Preview

Genij Ortopedii

Advanced search

Main etiological factors and comorbid pathology in severe cerebral palsy

https://doi.org/10.18019/1028-4427-2024-30-5-636-643

EDN: BZPTTN

Abstract

Introduction The largest number of factors contributing to the development of cerebral palsy (CP) relate to the pre- and intranatal periods. Premature birth and low birth weight are the most important predictors of cerebral palsy and are associated with persistent brain and motor disorders. Purpose To evaluate the main etiological factors of severe cerebral palsy and comorbid pathology in children with severe motor disorders.

Material and methods A retrospective observational study included 170 patients with severe forms of  cerebral palsy, divided into two groups (85 subjects each) depending on motor disorders: GMFCS IV, GMFCS V. Perinatal risk factors for severe cerebral palsy were assessed, correlations between perinatal risk factors for  expressed movement disorders and height/weight indicators, comorbid pathology in children at the time of admission to the trauma and orthopaedic hospital.

Results Prenatal risk factors were responsible for the development of cerebral palsy in children in 71 % of cases. In the GMFCS IV group, gestational age had an inverse correlation with preterm birth (R = –0.53; R2 = 28 %). In  the  GMFCS V group, disorders caused by a shorter gestational age were interrelated with  the  duration of the antenatal period (R = –0.79; R2 = 62 %), and also directly correlated with delivery by cesarean section (R = 0.58; R2 = 34 %). Among the comorbid pathologies, eye diseases and psychological development disorders were most often detected.

Discussion Low height/weight parameters of patients were due to comorbid pathology, rather than phenotypic constitutional features. Inverse correlation between the disorders caused by the gestational age, low birth weight and duration of pregnancy, risk of developing respiratory disorders, and a direct correlation with cesarean section seem logical. Severe conmobid diseases were more frequently diagnosed in patients with GMFCS V, indicating more extensive perinatal catastrophes in the central nervous system and the relationship between the developed pathology and severe motor disorders.

Conclusions The main risk factors for the development of cerebral palsy in patients with severe GMFCS IV–V motor impairments are associated with the pre- and intranatal periods. Comorbid pathology of patients with  severe forms of cerebral palsy is caused by severe brain damage and movement disorders that have developed against this background.

About the Authors

V. V. Evreinov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Vadim V. Evreinov — Candidate of Medical Sciences, anesthesiologist-reanimatologist

Kurgan



T. A. Zhirova
Ural Institute of Traumatology and orthopedics named after V.D. Chaklin
Russian Federation

Tatyana A. Zhirova — Doctor of Medical Sciences, methodologist

Ekaterinburg



Ya. V. Zueva
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Yana V. Zueva — orthopaedic surgeon

Kurgan



References

1. Brandenburg JE, Fogarty MJ, Sieck GC. A Critical Evaluation of Current Concepts in Cerebral Palsy. Physiology (Bethesda). 2019;34(3):216-229. doi: 10.1152/physiol.00054.2018

2. Ruiz Brunner MLM, Cuestas E, Heinen F, Schroeder AS. Growth in infants, children and adolescents with unilateral and bilateral cerebral palsy. Sci Rep. 2022;12(1):1879. doi: 10.1038/s41598-022-05267-y

3. Vitrikas K, Dalton H, Breish D. Cerebral Palsy: An Overview. Am Fam Physician. 2020;101(4):213-220.

4. Novak I, Morgan C, Adde L, et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017;171(9):897-907. doi: 10.1001/jamapediatrics.2017.1689

5. Abd Elmagid DS, Magdy H. Evaluation of risk factors for cerebral palsy. Egypt J Neurol Psychiatr Neurosurg. 2021;57(1). doi: 10.1186/s41983-020-00265-1

6. Paul S, Nahar A, Bhagawati M, Kunwar AJ. A Review on Recent Advances of Cerebral Palsy. Oxid Med Cell Longev. 2022;2022:2622310. doi: 10.1155/2022/2622310

7. Riabykh TV, Tomov AD, Popkov DA. Somatic status characteristics in children with cerebral palsy during surgical orthopedic treatment. Genij ortopedii. 2016;(3):52-57. (In Russ.) doi: 10.18019/1028-4427-2016-3-52-57

8. Popkov DA, Chibirov GM, Kozhevnikov VV, Gvozdev NS. Multilevel orthopaedic surgery in children with spastic cerebral palsy. Genij Ortopedii. 2021;27(4):475-480. doi: 10.18019/1028-4427-2021-27-4-475-480

9. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-223. doi: 10.1111/j.1469-8749.1997.tb07414.x

10. Shalkevich LV. Cerebral palsy: modern conception of classification system. Meditsinskie novosti. 2021;(1):19-23. (In Russ.)

11. Sellers D, Mandy A, Pennington L, et al. Development and reliability of a system to classify the eating and drinking ability of people with cerebral palsy. Dev Med Child Neurol. 2014;56(3):245-251. doi: 10.1111/dmcn.12352

12. Arnaud C, Ehlinger V, Delobel-Ayoub M, et al. Trends in Prevalence and Severity of Pre/Perinatal Cerebral Palsy Among Children Born Preterm From 2004 to 2010: A SCPE Collaboration Study. Front Neurol. 2021;12:624884. doi: 10.3389/fneur.2021.624884

13. Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr Dis Treat. 2020;16:1505-1518. doi: 10.2147/NDT.S235165

14. Fahey MC, Maclennan AH, Kretzschmar D, et al. The genetic basis of cerebral palsy. Dev Med Child Neurol. 2017;59(5):462-469. doi: 10.1111/dmcn.13363

15. Horber V, Sellier E, Horridge K, et al. The Origin of the Cerebral Palsies: Contribution of Population-Based Neuroimaging Data. Neuropediatrics. 2020;51(2):113-119. doi: 10.1055/s-0039-3402007

16. Boyarintsev VV, Evseev MA. Metabolism and nutritional support in surgical patients. Doctor’s manual. St. Petersburg: Only-Press Publ.; 2017:260. (In Russ.)

17. Ivanov DO, Strokova TV, Kamalova AA, et al. Diagnosis and correction of nutritional status in children with cerebral palsy. Educational and methodological manual. St. Petersburg: SPbGPMU Publ.; 2020:100. Available at: https://e.lanbook.com/ book/174379. Accessed March 22, 2024. (In Russ.)

18. Pak L.A., Makarova S.G., Chumbadze T.R., Fisenko A.P. Disorders of the nutritional status and their correction in cerebral palsy children. Russian pediatric journal. 2019;22(1):23-27. (In Russ.) doi: 10.18821/1560-9561-2019-22-1-23-27

19. Sousa KT, Ferreira GB, Santos AT, et al. Assessment of nutritional status and frequency of complications associated to feeding in patients with spastic quadriplegic cerebral palsy. Rev Paul Pediatr. 2020;38:e2018410. doi: 10.1590/1984-0462/2020/38/2018410

20. Uday S, Shaw N, Krone R, Kirk J. Hypopituitarism in children with cerebral palsy. Arch Dis Child. 2017;102(6):559-561. doi: 10.1136/archdischild-2016-311012

21. Costa A, Martin A, Arreola V, et al. Assessment of Swallowing Disorders, Nutritional and Hydration Status, and Oral Hygiene in Students with Severe Neurological Disabilities Including Cerebral Palsy. Nutrients. 2021;13(7):2413. doi: 10.3390/nu13072413

22. Condrat CE, Filip L, Gherghe M, et al. Maternal HPV Infection: Effects on Pregnancy Outcome. Viruses. 2021;13(12):2455. doi: 10.3390/v13122455

23. Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol. 2021;11:631972. doi: 10.3389/fcimb.2021.631972

24. Зиядинов А.А., Сулима А.Н., Рыбалка А.Н. Причины кесарева сечения при преждевременных родах. Таврический медико-биологический вестник. 2015;18(1):44-47.

25. Ream MA, Lehwald L. Neurologic Consequences of Preterm Birth. Curr Neurol Neurosci Rep. 2018;18(8):48. doi: 10.1007/s11910-018-0862-2

26. Poryo M, Hess S, Stock L, et al. Myocardial Ischemia in a Preterm Born Baby. Klin Padiatr. 2023;235(1):48-49. doi: 10.1055/a-1723-8353

27. Özek E, Kersin SG. Intraventricular hemorrhage in preterm babies. Turk Pediatri Ars. 2020;55(3):215-221. doi: 10.14744/TurkPediatriArs.2020.66742

28. Younge N, Goldstein RF, Cotten CM. Survival and Neurodevelopment of Periviable Infants. N Engl J Med. 2017;376(19):1890-1891. doi: 10.1056/NEJMc1703379

29. Vitrikas K, Dalton H, Breish D. Cerebral Palsy: An Overview. Am Fam Physician. 2020;101(4):213-220.

30. Michael-Asalu A, Taylor G, Campbell H, et al. Cerebral Palsy: Diagnosis, Epidemiology, Genetics, and Clinical Update. Adv Pediatr. 2019;66:189-208. doi: 10.1016/j.yapd.2019.04.002

31. İdil ŞA, Altınbay D, Şahlı E, et al. Ophthalmologic approach to babies with cerebral visual impairment. Turk J Pediatr. 2021;63(1):1-10. doi: 10.24953/turkjped.2021.01.001


Review

For citations:


Evreinov V.V., Zhirova T.A., Zueva Ya.V. Main etiological factors and comorbid pathology in severe cerebral palsy. Genij Ortopedii. 2024;30(5):636-643. https://doi.org/10.18019/1028-4427-2024-30-5-636-643. EDN: BZPTTN

Views: 225


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)