Preview

Genij Ortopedii

Advanced search

Effect of elastic intramedullary nailing on lower limb lengthening in acquired shortenings: a prospective study

https://doi.org/10.18019/1028-4427-2024-30-4-522-532

EDN: CNFWFN

Abstract

Introduction Lengthening and correction of limb deformities using Ilizarov external fixation is a frequent standard operation. However, the risk of complications associated with limb lengthening, including superficial or deep infection, contractures, secondary deformity, and fractures after device removal associated with delayed bone consolidation, remains significant.

The purpose of the work was to identify the features of bone lengthening with an external fixator in combination with elastic intramedullary nails, titanium or titanium with a composite hydroxyapatite coating, in the conditions of shortening of the lower extremities of acquired etiology.

Materials and methods The study included 64 patients, of which 31 patients underwent monofocal lengthening of the femur, 33 patients underwent monofocal lengthening of the tibia.

Results The mean external fixation indices (EFIs) of the groups compared for similar lengthening types (femoral or tibial lengthening) did not differ significantly for the types of intramedullary nails implanted. In femoral lengthening, a significant effect on the EFI had the nail type and the ratio of “nail diameter / medullary canal diameter”. The dependence of EFI on the nail type in tibial lengthening was associated with the ratio “nail diameter / internal diameter at the osteotomy site” (p = 0.023). Two-way ANOVA showed that the effect of the nail type on EFI depended on the nail diameter/ internal diameter at osteotomy site ratio in the tibial lengthening group (p = 0.034).

Discussion In acquired shortening of the lower extremities, there is no difference in EFI by using titanium elastic nails or intramedullary nails coated with composite hydroxyapatite. The use of a combined technique, in any case, has advantages: it provides good and excellent results without serious complications during lengthening in patients with shortening of acquired etiology. The strong positive correlation between the bone diameter/internal cortical distance ratio at the osteotomy site, coupled with the significant influence of the nail type and nail diameter on EFI, suggests that both factors should be considered together in future studies.

Conclusion In shortening of the lower extremities of acquired etiology, the use of a combined bone lengthening technique, comprising an external fixator in combination with elastic intramedullary nailing, provides good and excellent results without serious complications.

About the Authors

D. V. Tropin
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Denis V. Tropin — orthopaedic surgeon

Kurgan



V. I. Tropin
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Vasily I. Tropin — Candidate of Medical Sciences, orthopaedic surgeon, Head of Departmen

Kurgan



A. A. Chertishchev
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Aleksandr A. Chertishehev — orthopaedic surgeon

Kurgan



N. S. Gvozdev
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Nikita S. Gvozdev — orthopaedic surgeon

Kurgan



D. A. Popkov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Dmitry A. Popkov — Doctor of Medical Sciences, Head of the Clinic, Professor of the Russian Academy of Sciences, Corresponding Member of the French Academy of Medical Sciences

Kurgan



References

1. Paley D. PRECICE intramedullary limb lengthening system. Expert Rev Med Devices. 2015;12(3):231-249. doi: 10.1586/17434440.2015.1005604

2. Friend L, Widmann RF. Advances in management of limb length discrepancy and lower limb deformity. Curr Opin Pediatr. 2008;20(1):46-51. doi: 10.1097/MOP.0b013e3282f35eeb

3. Ganger R, Radler C, Speigner B, Grill F. Correction of post-traumatic lower limb deformities using the Taylor spatial frame. Int Orthop. 2010;34(5):723-730. doi: 10.1007/s00264-009-0839-5

4. Maffulli N, Lombari C, Matarazzo L, et al. A review of 240 patients undergoing distraction osteogenesis for congenital post-traumatic or postinfective lower limb length discrepancy. J Am Coll Surg. 1996;182(5):394-402.

5. Massard-Combe P, Verscheure D, Jayet J, et al. Lower Limb Discrepancy Secondary to Post-traumatic Femoral Lesion: A Case Report. Ann Vasc Surg. 2020;68:571.e5-571.e7. doi: 10.1016/j.avsg.2020.04.048

6. Emara KM, Khames A. Functional outcome after lengthening with and without deformity correction in polio patients. Int Orthop. 2008;32(3):403-407. doi: 10.1007/s00264-007-0322-0

7. El-Mowafi H, Mohsen M. The effect of low-intensity pulsed ultrasound on callus maturation in tibial distraction osteogenesis. Int Orthop. 2005;29(2):121-124. doi: 10.1007/s00264-004-0625-3

8. Salem KH, Schmelz A. Low-intensity pulsed ultrasound shortens the treatment time in tibial distraction osteogenesis. Int Orthop. 2014;38(7):1477-1482. doi: 10.1007/s00264-013-2254-1

9. Kristiansen LP, Steen H, Reikerås O. No difference in tibial lengthening index by use of Taylor spatial frame or Ilizarov external fixator. Acta Orthop. 2006;77(5):772-777. doi: 10.1080/17453670610012971

10. Hammouda AI, Jauregui JJ, Gesheff MG, et al. Treatment of Post-Traumatic Femoral Discrepancy With PRECICE Magnetic-Powered Intramedullary Lengthening Nails. J Orthop Trauma. 2017;31(7):369-374. doi: 10.1097/BOT.0000000000000828

11. Horn J, Steen H, Huhnstock S, et al. Limb lengthening and deformity correction of congenital and acquired deformities in children using the Taylor Spatial Frame. Acta Orthop. 2017;88(3):334-340. doi: 10.1080/17453674.2017.1295706

12. Horn J, Hvid I, Huhnstock S, et al. Limb lengthening and deformity correction with externally controlled motorized intramedullary nails: evaluation of 50 consecutive lengthenings. Acta Orthop. 2019;90(1):81-87. doi: 10.1080/17453674.2018.1534321

13. Calder PR, Laubscher M, Goodier WD. The role of the intramedullary implant in limb lengthening. Injury. 2017;48 Suppl 1:S52-S58. doi: 10.1016/j.injury.2017.04.028

14. Antoci V, Ono CM, Antoci V Jr, Raney EM. Comparison of distraction osteogenesis for congenital and acquired limb- length discrepancy in children. Orthopedics. 2008;31(2):129. doi: 10.3928/01477447-20080201-04

15. Ceroni D, Grumetz C, Desvachez O, et al. From prevention of pin-tract infection to treatment of osteomyelitis during paediatric external fixation. J Child Orthop. 2016;10(6):605-612. doi: 10.1007/s11832-016-0787-8

16. Antoci V, Ono CM, Antoci V Jr, Raney EM. Bone lengthening in children: how to predict the complications rate and complexity? J Pediatr Orthop. 2006;26(5):634-640. doi: 10.1097/01.bpo.0000229977.31931.69

17. Aranovich A., Stogov M., Kireeva E., Menshchikova T. Prediction and control of the distraction osteogenesis course. Analytical review. Genij Ortopedii. 2019;25(3):400-406. doi: 10.18019/1028-4427-2019-25-3-400-406

18. Matsubara H, Tsuchiya H, Sakurakichi K, et al. Deformity correction and lengthening of lower legs with an external fixator. Int Orthop. 2006;30(6):550-554. doi: 10.1007/s00264-006-0133-8

19. Launay F, Younsi R, Pithioux M, et al. Fracture following lower limb lengthening in children: a series of 58 patients. Orthop Traumatol Surg Res. 2013;99(1):72-79. doi: 10.1016/j.otsr.2012.08.005

20. Moraal JM, Elzinga-Plomp A, Jongmans MJ, et al. Long-term psychosocial functioning after Ilizarov limb lengthening during childhood. Acta Orthop. 2009;80(6):704-710. doi: 10.3109/17453670903473024

21. Launay F, Jouve JL, Guillaume JM, et al. Progressive forearm lengthening in children: 14 cases. Rev Chir Orthop Reparatrice Appar Mot. 2001;87(8):786-795. (In French)

22. Bukva B, Vrgoč G, Rakovac I, et al. Complications in leg lengthening using an Ilizarov external fixator and intramedullary alignment in children: comparative study during a fourteen-year period. Injury. 2015;46 Suppl 6:S48-51. doi: 10.1016/j.injury.2015.10.058

23. Pejin Z. Femoral lengthening in children and adolescents. Orthop Traumatol Surg Res. 2017;103(1S):S143-S149. doi: 10.1016/j.otsr.2016.05.020

24. Lampasi M, Launay F, Jouve JL, Bollini G. Femoral lengthening over elastic stable intramedullary nailing in children using the monolateral external fixator. Chir Organi Mov. 2009;93(2):57-64. doi: 10.1007/s12306-009-0032-4

25. Popkov DA, Popkov AV, Kononovich NA, et al. Experimental study of progressive tibial lengthening in dogs using the Ilizarov technique. Comparison with and without associated intramedullary K-wires. Orthop Traumatol Surg Res. 2014;100(7):809-814. doi: 10.1016/j.otsr.2014.06.021

26. Morcos MW, Al-Jallad H, Hamdy R. Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration. Biomed Res Int. 2015;2015:842975. doi: 10.1155/2015/842975

27. Shevtsov VI, Popkov AV, Popkov DA, et al. Elastic stable intramedullary nailing in Ilizarov bone lengthening. Rev Chir Orthop Reparatrice Appar Mot. 2004;90(5):399-410. (In French). doi: 10.1016/s0035-1040(04)70166-x

28. Bolbasov EN, Popkov AV, Popkov DA, et al. Osteoinductive composite coatings for flexible intramedullary nails. Mater Sci Eng C Mater Biol Appl. 2017;75:207-220. doi: 10.1016/j.msec.2017.02.073

29. Lascombes P, Popkov D, Huber H, et al. Classification of complications after progressive long bone lengthening: proposal for a new classification. Orthop Traumatol Surg Res. 2012;98(6):629-637. doi: 10.1016/j.otsr.2012.05.010

30. Shailam R, Jaramillo D, Kan JH. Growth arrest and leg-length discrepancy. Pediatr Radiol. 2013;43(Suppl 1):S155-S65. doi: 10.1007/s00247-012-2598-5

31. Ceroni D, Valaikaite R, Grumetz C, et al. Corrective surgery for lower limb length discrepancy and malalignment in paediatric orthopaedics. Rev Med Suisse. 2017;13(550):427-432. (In French)

32. McClure PK, Herzenberg JE. The Natural History of Lower Extremity Malalignment. J Pediatr Orthop. 2019;39(Issue 6, Supplement 1 Suppl 1):S14-S19. doi: 10.1097/BPO.0000000000001361

33. Grivas TB, Angouris K, Chandrinos M, Kechagias V. Truncal changes in children with mild limb length inequality: a surface topography study. Scoliosis Spinal Disord. 2018;13:27. doi: 10.1186/s13013-018-0173-z

34. Popkov AV, Aranovich AM, Novikov KI, et al. Combined high-division distraction osteosynthesis of the femur in children. Genij Ortopedii. 2016;(2):57-63. doi: 10.18019/1028-4427-2016-2-57-63

35. Black SR, Kwon MS, Cherkashin AM, et al. Lengthening in Congenital Femoral Deficiency: A Comparison of Circular External Fixation and a Motorized Intramedullary Nail. J Bone Joint Surg Am. 2015;97(17):1432-1440. doi: 10.2106/JBJS.N.00932

36. Iobst C. Limb lengthening combined with deformity correction in children with the Taylor Spatial Frame. J Pediatr Orthop B. 2010;19(6):529-534. doi: 10.1097/BPB.0b013e32833dec43

37. Küçükkaya M, Karakoyun Ö, Sökücü S, Soydan R. Femoral lengthening and deformity correction using the Fitbone motorized lengthening nail. J Orthop Sci. 2015;20(1):149-154. doi: 10.1007/s00776-014-0659-3

38. Hosny GA. Limb lengthening history, evolution, complications and current concepts. J Orthop Traumatol. 2020;21(1):3. doi: 10.1186/s10195-019-0541-3

39. Popkov AV, Aranovich AM, Novikov KI et al. Leg lengthening in children by the combined technique using high- divisional round-the-clock distraction. Genij Ortopedii. 2016;(2):51-56. doi: 10.18019/1028-4427-2016-2-51-56

40. Qin S, Zang J, Guo B. Ilizarov technology and chinese philosophy (To commemorate the 100th anniversary of the birth of Professor Ilizarov). Genij Ortopedii. 2021;27(3):291-295. doi: 10.18019/1028-4427-2021-27-3-291-295

41. Oostenbroek HJ, Brand R, van Roermund PM, Castelein RM. Paediatric lower limb deformity correction using the Ilizarov technique: a statistical analysis of factors affecting the complication rate. J Pediatr Orthop B. 2014;23(1):26-31. doi: 10.1097/BPB.0b013e32836422ba

42. Koczewski P, Shadi M. Factors influencing bone regenerate healing in distraction osteogenesis. Ortop Traumatol Rehabil. 2013;15(6):591-599. doi: 10.5604/15093492.1091515

43. Gordon JE, Manske MC, Lewis TR, et al. Femoral lengthening over a pediatric femoral nail: results and complications. J Pediatr Orthop. 2013;33(7):730-736. doi: 10.1097/BPO.0b013e3182a122a1

44. Nakase T, Kitano M, Kawai H, et al. Distraction osteogenesis for correction of three-dimensional deformities with shortening of lower limbs by Taylor Spatial Frame. Arch Orthop Trauma Surg. 2009;129(9):1197-1201. doi: 10.1007/s00402-008-0702-y

45. Popkov D, Popkov A, Haumont T, et al. Flexible intramedullary nail use in limb lengthening. J Pediatr Orthop. 2010;30(8):910-918. doi: 10.1097/BPO.0b013e3181f0eaf9

46. Saraph V, Roposch A, Zwick EB, Linhart WE. Tibial lengthening over nails in children using modified Ender nails: preliminary results of a new treatment. J Pediatr Orthop B. 2004;13(6):383-388. doi: 10.1097/01202412-200411000-00007

47. Popkov AV, Gorbach EN, Kononovich NA, et al. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis. Strategies Trauma Limb Reconstr. 2017;12(2):107-113. doi: 10.1007/s11751-017-0282-x

48. Fischgrund J, Paley D, Suter C. Variables affecting time to bone healing during limb lengthening. Clin Orthop Relat Res. 1994;(301):31-37.

49. Danziger MB, Kumar A, DeWeese J. Fractures after femoral lengthening using the Ilizarov method. J Pediatr Orthop. 1995;15(2):220-223.

50. Stanitski DF, Shahcheraghi H, Nicker DA, Armstrong PF. Results of tibial lengthening with the Ilizarov technique. J Pediatr Orthop. 1996;16(2):168-172. doi: 10.1097/00004694-199603000-00006


Review

For citations:


Tropin D.V., Tropin V.I., Chertishchev A.A., Gvozdev N.S., Popkov D.A. Effect of elastic intramedullary nailing on lower limb lengthening in acquired shortenings: a prospective study. Genij Ortopedii. 2024;30(4):522-532. https://doi.org/10.18019/1028-4427-2024-30-4-522-532. EDN: CNFWFN

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)