1. Overmann AL, Forsberg JA. The state of the art of osseointegration for limb prosthesis. Biomed Eng Lett. 2019;10(1):5-16. https://doi.org/10.1007/s13534-019-00133-9
2. Rehani M, Stafinski T, Round J, et al. Bone-anchored prostheses for transfemoral amputation: a systematic review of outcomes, complications, patient experiences, and cost-effectiveness. Front Rehabil Sci. 2024;5:1336042. https://doi.org/10.3389/fresc.2024.1336042
3. Aschoff HH, Örgel M, Sass M, et al. Transcutaneous Osseointegrated Prosthesis Systems (TOPS) for Rehabilitation After Lower Limb Loss: Surgical Pearls. JBJS Essent Surg Tech. 2024;14(1):e23.00010. https://doi.org/10.2106/JBJS.ST.23.00010
4. Zaid MB, OʼDonnell RJ, Potter BK, Forsberg JA. Orthopaedic Osseointegration: State of the Art. J Am Acad Orthop Surg. 2019;27(22):e977-e985. https://doi.org/10.5435/JAAOS-D-19-00016
5. Rennie C, Rodriguez M, Futch KN, Krasney LC. Complications Following Osseointegrated Transfemoral and Transtibial Implants: A Systematic Review. Cureus. 2024;16(3):e57045. https://doi.org/10.7759/cureus.57045
6. Emanov AA, Gorbach EN, Stogov MV, et al. Survival of percutaneous implants under various mechanical loading to the bone. Genij Ortopedii. 2018;24(4):500-506. https://doi.org/10.18019/1028-4427-2018-24-4-500-506
7. Haque R, Al-Jawazneh S, Hoellwarth J, et al. Osseointegrated reconstruction and rehabilitation of transtibial amputees: the Osseointegration Group of Australia surgical technique and protocol for a prospective cohort study. BMJ Open. 2020;10(10):e038346. https://doi.org/10.1136/bmjopen-2020-038346
8. Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A. 2020;108(3):470-484. https://doi.org/10.1002/jbm.a.36829
9. Stogov MV, Emanov AA, Kuznetsov VP, et al. Comparative evaluation of osseointegration of new percutaneous implants made of Ti Grade 4 ultrafine-grained alloy. Genij Ortopedii. 2023;29(5):526-534. https://doi.org/10.18019/1028-4427-2023-29-5-526-534
10. Li TT, Ling L, Lin MC, et al. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J Mater Sci. 2020;55:6352-6374. https://doi.org/10.1007/s10853-020-04467-z
11. Komarova EG, Sharkeev YP, Sedelnikova MB, et al. Zn- or Cu-Containing CaP-Based Coatings Formed by Micro-arc Oxidation on Titanium and Ti-40Nb Alloy: Part I-Microstructure, Composition and Properties. Materials (Basel). 2020;13(18):4116. https://doi.org/10.3390/ma13184116
12. Sedelnikova MB, Komarova EG, Sharkeev YP, et al. Modification of titanium surface via Ag-, Sr- and Si-containing micro-arc calcium phosphate coating. Bioact Mater. 2019;4:224-235. https://doi.org/10.1016/j.bioactmat.2019.07.001
13. Sedelnikova MB, Komarova EG, Sharkeev YP, et al. Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media. Surf Coat Technol. 2019;369:52-68. https://doi.org/10.1016/j.surfcoat.2019.04.021
14. Kuznetsov VP, Gubin AV, Koryukov AA, Gorgots VV. Tipe bone culture implant. Patent RF, no. 152558. 2015. Available at: https://patents.google.com/patent/RU152558U1/en. Accessed Jul 23, 2024.
15. Bulina NV, Khvostov MV, Borodulina IA, et al. Substituted hydroxyapatite and β-tricalcium phosphate as osteogenesis enhancers. Ceram Int. 2024. https://doi.org/10.1016/j.ceramint.2024.06.136
16. Kuznetsov VP, Gubin AV, Gorgots VV, et al. Device for osseointegration of the implant in the bone of the stump of the lower limb. Patent RF, no. 185647. 2018. Available at: https://patents.google.com/patent/RU185647U1/en. Accessed Jul 23, 2024.
17. Al Muderis M, Lu W, Tetsworth K, et al. Single-stage osseointegrated reconstruction and rehabilitation of lower limb amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a prospective cohort study. BMJ Open. 2017;7(3):e013508. https://doi.org/10.1136/bmjopen-2016-013508
18. Evans AR, Tetsworth K, Quinnan S, Wixted JJ. Transcutaneous osseointegration for amputees. OTA Int. 2024;7(2 Suppl):e326. https://doi.org/10.1097/OI9.0000000000000326
19. Hoellwarth JS, Tetsworth K, Rozbruch SR, et al. Osseointegration for Amputees: Current Implants, Techniques, and Future Directions. JBJS Rev. 2020;8(3):e0043. https://doi.org/10.2106/JBJS.RVW.19.00043
20. Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng. 2024;10(4):1966-1987. https://doi.org/ 10.1021/acsbiomaterials.3c01555
21. Zastulka A, Clichici S, Tomoaia-Cotisel M, et al. Recent Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes. Materials (Basel). 2023;16(3):1303. https://doi.org/10.3390/ma16031303
22. Ghanem A, Kellesarian SV, Abduljabbar T, et al. Role of Osteogenic Coatings on Implant Surfaces in Promoting Bone-To-Implant Contact in Experimental Osteoporosis: A Systematic Review and Meta-Analysis. Implant Dent. 2017;26(5):770-777. https://doi.org/10.1097/ID.0000000000000634
23. Lu M, Chen H, Yuan B, et al. Electrochemical Deposition of Nanostructured Hydroxyapatite Coating on Titanium with Enhanced Early Stage Osteogenic Activity and Osseointegration. Int J Nanomedicine. 2020;15:6605-6618. https://doi.org/10.2147/IJN.S268372
24. Sotova C, Yanushevich O, Kriheli N, et al. Dental Implants: Modern Materials and Methods of Their Surface Modification. Materials (Basel). 2023;16(23):7383. https://doi.org/10.3390/ma16237383
25. Kaspiris A, Vasiliadis E, Pantazaka E, et al. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect Dis Rep. 2024;16(2):298-316. https://doi.org/10.3390/idr16020025
26. Van den Borre CE, Zigterman BGR, Mommaerts MY, Braem A. How surface coatings on titanium implants affect keratinized tissue: A systematic review. J Biomed Mater Res B Appl Biomater. 2022;110(7):1713-1723. https://doi.org/10.1002/ jbm.b.35025
27. Li K, Xue Y, Yan T, et al. Si substituted hydroxyapatite nanorods on Ti for percutaneous implants. Bioact Mater. 2020;5(1):116-123. https://doi.org/10.1016/j.bioactmat.2020.01.001
28. Wang S, Zhao X, Hsu Y, et al. Surface modification of titanium implants with Mg-containing coatings to promote osseointegration. Acta Biomater. 2023;169:19-44. https://doi.org/10.1016/j.actbio.2023.07.048
29. Corona PS, Vargas Meouchi EA, García Hernández JM, et al. Single-stage transcutaneous osseointegrated prosthesis for above-knee amputations including an antibiotic-loaded hydrogel. Preliminary results of a new surgical protocol. Injury. 2024;55(4):111424. https://doi.org/10.1016/j.injury.2024.111424
30. Wang X, Lei X, Yu Y, et al. Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model. Biomater Sci. 2021;9(15):5192-5208. https://doi.org/10.1039/d1bm00762a
31. Chen Z, Chen Y, Wang Y, et al. Polyetheretherketone implants with hierarchical porous structure for boosted osseointegration. Biomater Res. 2023;27(1):61. https://doi.org/10.1186/s40824-023-00407-5
32. Chen T, Jinno Y, Atsuta I, et al. Current surface modification strategies to improve the binding efficiency of emerging biomaterial polyetheretherketone (PEEK) with bone and soft tissue: A literature review. J Prosthodont Res. 2023;67(3):337-347. https://doi.org/10.2186/jpr.JPR_D_22_00138