Preview

Genij Ortopedii

Advanced search

MSCT-semiotics of vertebrae in patients with cervical spine stenosis

https://doi.org/10.18019/1028-4427-2024-30-3-353-361

EDN: ETBFJW

Abstract

Introduction The number of surgical interventions on the cervical spine for stenosis has been constantly increasing. This fact proves that there is a need for careful preoperative preparation that would consider the complexity of the intervention and the age of the patients.

Purpose To substantiate the need to include the MSCT data processing algorithm of bone tissue density of vertebral bodies and arches to assess their quality for planning osteoplastic decompressive laminoplasty in patients with cervical spine stenosis due to degenerative changes.

Material and methods This single-center retrospective study investigated qualitative and quantitative characteristics of the spine with radiography and multislice computed tomography (MSCT) in 82 patients with degenerative diseases of the cervical spine and associated spinal canal stenosis (CSS).

Results and discussion The data obtained indicate a tendency for the total density of the cervical vertebrae to increase from C3 to C5 and to decrease caudally, with minimal density in C7 without signs of osteoporosis. A similar trend is characteristic of trabecular bone. The density of the osteon layer of the vertebral arch cortex differs significantly from the density of the outer and inner plates. The total density of the compact layer of the vertebral arch cortex exceeds 785.15 ± 38.4 HU.

Conclusion The data obtained justify the need to include the study of the density of vertebral bodies, vertebral arches, and its thickness in the MSCT data processing algorithm to develop a plan for surgical intervention in patients with cervical spine stenosis in order to obtain objective data on the quality of the bone.

About the Authors

A. A. Sufianov
Sechenov First Moscow State Medical University; Federal Centre of Neurosurgery; Peoples’ Friendship University of Russia
Russian Federation

Albert A. Sufianov — Doctor of Medical Sciences, Professor, Head of the Department

Moscow; Tyumen



D. N. Nabiev
Federal Centre of Neurosurgery
Russian Federation

David N. Nabiev — neurosurgeon, Head of the Department

Tyumen



A. V. Burtsev
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Aleksandr V. Burtsev — Doctor of Medical Sciences, Director

Kurgan



R. A. Sufianov
Sechenov First Moscow State Medical University
Russian Federation

Rinat A. Sufianov — assistant, neurosurgeon

Moscow



M. T. Karsanova
Sechenov First Moscow State Medical University; Federal Centre of Neurosurgery
Russian Federation

Maria T. Karsanova — neurosurgeon

Moscow; Tyumen



V. V. Piterov
Sechenov First Moscow State Medical University; Federal Centre of Neurosurgery
Russian Federation

Vladislav V. Piterov — neurosurgeon

Moscow; Tyumen



References

1. Damdinov BB, Sorokovikov VA, Larionov SN, et al. Peculiarities of changes in the sagittal balance of the cervical spine in cervicobrachial syndrome. Russian Journal of Spine Surgery. 2019;16(2):42-48. doi: 10.14531/ss2019.2.42-48

2. Spirig JM, Sutter R, Götschi T, et al. Value of standard radiographs, computed tomography, and magnetic resonance imaging of the lumbar spine in detection of intraoperatively confirmed pedicle screw loosening-a prospective clinical trial. Spine J. 2019;19(3):461-468. doi: 10.1016/j.spinee.2018.06.345

3. Hirai T, Yoshii T, Sakai K, et al. Long-term results of a prospective study of anterior decompression with fusion and posterior decompression with laminoplasty for treatment of cervical spondylotic myelopathy. J Orthop Sci. 2018;23(1):32-38. doi: 10.1016/j.jos.2017.07.012

4. Wolf K, Krafft AJ, Egger K, et al. Assessment of spinal cord motion as a new diagnostic MRI-parameter in cervical spinal canal stenosis: study protocol on a prospective longitudinal trial. J Orthop Surg Res. 2019;14(1):321. doi: 10.1186/ s13018-019-1381-9

5. Hesni S, Baxter D, Saifuddin A. The imaging of cervical spondylotic myeloradiculopathy. Skeletal Radiol. 2023;52(12):2341-2365. doi: 10.1007/s00256-023-04329-0

6. Tetreault L, Kalsi-Ryan S, Davies B, et al. Degenerative Cervical Myelopathy: A Practical Approach to Diagnosis. Global Spine J. 2022;12(8):1881-1893. doi: 10.1177/21925682211072847

7. Chen YC, Kuo CH, Cheng CM, Wu JC. Recent advances in the management of cervical spondylotic myelopathy: bibliometric analysis and surgical perspectives. J Neurosurg Spine. 2019;31(3):299-309. doi: 10.3171/2019.5.SPINE18769

8. Nouri A, Cheng JS, Davies B, et al. Degenerative Cervical Myelopathy: A Brief Review of Past Perspectives, Present Developments, and Future Directions. J Clin Med. 2020;9(2):535. doi: 10.3390/jcm9020535

9. Llopis E, Belloch E, León JP, et al. The degenerative cervical spine. Radiologia. 2016;58 Suppl 1:13-25. doi: 10.1016/j.rx.2015

10. Xu F, Zou D, Li W, et al. Hounsfield units of the vertebral body and pedicle as predictors of pedicle screw loosening after degenerative lumbar spine surgery. Neurosurg Focus. 2020;49(2):E10. doi: 10.3171/2020.5.FOCUS20249

11. Liu FJ, Ding XK, Chai Y, et al. Influence of fixed titanium plate position on the effectiveness of open-door laminoplasty for cervical spondylotic myelopathy. J Orthop Surg Res. 2022;17(1):297. doi: 10.1186/s13018-022-03188-0

12. Schröder G, Reichel M, Spiegel S, et al. Breaking strength and bone microarchitecture in osteoporosis: a biomechanical approximation based on load tests in 104 human vertebrae from the cervical, thoracic, and lumbar spines of 13 body donors. J Orthop Surg Res. 2022;17(1):228. doi: 10.1186/s13018-022-03105-5

13. Kim MK, Cho HJ, Kwak DS, You SH. Characteristics of regional bone quality in cervical vertebrae considering BMD: Determining a safe trajectory for cervical pedicle screw fixation. J Orthop Res. 2018;36(1):217-223. doi: 10.1002/jor.23633

14. Zeynalov YuL, Dyachkova GV, Burtsev AV, et al. Computed tomographic semiotics of the apical vertebrae in patients with idiopathic scoliosis aged 14 to 18 years, depending on the magnitude of the spinal deformity. Radiology – practice. 2021;(5):11-27. (In Russ.) 2021;(5):11-27. doi: 10.52560/2713-0118-2021-5-11-27

15. Zaidi Q, Danisa OA, Cheng W. Measurement Techniques and Utility of Hounsfield Unit Values for Assessment of Bone Quality Prior to Spinal Instrumentation: A Review of Current Literature. Spine (Phila Pa 1976). 2019;44(4):E239-E244. doi: 10.1097/BRS.0000000000002813

16. Han C, Zhou C, Zhang H, et al. Evaluation of bone mineral density in adolescent idiopathic scoliosis using a three-dimensional finite element model: a retrospective study. J Orthop Surg Res. 2023;18(1):938. doi: 10.1186/s13018-023-04413-0

17. Weinberg DS, Rhee JM. Cervical laminoplasty: indication, technique, complications. J Spine Surg. 2020;6(1):290-301. doi: 10.21037/jss.2020.01.05

18. Choi MK, Kim SM, Lim JK. Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien). 2016;158(7):1421-1427. doi: 10.1007/s00701-016-2821-5

19. Wang H, Zou D, Sun Z, et al. Hounsfield Unit for Assessing Vertebral Bone Quality and Asymmetrical Vertebral Degeneration in Degenerative Lumbar Scoliosis. Spine (Phila Pa 1976). 2020;45(22):1559-1566. doi: 10.1097/BRS.0000000000003639

20. Grote HJ, Amling M, Vogel M, et al. Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone. 1995;16(3):301-308. doi: 10.1016/8756-3282(94)00042-5

21. Han K, You ST, Lee HJ, et al. Hounsfield unit measurement method and related factors that most appropriately reflect bone mineral density on cervical spine computed tomography. Skeletal Radiol. 2022;51(10):1987-1993. doi: 10.1007/s00256-022-04050-4

22. Leonova ON, Baikov ES, Krutko AV. Bone mineral density of lumbar vertebrae in patients with degenerative spinal diseases. Genij Ortopedii. 2022;28(5):692-697. doi: 10.18019/1028-4427-2022-28-5-692-697

23. Mikhailov A.N., Lukyanenko T.N. Vertebral mineral density in patients with cervical osteochondrosis according to a quantitative computed tomography. International reviews: clinical practice and health. 2014;(6):24-32.

24. Schröder G, Jabke B, Schulze M, et al. A comparison, using X-ray micro-computed tomography, of the architecture of cancellous bone from the cervical, thoracic and lumbar spine using 240 vertebral bodies from 10 body donors. Anat Cell Biol. 2021;54(1):25-34. doi: 10.5115/acb.20.269

25. Schröder G, Wendig D, Jabke B, et al. Comparison of the spongiosa morphology of the human cervical spine (CS), thoracic spine (TS) and lumbar spine (LS) of a 102-year-old body donor. Osteology. 2019;28(04):283-288. (In German) doi: 10.1055/a-0997-8059

26. Dyachkov KA, Dyachkova GV, Kutikov SA. Method for determining local density of cortical plate of long bones. Patent RF, no. 2539424, 2015. Available at: https://www.fips.ru/registers-doc-view/fips_servlet. Accessed Feb 07, 2024.

27. Wu X, Shi J, Wu J, et al. Pedicle screw loosening: the value of radiological imagings and the identification of risk factors assessed by extraction torque during screw removal surgery. J Orthop Surg Res. 2019;14(1):6. doi: 10.1186/s13018-018-1046-0

28. Liang X, Liu Q, Xu J, et al. Hounsfield Unit for Assessing Bone Mineral Density Distribution Within Cervical Vertebrae and Its Correlation With the Intervertebral Disc Degeneration. Front Endocrinol (Lausanne). 2022;13:920167. doi: 10.3389/fendo.2022.920167


Review

For citations:


Sufianov A.A., Nabiev D.N., Burtsev A.V., Sufianov R.A., Karsanova M.T., Piterov V.V. MSCT-semiotics of vertebrae in patients with cervical spine stenosis. Genij Ortopedii. 2024;30(3):353-361. https://doi.org/10.18019/1028-4427-2024-30-3-353-361. EDN: ETBFJW

Views: 188


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)