Preview

Genij Ortopedii

Advanced search

Optimizing revision arthroplasty: the role of customized articulating spacers

https://doi.org/10.18019/1028-4427-2024-30-5-753-765

EDN: YGQXMO

Abstract

Introduction The advancement of surgery is set against a backdrop of continuous development and surgical innovations have transformed the way clinical care is delivered. Revision surgery might be required to  address complications of primary arthroplasty. The first stage of revision arthroplasty would involve removal of  an  implant and placement of an antibiotic-impregnated cement spacer to maintain the joint space and stability, prevent soft tissue retraction, provide local antibiotic release and preserve bone tissue for revision implantation at the final stage of revision. Custom-made articulating spacers are a promising tool for optimizing the first stage of revision arthroplasty.

The objective was to summarize the current data and present comprehensive information about spacers used in two-stage revision arthroplasty including manufacturing techniques, physical and chemical properties, clinical applications, the possibility of customization within the first stage of revision arthroplasty, current and promising directions for research.

Material and methods The original literature search was conducted on key resources including Scientific Electronic Library (www.elibrary.ru), the National Library of Medicine (www.pubmed.org), the Cochraine Library (www.cochranelibrary.com) between 2018 and 2023 using search words and phrases: total arthroplasty, complications, revision arthroplasty, articulating spacer, periprosthetic joint infection, additive manufacturing, 3D printing.

Results A comparative analysis of factory supplied, home-made, dynamic and static spacer models showed that the choice of articulating spacers for revision arthroplasty of major joints is of great relevance. Advantages of factory-made spacers include standardized range of sizes, the reliability and availability for medical institutions. They are characterized by limited use in repair of severe bone defects.

Discussion Custom-made articulating spacers enable specific tailoring to accommodate individual defects. Despite high expectations from custom-made spacers, development of optimal technologies for rapid prototyping is essential. Investments in research and development in this area have the potential to create innovative solutions that can significantly improve the results of revision arthroplasty.

Conclusion The paper explores the importance of systemization of knowledge about spacers and the role of new research in improving the design and functionality. Progress in the field of materials science, additive technologies and a personalized approach to spacer manufacturing can expand possibilities of  revision arthroplasty and the effectiveness. Personalized approaches and improved methods of local drug delivery that provide controlled release of antibiotics can improve the results of treatment of periprosthetic joint infections.

About the Authors

B. Sh. Minasov
Bashkir State Medical University
Russian Federation

Bulat Sh. Minasov — Doctor of Medical Sciences, Professor, Head of Department



R. R. Yakupov
Bashkir State Medical University
Russian Federation

Rasul R. Yakupov — Doctor of Medical Sciences, Professor, Professor of the Department



V. N. Akbashev
Bashkir State Medical University
Russian Federation

Vladislav N. Akbashev — Assistant of the Department



A. R. Bilyalov
Bashkir State Medical University
Russian Federation

Azat R. Bilyalov — Candidate of Medical Sciences, Associate Professor, Associate Professor of the Department



T. B. Minasov
Bashkir State Medical University
Russian Federation

Timur B. Minasov — Doctor of Medical Sciences, Professor, Professor of the Department



M. M. Valeev
Bashkir State Medical University
Russian Federation

Marat M. Valeev — Doctor of Medical Sciences, Associate Professor, Professor of the Department



T. R. Mavlyutov
Bashkir State Medical University
Russian Federation

Tagir R. Mavlyutov — Doctor of Medical Sciences, Associate Professor, Professor of the Department



K. K. Karimov
Bashkir State Medical University
Russian Federation

Kiemiddin K. Karimov — Candidate of Medical Sciences, Associate Professor



A. R. Berdin
Bashkir State Medical University
Russian Federation

Azamat R. Berdin — 3rd year student



References

1. Lemme NJ, Veeramani A, Yang DS, et al. Total Hip Arthroplasty After Hip Arthroscopy Has Increased Complications and Revision Risk. J Arthroplasty. 2021;36(12):3922-3927.e2. doi: 10.1016/j.arth.2021.07.020

2. Sereda AP, Kochish AA, Cherny AA, et al. Epidemiology of Hip And Knee Arthroplasty and Periprosthetic Joint Infection in Russian Federation. Traumatology and Orthopedics of Russia. 2021;27(3):84-93. (In Russ.) doi: 10.21823/2311-2905-2021-27-3-84-93

3. Lombardo DJ, Siljander MP, Sobh A, et al. Periprosthetic fractures about total knee arthroplasty. Musculoskelet Surg. 2020;104(2):135-143. doi: 10.1007/s12306-019-00628-9

4. Otto-Lambertz C, Yagdiran A, Wallscheid F, et al. Periprosthetic Infection in Joint Replacement. Dtsch Arztebl Int. 2017;114(20):347-353. doi: 10.3238/arztebl.2017.0347

5. Pangaud C, Ollivier M, Argenson JN. Outcome of single-stage versus two-stage exchange for revision knee arthroplasty for chronic periprosthetic infection. EFORT Open Rev. 2019;4(8):495-502. doi: 10.1302/2058-5241.4.190003

6. Insall JN, Thompson FM, Brause BD. Two-stage reimplantation for the salvage of infected total knee arthroplasty. J Bone Joint Surg Am. 1983;65-A(8):1087-1098.

7. Lee YS, Chen AF. Two-Stage Reimplantation in Infected Total Knee Arthroplasty. Knee Surg Relat Res. 2018;30(2):107-114. doi: 10.5792/ksrr.17.095

8. Mansurov JSh, Tkachenko AN, Saiganov SA, et al. Negative Effects of Knee Replacement. Journal of Experimental and Clinical Surgery. 2022;15(4):354-361. (In Russ,) doi: 10.18499/2070-478X-2022-15-4-354-361

9. Tarazi JM, Chen Z, Scuderi GR, Mont MA. The Epidemiology of Revision Total Knee Arthroplasty. J Knee Surg. 2021;34(13):1396-1401. doi: 10.1055/s-0041-1735282

10. Schwartz AM, Farley KX, Guild GN, Bradbury TL Jr. Projections and Epidemiology of Revision Hip and Knee Arthroplasty in the United States to 2030. J Arthroplasty. 2020;35(6S):S79-S85. doi: 10.1016/j.arth.2020.02.030

11. Grimberg A, Lützner J, Melsheimer O, Morlock M, Steinbrück A. (2023) German Arthroplasty Registry (Endoprothesenregister Deutschland - EPRD) - Annual Report 2022. doi: 10.36186/reporteprd072023

12. Annual report 2021. The Swedish Arthroplasty Register. 2021. doi: 10.18158/SyujK_qxc

13. Walter N, Baertl S, Lang S, et al. Treatment of Periprosthetic Joint Infection and Fracture-Related Infection with a Temporary Arthrodesis Made by PMMA-Coated Intramedullary Nails - Evaluation of Technique and Quality of Life in Implant-Free Interval. Front Surg. 2022;9:917696. doi: 10.3389/fsurg.2022.917696

14. Levašič V, Pišot V, Milošev I. Arthroplasty Register of the Valdoltra Orthopaedic Hospital and implant retrieval program. Zdrav Vestn. 2009;78:73-80. (In Sloven.) 15. Nham FH, Patel I, Zalikha AK, El-Othmani MM. Epidemiology of primary and revision total knee arthroplasty: analysis of demographics, comorbidities and outcomes from the national inpatient sample. Arthroplasty. 2023;5(1):18. doi: 10.1186/s42836-023-00175-6

15. Ivantsov VA, Lashkovsky VV, Bogdanovich IP, Lazarevich SN. Treatment of deep periprosthetic infection of knee joint. Journal of the Grodno State Medical University, 2018;16(1):96-100. (In Russ.) doi: 10.25298/2221-8785-2018-16-1-96-100

16. Kornilov NN, Fedorov RE, Kulyaba TA, Fil AS. Re-operations after mobile-bearing unicompartmental knee arthroplasty: the 15-year experience. Modern Problems of Science and Education. 2018;(2). (In Russ.) doi: 10.17513/spno.27451

17. Lu J, Han J, Zhang C, et al. Infection after total knee arthroplasty and its gold standard surgical treatment: Spacers used in two-stage revision arthroplasty. Intractable Rare Dis Res. 2017;6(4):256-261. doi: 10.5582/irdr.2017.01049

18. Lindberg-Larsen M, Odgaard A, Fredborg C, et al. One-stage versus two-stage revision of the infected knee arthroplasty - a randomized multicenter clinical trial study protocol. BMC Musculoskelet Disord. 2021;22(1):175. doi: 10.1186/s12891-021-04044-8

19. Kunutsor SK, Beswick AD, Whitehouse MR, Blom AW. One- and two-stage surgical revision of infected elbow prostheses following total joint replacement: a systematic review. BMC Musculoskelet Disord. 2019;20(1):467. doi: 10.1186/s12891-019-2848-x

20. Goud AL, Harlianto NI, Ezzafzafi S, et al. Reinfection rates after one- and two-stage revision surgery for hip and knee arthroplasty: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2023;143(2):829-838. doi: 10.1007/s00402-021-04190-7

21. Wang X, Zhang W. Research progress of two-stage revision for periprosthetic joint infection after hip and knee arthroplasties. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019;33(12):1566-1571. (In Chin.). doi: 10.7507/1002-1892.201901098

22. Vasarhelyi E, Sidhu SP, Somerville L, et al. Static vs Articulating Spacers for Two-Stage Revision Total Knee Arthroplasty: Minimum Five-Year Review. Arthroplast Today. 2022;13:171-175. doi: 10.1016/j.artd.2021.10.010

23. Warwick HS, Tan TL, Weiser L, et al. Comparison of Static and Articulating Spacers After Periprosthetic Joint Infection. J Am Acad Orthop Surg Glob Res Rev. 2023;7(2):e22.00284. doi: 10.5435/JAAOSGlobal-D-22-00284

24. Nahhas CR, Chalmers PN, Parvizi J, et al. Randomized Trial of Static and Articulating Spacers for Treatment of the Infected Total Hip Arthroplasty. J Arthroplasty. 2021;36(6):2171-2177. doi: 10.1016/j.arth.2021.01.031

25. Tao J, Yan Z, Pu B, et al. Comparison of dynamic and static spacers for the treatment of infections following total knee replacement: a systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):348. doi: 10.1186/s13018-022-03238-7

26. Fiore M, Sambri A, Filippini M, et al. Are Static Spacers Superior to Articulated Spacers in the Staged Treatment of Infected Primary Knee Arthroplasty? A Systematic Review and Meta-Analysis. J Clin Med. 2022;11(16):4854. doi: 10.3390/jcm11164854

27. Charette RS, Melnic CM. Two-Stage Revision Arthroplasty for the Treatment of Prosthetic Joint Infection. Curr Rev Musculoskelet Med. 2018;11(3):332-340. doi: 10.1007/s12178-018-9495-y

28. Mazzucchelli L, Rosso F, Marmotti A, et al. The use of spacers (static and mobile) in infection knee arthroplasty. Curr Rev Musculoskelet Med. 2015;8(4):373-382. doi: 10.1007/s12178-015-9293-8

29. Chen YP, Wu CC, Ho WP. Autoclaved metal-on-cement spacer versus static spacer in two-stage revision in periprosthetic knee infection. Indian J Orthop. 2016;50(2):146-153. doi: 10.4103/0019-5413.177587

30. Craig A, King SW, van Duren BH, et al. Articular spacers in two-stage revision arthroplasty for prosthetic joint infection of the hip and the knee. EFORT Open Rev. 2022;7(2):137-152. doi: 10.1530/EOR-21-0037

31. Jaenisch M, Ben Amar S, Babasiz M, et al. Commercially manufactured spacers for the treatment of periprosthetic joint infection of the hip. Oper Orthop Traumatol. 2023;35(3-4):179-187. doi: 10.1007/s00064-023-00802-0

32. Garcia-Oltra E, Garcia S, Bosch J, et al. Clinical results and complications of a two-stage procedure in hip infection using preformed antibiotic-loaded cement spacers. Acta Orthop Belg. 2019;85(4):516-524.

33. Rollo G, Logroscino G, Stomeo D, et al. Comparing the use of preformed vs hand-made antibiotic spacer cement in two stages revision of hip periprosthetic infection. J Clin Orthop Trauma. 2020;11(Suppl 5):S772-S778. doi: 10.1016/j.jcot.2020.08.003

34. Mederake M, Hofmann UK, Fink B. Clinical evaluation of a new technique for custom-made spacers in septic two-stage revision of total hip arthroplasties. Arch Orthop Trauma Surg. 2023;143(8):5395-5403. doi: 10.1007/s00402-022-04748-z

35. Quayle J, Barakat A, Klasan A, et al. External validation study of hip peri-prosthetic joint infection with cemented custom-made articulating spacer (CUMARS). Hip Int. 2022;32(3):379-385. doi: 10.1177/1120700020960669

36. Noia G, Meluzio MC, Sircana G, et al. The use of custom-made antibiotic-loaded spacer in periprosthetic knee infection caused by XDR organism: case report and review of literature. Eur Rev Med Pharmacol Sci. 2019;23(2 Suppl):19-25. doi: 10.26355/eurrev_201904_17470

37. Liu YB, Pan H, Chen L, et al. Total hip revision with custom-made spacer and prosthesis: A case report. World J Clin Cases. 2021;9(25):7605-7613. doi: 10.12998/wjcc.v9.i25.7605

38. Ohtsuru T, Morita Y, Murata Y, et al. Custom-made, antibiotic-loaded, acrylic cement spacers using a dental silicone template for treatment of infected hip prostheses. Eur J Orthop Surg Traumatol. 2018;28(4):615-620. doi: 10.1007/s00590-017-2117-3

39. Kugelman D, Roof M, Egol A, et al. Comparing Articulating Spacers for Periprosthetic Joint Infection After Primary Total Hip Arthroplasty: All-Cement Versus Real-Component Articulating Spacers. J Arthroplasty. 2022;37(7S):S657-S663. doi: 10.1016/j.arth.2021.12.008

40. Kong L, Mei J, Ge W, et al. Application of 3D Printing-Assisted Articulating Spacer in Two-Stage Revision Surgery for Periprosthetic Infection after Total Knee Arthroplasty: A Retrospective Observational Study. Biomed Res Int. 2021;2021:3948638. doi: 10.1155/2021/3948638

41. Restrepo S, Smith EB, Hozack WJ. Excellent mid-term follow-up for a new 3D-printed cementless total knee arthroplasty. Bone Joint J. 2021;103-B(6 Supple A):32-37. doi: 10.1302/0301-620X.103B6.BJJ-2020-2096.R1

42. Allen B, Moore C, Seyler T, Gall K. Modulating antibiotic release from reservoirs in 3D-printed orthopedic devices to treat periprosthetic joint infection. J Orthop Res. 2020;38(10):2239-2249. doi: 10.1002/jor.24640

43. Cherny AA, Kovalenko AN, Kulyaba TA, Kornilov NN. A prospective study on outcome of patient-specific cones in revision knee arthroplasty. Arch Orthop Trauma Surg. 2021;141(12):2277-2286. doi: 10.1007/s00402-021-04047-z

44. Lin TL, Tsai CH, Fong YC, et al. Posterior-Stabilized Antibiotic Cement Articulating Spacer With Endoskeleton-Reinforced Cam Reduces Rate of Post-Cam Mechanical Complications in Prosthetic Knee Infection: A Preliminary Study. J Arthroplasty. 2022;37(6):1180-1188.e2. doi: 10.1016/j.arth.2022.01.094

45. Razii N, Kakar R, Morgan-Jones R. The 'apple core' cement spacer for the management of massive bone loss in two-stage revision knee arthroplasty for infection. J Orthop. 2020;20:301-304. doi: 10.1016/j.jor.2020.05.011

46. Fu J, Xiang Y, Ni M, et al. The use of augmented antibiotic-loaded cement spacer in periprosthetic joint infection patients with acetabular bone defect. J Orthop Surg Res. 2020;15(1):448. doi: 10.1186/s13018-020-01831-2

47. Jung J, Schmid NV, Kelm J, et al. Complications after spacer implantation in the treatment of hip joint infections. Int J Med Sci. 2009;6(5):265-273. doi: 10.7150/ijms.6.265

48. Faschingbauer M, Reichel H, Bieger R, Kappe T. Mechanical complications with one hundred and thirty eight (antibiotic-laden) cement spacers in the treatment of periprosthetic infection after total hip arthroplasty. Int Orthop. 2015;39(5):989-994. doi: 10.1007/s00264-014-2636-z

49. Cai YQ, Fang XY, Huang CY, et al. Destination Joint Spacers: A Similar Infection-Relief Rate But Higher Complication Rate Compared with Two-Stage Revision. Orthop Surg. 2021;13(3):884-891. doi: 10.1111/os.12996

50. Du YQ, Zhou YG, Hao LB, et al. Mechanical complications with self-made, antibiotic-loaded cement articulating spacers in the treatment of the infected hip replacement. Zhongguo Gu Shang. 2017;30(5):436-440. (In Chinese) doi: 10.3969/j.issn.1003-0034.2017.05.009

51. Evans RP. Successful treatment of total hip and knee infection with articulating antibiotic components: a modified treatment method. Clin Orthop Relat Res. 2004;(427):37-46. doi: 10.1097/01.blo.0000143739.07632.7c

52. Tsai CH, Hsu HC, Chen HY, et al. A preliminary study of the novel antibiotic-loaded cement computer-aided design-articulating spacer for the treatment of periprosthetic knee infection. J Orthop Surg Res. 2019;14(1):136. doi: 10.1186/s13018-019-1175-0

53. Lin TL, Tsai CH, Fong YC, et al. Cruciate-Retaining vs Posterior-Stabilized Antibiotic Cement Articulating Spacers for Two-Stage Revision of Prosthetic Knee Infection: A Retrospective Cohort Study. J Arthroplasty. 2021;36(11):3750-3759.e2. doi: 10.1016/j.arth.2021.06.023

54. Corona PS, Barro V, Mendez M, et al. Industrially prefabricated cement spacers: do vancomycin and gentamicin-impregnated spacers offer any advantage? Clin Orthop Relat Res. 2014;472(3):923-932. doi: 10.1007/s11999-013-3342-7

55. Zhang W, Fang X, Shi T, et al. Cemented prosthesis as spacer for two-stage revision of infected hip prostheses: a similar infection remission rate and a lower complication rate. Bone Joint Res. 2020;9(8):484-492. doi: 10.1302/2046-3758.98. BJR-2020-0173

56. Rava A, Bruzzone M, Cottino U, et al. Hip Spacers in Two-Stage Revision for Periprosthetic Joint Infection: A Review of Literature. Joints. 2019;7(2):56-63. doi: 10.1055/s-0039-1697608

57. Romanò CL, Romanò D, Albisetti A, Meani E. Preformed antibiotic-loaded cement spacers for two-stage revision of infected total hip arthroplasty. Long-term results. Hip Int. 2012;22 Suppl 8:S46-53. doi: 10.5301/HIP.2012.9570

58. D'Angelo F, Negri L, Binda T, et al. The use of a preformed spacer in two-stage revision of infected hip arthroplasties. Musculoskelet Surg. 2011;95(2):115-120. doi: 10.1007/s12306-011-0128-5

59. Burastero G, Basso M, Carrega G, et al. Acetabular spacers in 2-stage hip revision: is it worth it? A single-centre retrospective study. Hip Int. 2017;27(2):187-192. doi: 10.5301/hipint.5000446

60. Hsieh PH, Chen LH, Chen CH, et al. Two-stage revision hip arthroplasty for infection with a custom-made, antibiotic-loaded, cement prosthesis as an interim spacer. J Trauma. 2004;56(6):1247-1252. doi: 10.1097/01.ta.0000130757.53559.bf

61. Struelens B, Claes S, Bellemans J. Spacer-related problems in two-stage revision knee arthroplasty. Acta Orthop Belg. 2013;79(4):422-426.

62. Lau AC, Howard JL, Macdonald SJ, et al. The Effect of Subluxation of Articulating Antibiotic Spacers on Bone Defects and Degree of Constraint in Revision Knee Arthroplasty. J Arthroplasty. 2016;31(1):199-203. doi: 10.1016/j.arth.2015.07.009

63. Sambri A, Fiore M, Rondinella C, et al. Mechanical complications of hip spacers: a systematic review of the literature. Arch Orthop Trauma Surg. 2023;143(5):2341-2353. doi: 10.1007/s00402-022-04427-z

64. Ng KCG, Jeffers JRT, Beaulé PE. Hip Joint Capsular Anatomy, Mechanics, and Surgical Management. J Bone Joint Surg Am. 2019;101(23):2141-2151. doi: 10.2106/JBJS.19.00346

65. Rath B, Eschweiler J, Beckmann J, et al. Revision total hip arthroplasty : Significance of instability, impingement, offset and gluteal insufficiency. Orthopade. 2019;48(4):315-321. (In German) doi: 10.1007/s00132-019-03704-x

66. Saunders P, Shaw D, Sidharthan S, et al. Hip offset and leg-length restoration in revision hip arthroplasty with a monoblock, hydroxyapatite-coated stem. Hip Int. 2023;33(5):880-888. doi: 10.1177/11207000221117782

67. Tone S, Hasegawa M, Naito Y, et al. Comparison between two- and three-dimensional methods for offset measurements after total hip arthroplasty. Sci Rep. 2022;12(1):12644. doi: 10.1038/s41598-022-16952-3

68. Kim SS, Kim HJ, Shim CH. Relationships between Femoral Offset Change and Clinical Score following Bipolar Hip Arthroplasty in Femoral Neck Fractures. Hip Pelvis. 2021;33(2):78-86. doi: 10.5371/hp.2021.33.2.78

69. López RE, Gómez Aparicio S, et al. Comparison of the correction of the femoral offset after the use of a stem with modular neck and its monoblock homologue in total primary hip arthroplasty. Rev Esp Cir Ortop Traumatol. 2022;66(2):77-85. doi: 10.1016/j.recot.2021.08.003

70. Heckmann ND, Chung BC, Wier JR, et al. The Effect of Hip Offset and Spinopelvic Abnormalities on the Risk of Dislocation Following Total Hip Arthroplasty. J Arthroplasty. 2022;37(7S):S546-S551. doi: 10.1016/j.arth.2022.02.028

71. Sebastian S, Liu Y, Christensen R, et al. Antibiotic containing bone cement in prevention of hip and knee prosthetic joint infections: A systematic review and meta-analysis. J Orthop Translat. 2020;23:53-60. doi: 10.1016/j.jot.2020.04.005

72. Bingham J. When and How Should I Use Antibiotic Cement in Primary and Revision Joint Arthroplasty? J Arthroplasty. 2022;37(8):1435-1437. doi: 10.1016/j.arth.2022.02.001

73. von Hertzberg-Boelch SP, Luedemann M, Rudert M, Steinert AF. PMMA Bone Cement: Antibiotic Elution and Mechanical Properties in the Context of Clinical Use. Biomedicines. 2022;10(8):1830. doi: 10.3390/biomedicines10081830

74. Lewis G. Antibiotic-free antimicrobial poly (methyl methacrylate) bone cements: A state-of-the-art review. World J Orthop. 2022;13(4):339-353. doi: 10.5312/wjo.v13.i4.339

75. Gandhi R, Backstein D, Zywiel MG. Antibiotic-laden Bone Cement in Primary and Revision Hip and Knee Arthroplasty. J Am Acad Orthop Surg. 2018;26(20):727-734. doi: 10.5435/JAAOS-D-17-00305

76. Wall V, Nguyen TH, Nguyen N, Tran PA. Controlling Antibiotic Release from Polymethylmethacrylate Bone Cement. Biomedicines. 2021;9(1):26. doi: 10.3390/biomedicines9010026

77. Bouji N, Wen S, Dietz MJ. Intravenous antibiotic duration in the treatment of prosthetic joint infection: systematic review and meta-analysis. J Bone Jt Infect. 2022;7(5):191-202. doi: 10.5194/jbji-7-191-2022

78. Tschon M, Sartori M, Contartese D, et al. Use of Antibiotic Loaded Biomaterials for the Management of Bone Prosthesis Infections: Rationale and Limits. Curr Med Chem. 2019;26(17):3150-3174. doi: 10.2174/0929867325666171129220031

79. Badge H, Churches T, Xuan W, et al. Timing and duration of antibiotic prophylaxis is associated with the risk of infection after hip and knee arthroplasty. Bone Jt Open. 2022;3(3):252-260. doi: 10.1302/2633-1462.33.BJO-2021-0181.R1

80. Levack AE, Cyphert EL, Bostrom MP, et al. Current Options and Emerging Biomaterials for Periprosthetic Joint Infection. Curr Rheumatol Rep. 2018;20(6):33. doi: 10.1007/s11926-018-0742-4

81. Anagnostakos K, Becker SL, Sahan I. Antifungal-Loaded Acrylic Bone Cement in the Treatment of Periprosthetic Hip and Knee Joint Infections: A Review. Antibiotics (Basel). 2022;11(7):879. doi: 10.3390/antibiotics11070879

82. Mensah LM, Love BJ. A meta-analysis of bone cement mediated antibiotic release: Overkill, but a viable approach to eradicate osteomyelitis and other infections tied to open procedures. Mater Sci Eng C Mater Biol Appl. 2021;123:111999. doi: 10.1016/j.msec.2021.111999

83. Mariaux S, Furustrand Tafin U, Borens O. Diagnosis of Persistent Infection in Prosthetic Two-Stage Exchange: Evaluation of the Effect of Sonication on Antibiotic Release from Bone Cement Spacers. J Bone Jt Infect. 2018;3(1):37-42. doi: 10.7150/jbji.23668

84. Klinder A, Zaatreh S, Ellenrieder M, et al. Antibiotics release from cement spacers used for two-stage treatment of implant-associated infections after total joint arthroplasty. J Biomed Mater Res B Appl Biomater. 2019;107(5):1587-1597. doi: 10.1002/jbm.b.34251


Review

For citations:


Minasov B.Sh., Yakupov R.R., Akbashev V.N., Bilyalov A.R., Minasov T.B., Valeev M.M., Mavlyutov T.R., Karimov K.K., Berdin A.R. Optimizing revision arthroplasty: the role of customized articulating spacers. Genij Ortopedii. 2024;30(5):753-765. https://doi.org/10.18019/1028-4427-2024-30-5-753-765. EDN: YGQXMO

Views: 200


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)