Current state and perspectives on the use of zirconium ceramic implants in traumatology and orthopaedics
https://doi.org/10.18019/1028-4427-2024-30-1-114-123
EDN: OBNLBM
Abstract
Background Ceramic materials are currently in wide demand in various fields of medicine. Zirconium ceramics demonstrate exceptional mechanical properties and biocompatibility and do not cause cytotoxic effects or allergic reactions in surrounding tissues.
The objective was to present an analysis of current literature data on the use of zirconium ceramics as a bone replacement material in traumatology and orthopaedics.
Materials and methods The search for publications was conducted using the databases of Scopus, PubMed and the electronic scientific library eLIBRARY in the Russian and English languages using the keywords: bioceramics, bone, bone defect, zirconate, zirconium ceramics, bone tissue engineering, implant, scaffold, augment, biointegration, bioactivity. Depth of search for scientific papers was from 2000 to 2023.
Results and discussion Zirconium dioxide is the main ceramic bioinert material. The study presents the characteristics of ZrO2 as a bone replacement material and its comparison with titanium implants. Data are presented on various strategies for improving zirconium bioceramics: improving the surface of the material by physical and chemical methods, obtaining volumetric porosity, including using additive technologies, creating composite materials, and developing bioactive coatings. New methods of creating zirconium ceramics compatible with living tissues containing bioactive ions that promote both osseointegration and bone tissue regeneration have been actively studied.
Conclusions Zirconium dioxide ceramics appear to be a promising alternative to titanium implants in terms of mechanical strength, biological functionality, chemical stability, osseointegration, and antibacterial properties. Future experimental and clinical studies will further improve zirconium ceramics.
About the Authors
E. A. VolokitinaRussian Federation
Elena A. Volokitina – Doctor of Medical Sciences, Professor, Leading Researcher.
Ekaterinburg
I. P. Antropova
Russian Federation
Irina P. Antropova – Doctor of Biological Sciences, Leading Researcher.
Ekaterinburg
K. A. Timofeev
Russian Federation
Kirill A. Timofeev – graduate student.
Ekaterinburg
R. A. Trufanenko
Russian Federation
Roman A. Trufanenko – graduate student.
Ekaterinburg
References
1. Schade AT, Mbowuwa F, Chidothi P, et al. Epidemiology of fractures and their treatment in Malawi: Results of a multicentre prospective registry study to guide orthopaedic care planning. PLoS One. 2021;16(8):e0255052. doi: 10.1371/journal.pone.0255052
2. Laurencin C, Khan Y, El-Amin SF. Bonegraftsubstitutes. Expert Rev Med Devices.2006;3(1):49-57. doi:10.1586/17434440.3.1.49
3. Ялочкина Т.О., Белая Ж.Е. Низкотравматичные переломы и костное ремоделирование при сахарном диабете 2 типа. Ожирение и метаболизм. 2017;14(3):11-18. doi: 10.14341/OMET2017311-18
4. Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77-86.
5. McKee MD. Management of segmental bony defects: the role of osteoconductive orthobiologics. J Am Acad Orthop Surg. 2006;14(10 Spec No.):S163-167. doi: 10.5435/00124635-200600001-00036
6. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. doi: 10.1615/critrevbiomedeng.v40.i5.10
7. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016;59:690-701. doi: 10.1016/j.msec.2015.10.069
8. Chauhan A, Bhatt AD. A review on design of scaffold for osteoinduction: Toward the unification of independent design variables. Biomech Model Mechanobiol. 2023;22(1):1-21. doi: 10.1007/s10237-022-01635-9
9. Гилев М.В., Зайцев Д.В., Измоденова М.Ю., и др. Сравнительная характеристика методов аттестации деформированной микроструктуры трабекулярной костной ткани. Российский журнал биомеханики. 2019;23(2):242-250. doi: 10.15593/RZhBiomeh/2019.2.06
10. Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48(2):142-148.
11. Muscolo DL, Ayerza MA, Aponte-Tinao LA. Massive allograft use in orthopedic oncology. Orthop Clin North Am. 2006;37(1):65-74. doi: 10.1016/j.ocl.2005.08.003
12. Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol. 2019;319:112761. doi: 10.1016/j.expneurol.2018.05.016
13. Kaur G, Kumar V, Baino F, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater Sci Eng C Mater Biol Appl. 2019;104:109895. doi: 10.1016/j.msec.2019.109895
14. Vaiani L, Boccaccio A, Uva AE, et al. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J Funct Biomater. 2023;14(3):146. doi: 10.3390/jfb14030146
15. Jitaru S, Hodisan I, Timis L, et al. The use of bioceramics in endodontics-literature review. Clujul Med. 2016;89(4):470-473. doi: 10.15386/cjmed-612
16. Кульбакин Д.Е., Чойнзонов Е.Л., Буякова С.П. и др. Выбор реконструктивного материала в восстановлении костных дефектов челюстно-лицевой области в онкологической практике. Голова и шея. 2018;6(4):64-69.
17. Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7 Suppl 4(Suppl 4): S379-S391. doi: 10.1098/rsif.2010.0151.focus
18. de Ruiter A, Dik E, van Es R, et al. Micro-structured calcium phosphate ceramic for donor site repair after harvesting chin bone for grafting alveolar clefts in children. J Craniomaxillofac Surg. 2014;42(5):460-468. doi: 10.1016/j.jcms.2013.05.042
19. Whitehouse MR, Dacombe PJ, Webb JC, Blom AW. Impaction grafting of the acetabulum with ceramic bone graft substitute: high survivorship in 43 patients with a mean follow-up period of 4 years. Acta Orthop. 2013;84(4):371-376. doi: 10.3109/17453674.2013.824801
20. Warreth A, Elkareimi Y. All-ceramic restorations: A review of the literature. Saudi Dent J. 2020;32(8):365-372. doi: 10.1016/j.sdentj.2020.05.004
21. Collins MN, Ren G, Young K, et al, Oliveira J.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Func Mater. 2021;31(21):2010609. doi: 10.1002/adfm.202010609
22. Yanyan S, Guangxin W, Guoqing S, et al. Effects of amino acids on conversion of calcium carbonate to hydroxyapatite. RSC Adv. 2020;10(61):37005-37013. doi: 10.1039/d0ra07636h
23. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for Bone Regenerative Engineering. Adv Healthc Mater. 2015;4(9):1268-85. doi: 10.1002/adhm.201400760
24. De Aza AH, Chevalier J, Fantozzi G, et al. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials. 2002;23(3):937-45. doi: 10.1016/s0142-9612(01)00206-x
25. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006;27(4):535-43. doi: 10.1016/j.biomaterials.2005.07.034
26. Абызов А.М. Оксид алюминия и алюмооксидная керамика (Обзор). Часть 1. Свойства Al2O3 и промышленное производство дисперсного Al2O3. Новые огнеупоры. 2019;(1):16-23. doi: 10.17073/1683-4518-2019-1-16-23
27. Vult von Steyern P. All-ceramic fixed partial dentures. Studies on aluminum oxide- and zirconium dioxide-based ceramic systems. Swed Dent J Suppl. 2005;(173):1-69.
28. Hernigou P, Bahrami T. Zirconia and alumina ceramics in comparison with stainless-steel heads. Polyethylene wear after a minimum ten-year follow-up. J Bone Joint Surg Br. 2003;85(4):504-509. doi: 10.1302/0301-620x.85b4.13397
29. Denry I, Abdelaal M, Dawson DV, et al. Effect of crystalline phase assemblage on reliability of 3Y-TZP. J Prosthet Dent. 2021;126(2):238-247. doi: 10.1016/j.prosdent.2020.05.023
30. Yin L, Nakanishi Y, Alao AR, et al. A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP. 2017;65:284-290. doi: 10.1016/j.procir.2017.04.057
31. Ульянов Ю.А., Зарипова Э.М., Мингазова Э.Н. К вопросу о биосовместимости керамических имплантатов при оказании ортопедической помощи. Менеджер здравоохранения. 2023;(9):18-22. doi: 10.21045/1811-0185-2023-9-18-22
32. Depprich R, Zipprich H, Ommerborn M, et al. Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med. 2008;4:30. doi: 10.1186/1746-160X-4-30
33. Gahlert M, Roehling S, Sprecher CM, et al. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res. 2012;23(3):281-286. doi: 10.1111/j.1600-0501.2011.02157.x
34. Han JM, Hong G, Lin H, et al. Biomechanical and histological evaluation of the osseointegration capacity of two types of zirconia implant. Int J Nanomedicine. 2016;11:6507-6516. doi: 10.2147/IJN.S119519
35. Kohal RJ, Weng D, Bächle M, Strub JR. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol. 2004;75(9):1262-8. doi: 10.1902/jop.2004.75.9.1262
36. Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol. 2003;29(1):8-12. doi: 10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2
37. Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, et al. In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. J Periodontol. 2017;88(3):298-307. doi: 10.1902/jop.2016.160245
38. Gahlert M, Gudehus T, Eichhorn S, et al. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Implants Res. 2007;18(5):662-668. doi: 10.1111/j.1600-0501.2007.01401.x
39. Bacchelli B, Giavaresi G, Franchi M, et al. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep. Acta Biomater. 2009;5(6):2246-2257. doi: 10.1016/j.actbio.2009.01.024
40. Flamant Q, García Marro, Roa Rovira JJ, Anglada M. Hydrofluoric acid etching of dental zirconia. Part 1: etching mechanism and surface characterization. J Eur Ceram Soc. 2016;36(1):121-134. doi: 10.1016/j.jeurceramsoc.2015.09.021
41. Vu VT, Oh GJ, Yun KD, et al. Acid etching of glass-infiltrated zirconia and its biological response. J Adv Prosthodont. 2017;9(2):104-109. doi: 10.4047/jap.2017.9.2.104
42. Henningsen A, Smeets R, Heuberger R, et al. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. Eur J Oral Sci. 2018;126(2):126-134. doi: 10.1111/eos.12400
43. Brezavšček M, Fawzy A, Bächle M, et al. The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials. Materials (Basel). 2016;9(12):958. doi: 10.3390/ma9120958
44. Yang Y, Zhou J, Liu X, et al. Ultraviolet light-treated zirconia with different roughness affects function of human gingival fibroblasts in vitro: the potential surface modification developed from implant to abutment. J Biomed Mater Res B Appl Biomater. 2015;103(1):116-24. doi: 10.1002/jbm.b.33183
45. Кирилова И.А., Садовой М.А., Подорожная В.Т. и др. Керамические и костно-керамические имплантаты: перспективные направления. Хирургия позвоночника. 2013;(4):052-062. doi: 10.14531/ss2013.4.52-62
46. Калинина М.В., Ковалько Н.Ю., Суслов Д.Н. и др. Влияние высокопористой биокерамики на основе системы ZrO2 – Y2O3 – CeO2 на биологические ткани экспериментальных животных. Перспективные материалы. 2020;(7):29-39. doi: 10.30791/1028-978X-2020-7-29-39. EDN: UFWBLV.
47. Рогожников А.Г. Способ получения и физико-механические испытания отечественных керамических материалов на основе диоксида циркония из наноструктурированных порошков. Уральский медицинский журнал. 2015;(10):113-119. EDN: VLMTEH.
48. Ковалько Н.Ю., Калинина М.В., Суслов Д.Н. и др. Исследование влияния биокерамических образцов на основе t-ZrO2 на состояние мышечной и соединительной тканей экспериментальных животных при внутримышечном введении. Перспективные материалы. 2019;(5):41-49. doi: 10.30791/1028-978X-2019-5-41-49. EDN: WOHJSY.
49. Буякова С.П., Хлусов И.А., Кульков С.Н. Пористая циркониевая керамика для эндопротезирования костной ткани. Физическая мезомеханика. 2004;7(Спец 2):127-130. doi: 10.24411/1683-805X-2004-00097
50. Li T, Chang J, Zhu Y, Wu C. 3D Printing of Bioinspired Biomaterials for Tissue Regeneration. Adv Healthc Mater. 2020:e2000208. doi: 10.1002/adhm.202000208
51. Zafar MJ, Zhu D, Zhang Z. 3D Printing of Bioceramics for Bone Tissue Engineering. Materials (Basel). 2019;12(20):3361. doi: 10.3390/ma12203361
52. Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37-59. doi: 10.1016/j.actbio.2018.08.026
53. Lughi V, Sergo V. Low temperature degradation -aging-of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010;26(8):807-820. doi: 10.1016/j.dental.2010.04.006
54. Ricco Pa, de Carvalho Ramos N, Bastos Campos TM, et al. The roles of microstructure and surface energy on subcritical crack growth in glass-ceramics. Ceramics International. 2021;47(5)6827-6833. doi: 10.1016/j.ceramint.2020.11.025
55. Chevalier J, Deville S, Münch E, et al. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004;25(24):5539-5545. doi: 10.1016/j.biomaterials.2004.01.002
56. Gremillard L, Chevalier J, Martin L, et al. Sub-surface assessment of hydrothermal ageing in zirconia-containing femoral heads for hip joint applications. Acta Biomater. 2018;68:286-295. doi: 10.1016/j.actbio.2017.12.021
57. Boniecki M, Sadowski T, Gołębiewski P, et al. Mechanical properties of lumina/zirconia composites. Ceramics International. 2020;46(1):1033-1039. doi: 10.1016/j.ceramint.2019.09.068
58. Abbas MKG, Ramesh S, Lee KYS, et al. Effects of sintering additives on the densification and properties of alumina-toughened zirconia ceramic composites. Ceramics International. 2020;46(17): 27539-27549. doi: 10.1016/j.ceramint.2020.07.246
59. Abbas MKG, Ramesh S, Tasfy SFH, Lee KYS. A state-of-the-art review on alumina toughened zirconia ceramic composites. Materials Today Communications. 2023;37:106964. doi: 10.1016/j.mtcomm.2023.106964
60. Patil S, Patil DR, Jung IC, Ryu J. Effect of cooling rates on mechanical properties of alumina-toughened zirconia composites. Ceramics International. 2022;48:21048-21053. doi: 10.1016/j.ceramint.2022.04.127
61. Sequeira S, Fernandes MH, Neves N, Almeida MM. Development and characterization of zirconia–alumina composites for orthopedic implants. Ceramics International. 2017;43:693-703. doi: 10.1016/j.ceramint.2016.09.216
62. Плющев А.Л., Гаврюшенко Н.С., Голев С.Н. Особенности применения керамики в парах трения эндопротезов тазобедренного сустава при ДКА. Московский хирургический журнал. 2008;(2):47-55. EDN: QZPZXF.
63. Aboushelib MN, Shawky R. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nanohydroxyapatite particles. Int J Implant Dent. 2017 Dec;3(1):21. doi: 10.1186/s40729-017-0082-6
64. Pardun K, Treccani L, Volkmann E, et al. Mixed zirconia calcium phosphate coatings for dental implants: tailoring coating stability and bioactivity potential. Mater Sci Eng C Mater Biol Appl. 2015;48:337-346. doi: 10.1016/j.msec.2014.12.031
65. Пантелеенко Ф.И., Оковитый В.А., Кулак А.И., Оковитый В.В. Композиционный порошок для нанесения плазменных покрытий, полученный на основе совместного осаждения гидроксиапатита и гидратированного диоксида циркония. Упрочняющие технологии и покрытия. 2015; (6):38-40. EDN TXQDWB.
66. Yang J, Sultana R, Ichim P, et al. Micro-porous calcium phosphate coatings on load-bearing zirconia substrate: Processing, property and application. Ceramics International. 2013;39(6):6533-6542. doi: 10.1016/j.ceramint.2013.01.086
67. Silva ADR, Pallone EMJA, Lobo AO. Modification of surfaces of alumina-zirconia porous ceramics with Sr2+ after SBF. J Aust Ceram Soc. 2020;56:517-524. doi: 10.1007/s41779-019-00360-4
68. Kou W, Akasaka T, Watari F, Sjögren G. An in vitro evaluation of the biological effects of carbon nanotube-coated dental zirconia. ISRN Dent. 2013;2013:296727. doi: 10.1155/2013/296727
69. Fabris D, Souza JCM, Silva FS, et al. The bending stress distribution in bilayered and graded zirconia-based dental ceramics. Ceramics International. 2016;42(9):11025-11031. doi: 10.1016/j.ceramint.2016.03.245
70. Li H, Xie Y, Li K, L. et al Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating. Ceramics International. 2014;40(8):12821-12829. doi: 10.1016/j.ceramint.2014.04.136
71. Brokesh AM, Gaharwar AK. Inorganic Biomaterials for Regenerative Medicine. ACS Appl Mater Interfaces. 2020;12(5):5319-5344. doi: 10.1021/acsami.9b17801
72. Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration (Beijing). 2021;1(3):20210089. doi: 10.1002/EXP.20210089
73. Schünemann FH, Galárraga-Vinueza ME, Magini R, et al. Zirconia surface modifications for implant dentistry. Mater Sci Eng C Mater Biol Appl. 2019;98:1294-1305. doi: 10.1016/j.msec.2019.01.062
74. Yin L, Nakanishi Y, Alao AR, et al. A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP. 2017;65:284-290. doi: 10.1016/j.procir.2017.04.057
75. Pardun K, Treccani L, Volkmann E, et al. Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior. J Biomater Appl. 2015;30(1):104-118. doi: 10.1177/0885328215572428
76. Mushahary D, Wen C, Kumar JM, et al. Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg-Zr-Ca alloy implants. Colloids Surf B Biointerfaces. 2014;122:719-728. doi: 10.1016/j.colsurfb.2014.08.005
77. Измоденова М.Ю., Гилев М.В., Ананьев М.В. и др. Характеристика костной ткани при имплантации керамического материала на основе цирконата лантана в эксперименте. Травматология и ортопедия России. 2020;26(3):130-140. doi: 10.21823/2311-2905-2020-26-3-130-140
78. Tarasova N, Galisheva A, Belova K, et al. Ceramic materials based on lanthanum zirconate for the bone augmentation purposes: materials science approach. Chimica Techno Acta. 2022;9(2), No. 20229209. doi: 10.15826/chimtech.2022.9.2.09.
79. Ulitko M, Antonets Y, Antropova I, et al. Ceramic materials based on lanthanum zirconate for the bone augmentation purposes: cytocompatibility in a cell culture model. Chimica Techno Acta. 2023;10(4), No. 202310402. doi: 10.15826/chimtech.2023.10.4.02
Review
For citations:
Volokitina E.A., Antropova I.P., Timofeev K.A., Trufanenko R.A. Current state and perspectives on the use of zirconium ceramic implants in traumatology and orthopaedics. Genij Ortopedii. 2024;30(1):114-123. https://doi.org/10.18019/1028-4427-2024-30-1-114-123. EDN: OBNLBM