Preview

Genij Ortopedii

Advanced search

Algorithm of surgical treatment for diaphyseal defects of the forearm bones due to gunshot injuries

https://doi.org/10.18019/1028-4427-2024-30-4-487-501

EDN: NPXTNS

Abstract

Introduction In the current system of providing medical aid to wounded servicemen, along with the conservative primary surgical treatment and minimally invasive extrafocal fixation, high-tech surgical interventions of considerable complexity with the use of additive and tissue-engineering technologies have been coming to the forefront. It is necessary to determine their place in the current algorithm of limb bone defect management, which was the substantiation of our study.

The purpose of the study was to improve the algorithm for selecting a treatment method for patients with associated gunshot defects of the forearm based on the literature and clinical observations.

Materials and Methods We analyzed scientific articles in PubMed and Scientific Electronic Library (eLIBRARY.ru) platforms, published from 2004 to 2024, on the basis of which we could refine the algorithm of treatment method selection for patients with associated gunshot defects of the forearm. The developed algorithm was used to treat 178 patients with gunshot fractures of the forearm.

Results The review of the literature established the main provisions and principles that are applied in the reconstruction of the forearm with an associated defect. When choosing the method of bone defect management, a great number of authors tend to build a “reconstructive ladder”, moving from less severe (one bone) and extended defects (small defect up to 2 cm) to more complex (both bones) and massive defect (more than 10 cm). Upon having considered the revealed regularities, we improved the algorithm of surgical treatment of the latter, which is based on two classification principles: defect extention and location. Reconstruction of the forearm as a dynamic system after diaphyseal fractures requires consider the state of the radioulnar joint. The function of the latter depends on the length ratio of the radius and ulna bones. Therefore, we substantiated small (up to 2 cm) forearm bone defects that can be managed by simple surgical methods. Another fundamental addition to the algorithm was the allocation of a patients’ group with a defect of one forearm bone and a fracture of the other bone (defect-fracture); this combination allows avoiding complex surgical methods for reconstruction and use segment shortening.

Discussion The treatment of associated forearm defects is challenging, the choice of reconstruction technique remains uncertain, and the required consensus is lacking. Several forearm reconstruction techniques are available, yet there is no reliable evidence of their effectiveness in terms of treatment time, complications, reoperations, and functional recovery.

Conclusion The algorithm proposed for the treatment of extensive gunshot-associated defects of the forearm allows us to consider the change in the anatomy, make a surgical plan based on the reconstruction vector, and select optimal surgical techniques.

About the Authors

D. V. Davydov
Burdenko Main Military Clinical Hospital
Russian Federation

Denis V. Davydov — Doctor of Medical Sciences, Professor, Chief of the Hospital

Moscow



L. K. Brizhan
Burdenko Main Military Clinical Hospital
Russian Federation

Leonid K. Brizan — Doctor of Medical Sciences, Professor, Deputy Head

Moscow



A. A. Kerimov
Burdenko Main Military Clinical Hospital
Russian Federation

Artur A. Kerimov — Candidate of Medical Sciences, Head of the Traumatology Center

Moscow



A. A. Maksimov
Burdenko Main Military Clinical Hospital
Russian Federation

Andrey A. Maksimov — Candidate of Medical Sciences, Head of the Department

Moscow



I. V. Khominets
Burdenko Main Military Clinical Hospital
Russian Federation

Igor V. Khominets — Candidate of Medical Sciences, Head of the Department

Moscow



А. V. Lychagin
First Moscow State Medical University (Sechenov University)
Russian Federation

Alexey V. Lychagin — Doctor of Medical Sciences, Professor, Head of the Department

Moscow



A. A. Gritsyuk
First Moscow State Medical University (Sechenov University)
Russian Federation

Andrey A. Gritsyuk — Doctor of Medical Sciences, Professor, Professor of the Department

Moscow



А. Z. Arsomakov
Ingush State University
Russian Federation

Adam Z. Arsomakov — Candidate of Sciences in Medicine, Head of the Department

Magas, Republic of Ingushetia



References

1. Trishkin DV, Kryukov EV, Alekseev DE, et al. Military field surgery. National leadership. Ser. National leadership. Moscow: GEOTAR-Media Publ.; 2024:180-208. (In Russ.) doi: 10.33029/9704-8023-6-vpt-2023-1-736

2. Trishkin DV, Kryukov EV, Chuprina AP. et al. Methodological recommendations for the treatment of combat surgical trauma. St. Petersburg: Military Medical Academy named after S.M. Kirov; 2022:373. (In Russ.) Available at: http://xn----9sbdbejx7bdduahou3a5d.xn--p1ai/upload/metod_rek_VPH_ver-1.pdf. Accessed Jun 26, 2024.

3. Kerimov A, Nelin N, Perekhodov S, et al. Current approaches to surgical treatment of extremity gunshot injuries. MIA Medical Bulletin. 2023;124(3):2-6. (In Russ.) doi: 10.52341/20738080_2023_124_3_2

4. Chelnokov AN, Lazarev AYu, Solomin LN, et al. Functional recovery after minimally invasive osteosynthesis in fractures of the shaft of the radius and ulna. Traumatology and Orthopedics of Russia. 2016;22(1):74–84. (In Russ.) doi: 10.21823/2311-2905-2016-0-1-74-84

5. Miziev IA, Baksanov KhD, Zhigunov AK, et al. Treatment of Forearm Fractures in Multiple and Associated Injuries. Disaster Medicine. 2018;(4):24-27. (In Russ.).

6. Stavytsky OB, Pasternak DV, Karpushkin OV, et al. Our experience of using of locking intramedullary nailing in the treatment of patients with forearm fractures at the premises of Regional Intensive Care Hospital in Mariupol. Trauma. 2019;20(4):61-65. (In Ukr.) doi: 10.22141/1608-1706.4.20.2019.178747

7. Kupkenov DE. The use of rod devices with reposition units for treatment of forearm bone shaft fractures. Genij Ortopedii. 2011;(1):13-16. (In Russ.).

8. Korol' SA, Matveiichuk BV, Domansky AN. Extent of the surgical care to the wounded with gunshot forearm fractures at the stages of medical evacuation during anti-terrorist operation. Trauma. 2016;17(6):76-80. (In Ukr.) doi: 10.22141/1608-1706.6.17.2016.88621

9. Walker M, Sharareh B, Mitchell SA. Masquelet Reconstruction for Posttraumatic Segmental Bone Defects in the Forearm. J Hand Surg Am. 2019;44(4):342.e1-342.e8. doi: 10.1016/j.jhsa.2018.07.003

10. Wang P, Wu Y, Rui Y, et al. Masquelet technique for reconstructing bone defects in open lower limb fracture: Analysis of the relationship between bone defect and bone graft. Injury. 2021;52(4):988-995. doi: 10.1016/j.injury.2020.12.009

11. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58(4):453-458.

12. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24(8):742-746. doi: 10.1097/00005373-198408000-00009

13. Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg Am. 1990;72(2):299-304.

14. Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg Br. 2005;87(2):142-150. doi: 10.1302/0301-620x.87b2.158744

15. Baldwin P, Li DJ, Auston DA, et al. Autograft, allograft, Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma. 2019;33(4):203-213. doi: 10.1097/BOT.0000000000001420

16. Nashi N, Kagda FH. Current concepts of bone grafting in trauma surgery. J Clin Orthop Trauma. 2023;43:102231. doi: 10.1016/j.jcot.2023.102231

17. Robinson CM, McLauchlan G, Christie J, et al. Tibial fractures with bone loss treated by primary reamed intramedullary nailing. J Bone Joint Surg Br. 1995;77(6):906-913.

18. Harris AM, Althausen PL, Kellam J, et al. Complications following limb-threatening lower extremity trauma. J Orthop Trauma. 2009;23(1):1-6. doi: 10.1097/BOT.0b013e31818e43dd

19. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res. 1990;(250):8-26.

20. Lasanianos NG, Kanakaris NK, Giannoudis PV. Current management of long bone large segmental defects. Orthop Trauma. 2010;24(2):149-163. doi: 10.1016/j.mporth.2009.10.003

21. Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015;23(3):143-153. doi: 10.5435/JAAOS-D-14-00018

22. Pipitone PS, Rehman S. Management of traumatic bone loss in the lower extremity. Orthop Clin North Am. 2014;45(4):469-482. doi: 10.1016/j.ocl.2014.06.008

23. El-Rosasy MA. Acute shortening and re-lengthening in the management of bone and soft-tissue loss in complicated fractures of the tibia. J Bone Joint Surg Br. 2007;89(1):80-88. doi: 10.1302/0301-620X.89B1.17595

24. Eralp L, Balci HI, Kocaoglu M, et al. Is acute compression and distraction superior to segmental bone transport techniques in chronic tibial osteomyelitis ? Comparison of Distraction Osteogenesis Techniques. Acta Orthop Belg. 2016;82(3):599-609.

25. Regan DK, Crespo AM, Konda SR, et al. Functional Outcomes of Compression Plating and Bone Grafting for Operative Treatment of Nonunions About the Forearm. J Hand Surg Am. 2018;43(6):564.e1-564.e9. doi: 10.1016/j.jhsa.2017.10.039

26. Ring D, Allende C, Jafarnia K, et al. Ununited diaphyseal forearm fractures with segmental defects: plate fixation and autogenous cancellous bone-grafting. J Bone Joint Surg Am. 2004;86(11):2440-2445.

27. Weiland AJ, Phillips TW, Randolph MA. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Plast Reconstr Surg. 1984;74(3):368-379.

28. Faldini C, Pagkrati S, Nanni M, et al. Aseptic forearm nonunions treated by plate and opposite fibular autograft strut. Clin Orthop Relat Res. 2009;467(8):2125-2134. doi: 10.1007/s11999-009-0827-5

29. Giannoudis PV, Harwood PJ, Tosounidis T, Kanakaris NK. Restoration of long bone defects treated with the induced membrane technique: protocol and outcomes. Injury. 2016;47 Suppl 6:S53-S61. doi: 10.1016/S0020-1383(16)30840-3

30. Wong TM, Lau TW, Li X, et al. Masquelet technique for treatment of posttraumatic bone defects. ScientificWorldJournal. 2014;2014:710302. doi: 10.1155/2014/710302

31. Davis JA, Choo A, O’Connor DP, et al. Treatment of Infected Forearm Nonunions With Large Complete Segmental Defects Using Bulk Allograft and Intramedullary Fixation. J Hand Surg Am. 2016;41(9):881-887. doi: 10.1016/j.jhsa.2016.05.021

32. Wood MB, Bishop AT. Massive bone defects of the upper limb: reconstruction by vascularized bone transfer. Hand Clin. 2007;23(1):49-56. doi: 10.1016/j.hcl.2007.01.002

33. Safoury Y. Free vascularized fibula for the treatment of traumatic bone defects and nonunion of the forearm bones. J Hand Surg Br. 2005;30(1):67-72. doi: 10.1016/j.jhsb.2004.09.007

34. Zhang Q, Yin P, Hao M, et al. Bone transport for the treatment of infected forearm nonunion. Injury. 2014;45(12):1880-1884. doi: 10.1016/j.injury.2014.07.029

35. Green SA. Skeletal defects. A comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop Relat Res. 1994;(301):111-117.

36. Kovalenko AN, Shubnyakov II, Bilyk SS, Tikhilov RM. The modern technologies of treatment of severe bone defects in the acetabulum region: which problems are solved with individual implants? Polytrauma. 2017;(1):72-81. (In Russ.).

37. Tikhilov RM, Shubnyakov II, Kovalenko AN, et al. Indications for revision hip arthroplasty, planning and technique of revision surgery. In: Tikhilov RM, Shubnyakov II. (eds.) Guide to hip surgery. SPb.: RSRI of TO na RR Vreden; 2015;2:258-355. (In Russ.)

38. Efetov SK, Lychagin AV, Zubayraeva AA, et al. 3D-printed pubic bone for pelvic ring reconstruction after exenteration for anal cancer recurrence. Br J Surg. 2020;107(11):e512-e514. doi: 10.1002/bjs.11982

39. Peleshok SA, Golovko KP. 3D printing and medicine. Russian Military Medical Academy Reports. 2022;41(3):325-333. (In Russ.) doi: 10.17816/rmmar88645

40. Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg Br. 2005;87(2):142-150. doi: 10.1302/0301-620x.87b2.15874

41. Molina CS, Stinner DJ, Obremskey WT. Treatment of Traumatic Segmental Long-Bone Defects: A Critical Analysis Review. JBJS Rev. 2014;2(4):e1. doi: 10.2106/JBJS.RVW.M.00062

42. Omid R, Stone MA, Zalavras CG, Marecek GS. Gunshot Wounds to the Upper Extremity. J Am Acad Orthop Surg. 2019;27(7):e301-e310. doi: 10.5435/JAAOS-D-17-00676

43. Ebrahimi A, Nejadsarvari N, Ebrahimi A, Rasouli HR. Early Reconstructions of Complex Lower Extremity Battlefield Soft Tissue Wounds. World J Plast Surg. 2017;6(3):332-342.

44. Migliorini F, La Padula G, Torsiello E, et al. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):118. doi: 10.1186/s40001-021-00593-9

45. Jebson PJL, Hayden RJ. AO Principles of Fracture Management. JAMA. 2008;300(20):2432-2433. doi:10.1001/jama.2008.703

46. Ebraheim NA, Elgafy H, Xu R. Bone-graft harvesting from iliac and fibular donor sites: techniques and complications. J Am Acad Orthop Surg. 2001;9(3):210-218. doi: 10.5435/00124635-200105000-00007

47. Tonoli C, Bechara AH, Rossanez R, et al. Use of the vascularized iliac-crest flap in musculoskeletal lesions. Biomed Res Int. 2013;2013:237146. doi: 10.1155/2013/237146

48. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114-124. doi: 10.4161/org.23306

49. Lei P, Du W, Liu H, et al. Free vascularized iliac bone flap based on deep circumflex iliac vessels graft for the treatment of osteonecrosis of femoral head. J Orthop Surg Res. 2019;14(1):397. doi: 10.1186/s13018-019-1440-2

50. Kessler P, Thorwarth M, Bloch-Birkholz A, et al. Harvesting of bone from the iliac crest--comparison of the anterior and posterior sites. Br J Oral Maxillofac Surg. 2005;43(1):51-56. doi: 10.1016/j.bjoms.2004.08.026

51. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93(23):2227-2236. doi: 10.2106/JBJS.J.01513

52. Beris AE, Lykissas MG, Korompilias AV, et al. Vascularized fibula transfer for lower limb reconstruction. Microsurgery. 2011;31(3):205-211. doi: 10.1002/micr.20841

53. Kalra GS, Goel P, Singh PK. Reconstruction of post-traumatic long bone defect with vascularised free fibula: A series of 28 cases. Indian J Plast Surg. 2013;46(3):543-548. doi: 10.4103/0970-0358.122013

54. Zekry KM, Yamamoto N, Hayashi K, et al. Reconstruction of intercalary bone defect after resection of malignant bone tumor. J Orthop Surg (Hong Kong). 2019;27(1):2309499019832970. doi: 10.1177/2309499019832970

55. Bumbasirevic M, Stevanovic M, Bumbasirevic V, et al. Free vascularised fibular grafts in orthopaedics. Int Orthop. 2014;38(6):1277-82. doi: 10.1007/s00264-014-2281-6

56. Muramatsu K, Ihara K, Shigetomi M, Kawai S. Femoral reconstruction by single, folded or double free vascularised fibular grafts. Br J Plast Surg. 2004;57(6):550-555. doi: 10.1016/j.bjps.2003.08.021

57. Wieser K, Modaressi K, Seeli F, Fuchs B. Autologous double-barrel vascularized fibula bone graft for arthrodesis of the shoulder after tumor resection. Arch Orthop Trauma Surg. 2013;133(9):1219-1224. doi: 10.1007/s00402-013-1795-5

58. Roddy E, DeBaun MR, Daoud-Gray A, et al. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 2018;28(3):351-362. doi: 10.1007/s00590-017-2063-0

59. Estrella EP, Wang EH. A Comparison of Vascularized Free Fibular Flaps and Nonvascularized Fibular Grafts for Reconstruction of Long Bone Defects after Tumor Resection. J Reconstr Microsurg. 2017;33(3):194-205. doi: 10.1055/s-0036-1594299

60. McCullough MC, Arkader A, Ariani R, et al. Surgical Outcomes, Complications, and Long-Term Functionality for Free Vascularized Fibula Grafts in the Pediatric Population: A 17-Year Experience and Systematic Review of the Literature. J Reconstr Microsurg. 2020;36(5):386-396. doi: 10.1055/s-0040-1702147

61. Houdek MT, Bayne CO, Bishop AT, Shin AY. The outcome and complications of vascularised fibular grafts. Bone Joint J. 2017;99-B(1):134-138. doi: 10.1302/0301-620X.99B1.BJJ-2016-0160.R1

62. Liu S, Tao S, Tan J, et al. Long-term follow-up of fibular graft for the reconstruction of bone defects. Medicine (Baltimore). 2018;97(40):e12605. doi: 10.1097/MD.0000000000012605

63. Bakri K, Stans AA, Mardini S, Moran SL. Combined massive allograft and intramedullary vascularized fibula transfer: the capanna technique for lower-limb reconstruction. Semin Plast Surg. 2008;22(3):234-241. doi: 10.1055/s-2008-1081406

64. Zekry KM, Yamamoto N, Hayashi K, et al. Reconstruction of intercalary bone defect after resection of malignant bone tumor. J Orthop Surg (Hong Kong). 2019;27(1):2309499019832970. doi: 10.1177/2309499019832970

65. Panagopoulos GN, Mavrogenis AF, Mauffrey C, et al. Intercalary reconstructions after bone tumor resections: a review of treatments. Eur J Orthop Surg Traumatol. 2017;27(6):737-746. doi: 10.1007/s00590-017-1985-x

66. Zheng K, Yu XC, Hu YC, et al. Outcome of segmental prosthesis reconstruction for diaphyseal bone tumors: a multi- center retrospective study. BMC Cancer. 2019;19(1):638. doi: 10.1186/s12885-019-5865-0

67. Palumbo BT, Henderson ER, Groundland JS, et al. Advances in segmental endoprosthetic reconstruction for extremity tumors: a review of contemporary designs and techniques. Cancer Control. 2011;18(3):160-170. doi: 10.1177/107327481101800303


Review

For citations:


Davydov D.V., Brizhan L.K., Kerimov A.A., Maksimov A.A., Khominets I.V., Lychagin А.V., Gritsyuk A.A., Arsomakov А.Z. Algorithm of surgical treatment for diaphyseal defects of the forearm bones due to gunshot injuries. Genij Ortopedii. 2024;30(4):487-501. https://doi.org/10.18019/1028-4427-2024-30-4-487-501. EDN: NPXTNS

Views: 482


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)