Preview

Genij Ortopedii

Advanced search

New finger reconstruction technologies using 3D printing

https://doi.org/10.18019/1028-4427-2024-30-3-427-437

EDN: TDYYAG

Abstract

Introduction The use of 3D printing technology in finger reconstruction improves accuracy of the procedure minimizing the donor defect and optimizing the appearance and function of the finger. The use of this technology in the finger reconstruction with an osteocutaneous radial forearm flap with axial blood supply and lengthening of the digital stumps and metacarpals remains poorly explored.

The objective of the study was to demonstrate new methods of preoperative planning for finger reconstruction and improve surgical outcomes.

Material and methods Outcomes of five patients treated with original methods based on 3D technology were retrospectively evaluated during preoperative planning, reconstruction of the thumb using an osteocutaneous radial forearm flap with axial blood supply, relocation of the stump of the third finger and lengthening of the stumps of the first and second metacarpals. The patients could achieve consolidation of interpositional bone allografts following lengthening of the finger stumps, stability of the bone base of the finger, organotypic restructuring of the marginal allograft during plastic surgery with an osteocutaneous radial forearm flap, and a functional position of the reconstructed thumb using the middle finger stump.

Results and discussion An individual device for planning finger reconstruction allows identification of the optimal size and position of the finger in three planes, which is essential for patients with severe hand deformities to avoid corrective procedures. An individual guide was used to osteotomize the radius to harvest a vascularized graft providing a cutout of a given size and shape and a cortical-cancellous allograft being identical in shape and size to replace the donor bone defect. The combined use of Masquelet technology and distraction of the finger stump or a metacarpal improved conditions for consolidation and restructuring of the interpositional allograft preventing fractures and infection.

Conclusion The use of 3D technology in finger reconstruction using an osteocutaneous radial forearm flap with axial blood supply and distraction of the finger stumps and metacarpals can improve surgical outcomes.

About the Authors

N. M. Aleksandrov
Privolzhsky Research Medical University
Russian Federation

Nikolay M. Alexandrov — Doctor of Medical Sciences, Leading Researcher

Nizhny Novgorod



I. D. Veshaev
Privolzhsky Research Medical University
Russian Federation

Ivan D. Veshaev — postgraduate

Nizhny Novgorod



References

1. Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017;7(12):e016891. doi: 10.1136/bmjopen-2017-016891

2. Matter-Parrat V, Liverneaux P. 3D printing in hand surgery. Hand Surg Rehabil. 2019;38(6):338-347. doi: 10.1016/j.hansur.2019.09.006

3. Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. J Am Acad Orthop Surg Glob Res Rev. 2021;5(4):e20.00230-11. doi: 10.5435/JAAOSGlobal-D-20-00230

4. Mohammadi A, Lavranos J, Zhou H, et al. A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities. PLoS One. 2020;15(5):e0232766. doi: 10.1371/journal.pone.0232766

5. Oud TAM, Lazzari E, Gijsbers HJH, et al. Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: A scoping review. PLoS One. 2021;16(11):e0260271. doi: 10.1371/journal.pone.0260271

6. O'Brien L, Cho E, Khara A, et al. 3D-printed custom-designed prostheses for partial hand amputation: Mechanical challenges still exist. J Hand Ther. 2021;34(4):539-542. doi: 10.1016/j.jht.2020.04.005

7. Bauermeister AJ, Zuriarrain A, Newman MI. Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review. Ann Plast Surg. 2016;77(5):569-576. doi: 10.1097/SAP.0000000000000671

8. Mulford JS, Babazadeh S, Mackay N. Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg. 2016;86(9):648-653. doi: 10.1111/ans.13533

9. Keller M, Guebeli A, Thieringer F, Honigmann P. Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery. Biomed Res Int. 2021;2021:4650245. doi: 10.1155/2021/4650245

10. Zhang D, Bauer AS, Blazar P, Earp BE. Three-Dimensional Printing in Hand Surgery. J Hand Surg Am. 2021;46(11):1016- 1022. doi: 10.1016/j.jhsa.2021.05.028

11. Eltorai AE, Nguyen E, Daniels AH. Three-Dimensional Printing in Orthopedic Surgery. Orthopedics. 2015;38(11):684- 687. doi: 10.3928/01477447-20151016-05

12. Tan H, Yang K, Wei P, et al. A Novel Preoperative Planning Technique Using a Combination of CT Angiography and Three-Dimensional Printing for Complex Toe-to-Hand Reconstruction. J Reconstr Microsurg. 2015;31(5):369-77. doi: 10.1055/s-0035-1546419

13. Zang CW, Zhang JL, Meng ZZ, et al. 3D Printing Technology in Planning Thumb Reconstructions with Second Toe Transplant. Orthop Surg. 2017;9(2):215-220. doi: 10.1111/os.12326

14. Xu L, Tan J, Wei P, et al. Clinical application of 3D printing technology for preoperative planning of thumb reconstruction. Acta Ortop Bras. 2021;29(4):211-218. doi: 10.1590/1413-785220212904235492

15. Lu H, Peng H, Peng Z, et al. The Application of Digital Design Combined with 3D Printing Technology in Skin Flap Transplantation for Fingertip Defects during the COVID-19 Epidemic. Biomed Res Int. 2021;2021:5554500. doi: 10.1155/2021/5554500

16. Gálvez JA, Gralewski K, McAndrew C, et al. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report. J Hand Surg Am. 2016;41(3):341-343. doi: 10.1016/j.jhsa.2015.12.010

17. Alexandrov NM, Veshaev ID. Device for preoperative planning of reconstruction of the first finger of the hand. Patent RF, no. 211603, 2022. Available at: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPM&DocNumber=211603&TypeFile=html. Accessed Feb 13, 2024. (In Russ.)

18. Karyakin NN, Aleksandrov NM, Gorbatov RO, Veshaev ID. A method for skin-osseous reconstruction of a finger and a guide for its implementation. Patent RF, no. 2747694, 2021. Available at: https://www.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2747694&TypeFile=html. Accessed Feb 13, 2024. (In Russ.)

19. Aleksandrov NM. Method of distraction lengthening of the metacarpal stump. Patent RF, no. 2796438, 2022. Available at: https://www.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2796438&TypeFile=html. Accessed Feb 13, 2024. (In Russ.)

20. Koryukov A.A. A device for determining the amount of elongation of the stump of the first finger. Patent RF, no. 2796438, 2022. Available at: https://www1.fips.ru/Archive/PAT/2009FULL/2009.07.10/DOC/RUNWU1/000/000/000/084/215/DOCUMENT.PDF. Accessed Feb 13, 2024. (In Russ.)

21. Avery CM. Review of the radial free flap: still evolving or facing extinction? Part two: osteocutaneous radial free flap. Br J Oral Maxillofac Surg. 2010;48(4):253-260. doi: 10.1016/j.bjoms.2009.09.017

22. Shnayder Y, Tsue TT, Toby EB, et al. Safe osteocutaneous radial forearm flap harvest with prophylactic internal fixation. Craniomaxillofac Trauma Reconstr. 2011;4(3):129-136. doi: 10.1055/s-0031-1279675

23. Capito AE, Hansen BK, Schmitt MW, et al. Osteocutaneous Radial Forearm Flap: Harvest Technique and Prophylactic Volar Locked Plating. Plast Reconstr Surg Glob Open. 2023;11(11):e5449. doi: 10.1097/GOX.0000000000005449

24. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27-37. doi: 10.1016/j.ocl.2009.07.011

25. Lasanianos N Kanakaris N, Giannoudis P. Current management of long bone large segmental defects. Orthopedics and Trauma. 2010;24(2):149-163. doi: 10.1016/j.mporth.2009.10.003

26. Gupta G, Ahmad S, Mohd Zahid, et al. Management of traumatic tibial diaphyseal bone defect by "induced-membrane technique". Indian J Orthop. 2016;50(3):290-296. doi: 10.4103/0019-5413.181780

27. Ayouba G, Lemonne F, Kombate NK, et al. Interest of nailing associated with the Masquelet technique in reconstruction of bone defect. J Orthop. 2019;20:228-231. doi: 10.1016/j.jor.2019.12.014

28. Mi M, Papakostidis C, Wu X, Giannoudis PV. Mixed results with the Masquelet technique: A fact or a myth? Injury. 2020;51(2):132-135. doi: 10.1016/j.injury.2019.12.032

29. Morris R, Hossain M, Evans A, Pallister I. Induced membrane technique for treating tibial defects gives mixed results. Bone Joint J. 2017;99-B(5):680-685. doi: 10.1302/0301-620X.99B5.BJJ-2016-0694.R2

30. Borzunov DYu, Mokhovikov DS, Kolchin SN, Gorbach EN. Combined use of the Ilizarov non-free bone plasty and Masquelet technique in patients with acquired bone defects and pseudarthrosis . Genij Ortopedii. 2020;26(4):532-538. doi:10.18019/1028-4427-2020-26-4-532-538

31. Heo CY, Kwon S, Back GH, Chung MS. Complications of distraction lengthening in the hand. J Hand Surg Eur Vol. 2008;33(5):609-615. doi: 10.1177/1753193408090767

32. Erdem M, Sen C, Eralp L, et al. Lengthening of short bones by distraction osteogenesis--results and complications. Int Orthop. 2009;33(3):807-813. doi: 10.1007/s00264-007-0491-x


Review

For citations:


Aleksandrov N.M., Veshaev I.D. New finger reconstruction technologies using 3D printing. Genij Ortopedii. 2024;30(3):427-437. https://doi.org/10.18019/1028-4427-2024-30-3-427-437. EDN: TDYYAG

Views: 353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)