. Krivenko SN, Shpachenko NN, Popov SV. Emergency medical care at the prehospital stage and outcome prediction for concomitant injuries with spine-and-spinal cord trauma as their component. Genij Ortopedii. 2015;(3):22-25. (In Russ.) https://doi.org/10.18019/1028-4427-2015-3-22-25.

3. Tsiskarashvili AV, Zhadin AV, Kuzmenkov KA, et al. Biomechanically validated transosseus fixation in patients with femur pseudarthrosis complicated by chronic osteomyelitis. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;(3-4):71-78. (In Russ.) doi: 10.17116/vto201803-04171.

4. Borzunov DYu, Mokhovikov DS, Kolchin SN, et al. Problems and successes in the combined application of the Ilizarov and Masquelet technologies. Genij Ortopedii, 2022;28(5):652-658. doi: 10.18019/1028-4427-2022-28-5-652-658.

5. Mukhametov UF, Lyulin SV, Borzunov DY, et al. Alloplastic and Implant Materials for Bone Grafting: a Literature Review. Creative surgery and oncology. 2021;11(4):343-353. (In Russ.) doi: 10.24060/2076-3093-2021-11-4-343-353.

6. Volokitina EA, Antropova IP, Timofeev KA, Trufanenko RA. Current state and perspectives on the use of zirconium ceramic implants in traumatology and orthopaedics. Genij Ortopedii. 2024;30(1):114-123. doi: 10.18019/1028-4427-2024-30-1-114-123.

7. Archunan MW, Petronis S. Bone Grafts in Trauma and Orthopaedics. Cureus. 2021;13(9):e17705. doi: 10.7759/cureus.17705.

8. Rodríguez-Merchán EC. Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects. Int J Mol Sci. 2022;23(6):3352. doi: 10.3390/ijms23063352.

9. Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020;113:23-41. doi: 10.1016/j.actbio.2020.06.022.

10. Padhye NM, Calciolari E, Zuercher AN, et al. Survival and success of zirconia compared with titanium implants: a systematic review and meta-analysis. Clin Oral Investig. 2023;27(11):6279-6290. doi: 10.1007/s00784-023-05242-5.

11. Chen Y, Roohani-Esfahani SI, Lu Z, et al. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts. PLoS One. 2015;10(1):e0113426. doi: 10.1371/journal.pone.0113426.

12. Tarasova N, Galisheva A, Belova K, et al. Ceramic materials based on lanthanum zirconate for the bone augmentation purposes: materials science approach. Chimica Techno Acta. 2022;9(2):09. doi: 10.15826/chimtech.2022.9.2.09.

13. Willbold E, Gu X, Albert D, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015;11:554-562. doi: 10.1016/j.actbio.2014.09.041.

14. Jiang C, Shang J, Li Z, et al. Lanthanum Chloride Attenuates Osteoclast Formation and Function Via the Downregulation of Rankl-Induced Nf-κb and Nfatc1 Activities. J Cell Physiol. 2016;231(1):142-151. doi: 10.1002/jcp.25065.

15. Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater. 2023;14(4):212. doi: 10.3390/jfb14040212.

16. Kaur G, Kumar V, Baino F, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater Sci Eng C Mater Biol Appl. 2019;104:109895. doi: 10.1016/j.msec.2019.109895.

17. Vaiani L, Boccaccio A, Uva AE, et al. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J Funct Biomater. 2023;14(3):146. doi: 10.3390/jfb14030146.

18. Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. Biomater Transl. 2023;4(4):248-269. doi: 10.12336/biomatertransl.2023.04.005.

19. Chen Z, Zhou X, Mo M, et al. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology. 2024;22(1):185. doi: 10.1186/s12951-024-02442-3.

20. Li H, Xia P, Pan S, et al. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int J Nanomedicine. 2020;15:7199-7214. doi: 10.2147/IJN.S270229.

21. Izmodenova MYu, Gilev MV, Ananyev MV, et al. Bone Tissue Properties after Lanthanum Zirconate Ceramics Implantation: Experimental Study. Traumatology and Orthopedics of Russia. 2020;26(3):130-140. doi: 10.21823/2311-2905-2020-26-3-130-140.

22. Bhowmick A, Pramanik N, Jana P, et al. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol. 2017;95:348-356. doi: 10.1016/j.ijbiomac.2016.11.052.

23. Antropova IP, Volokitina EA, Udintseva MYu, et al. Effect of Lanthanum Zirconate Ceramic on the Dynamics of Hematological Parameters and the Bone Remodeling Markers:Experimental Study. Traumatology and Orthopedics of Russia. 2022;28(1):79-88. (In Russ.). doi: 10.17816/2311-2905-1704.

24. Mohseni P, Soufi A, Chrcanovic BR. Clinical outcomes of zirconia implants: a systematic review and meta-analysis. Clin Oral Investig. 2023;28(1):15. doi: 10.1007/s00784-023-05401-8.

25. Pantulap U, Arango-Ospina M, Boccaccini AR. Bioactive glasses incorporating less-common ions to improve biological and physical properties. J Mater Sci Mater Med. 2021;33(1):3. doi: 10.1007/s10856-021-06626-3.

26. Liao F, Peng XY, Yang F, et al. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Mater Sci Eng C Mater Biol Appl. 2019;104:109999. doi: 10.1016/j.msec.2019.109999.

27. Zhu DY, Lu B, Yin JH, et al. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. Int J Nanomedicine. 2019;14:1085-1100. doi: 10.2147/IJN.S193576.

28. Wang Z, Zhang M, Liu Z, et al. Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for enhanced osseointegration. Mater. Des. 2022;218:110721. doi: 10.1016/j.matdes.2022.110721.

29. Jin HW, Noumbissi S, Wiedemann TG. Comparison of Zirconia Implant Surface Modifications for Optimal Osseointegration. J Funct Biomater. 2024;15(4):91. doi: 10.3390/jfb15040091.

30. Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol. 2003;29(1):8-12. doi: 10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2.

31. Gahlert M, Roehling S, Sprecher CM, et al. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res. 2012;23(3):281-286. doi: 10.1111/j.1600-0501.2011.02157.x.

32. Kohal RJ, Weng D, Bächle M, Strub JR. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol. 2004;75(9):1262-1268. doi: 10.1902/jop.2004.75.9.1262.


Review

For citations:


Volokitina E.A., Saushkin M.V., Antropova I.P., Kutepov S.M., Brilliant S.A. Biocompatibility and osteointegrative characteristics of zirconium ceramic implants for diaphyseal defect filling. Genij Ortopedii. 2025;31(3):350-360. https://doi.org/10.18019/1028-4427-2025-31-3-350-360

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)