Comparative experimental study of biomechanical features of suture materials in tendon repair
https://doi.org/10.18019/1028-4427-2024-30-1-99-106
EDN: YUQZRW
Abstract
Introduction Many different suture configurations and pathomorphology of tendon repair have been described for tendon repair over the past 20 years. However, the biomechanical properties of suture material at primary flexor tendon repair have not been sufficiently explored. A cyclic loading test is performed to evaluate the performance of the different sutures under repeated loading conditions simulating dynamic conditions in postoperative rehabilitation procedures.
The objective was to compare the strength of suture materials under cyclic loading on a biological model of a tendon.
Material and methods Eighty porcine digital flexor tendons were examined in a pilot study. The sutured tendons were tested with a universal testing machine. Tendon repair was produced using polypropylene in group I, braided polyamide suture in group II, complex polytetrafluoroethylene thread in group III and a thread of superelastic titanium nickelide in group IV. The standard Chang protocol was used for cyclic loading.
Results The percentage of intact sutures was 25 % in group I and in group II, 80 % in group III and 85 % in group IV after completing the entire load cycle. A pairwise comparison showed suture disruption being more common for group I and group II as compared to group III and group IV. Irreversible gap was more common for group 1 as compared to group IV. Neither knot ruptures nor tissue cutting were seen in the groups.
Discussion The topic of biomechanical properties of suture material remains poorly understood. Although static load testing is commonly used in current experimental studies and cyclic testing is suitable for simulating postoperative conditions. The search continues for the “ideal” suture material for flexor tendon repair to prevent tears and retain tensile properties until the repair reaches strength.
Conclusion The threads of polytetrafluoroethylene and nickelide-titanium showed the best biomechanical properties for tendon repair in the form of linear strength, good elasticity and low plasticity of the suture material. There were no significant differences between polypropylene and braided polyamide threads.
About the Authors
V. M. MalishevskyRussian Federation
Vladimir M. Malishevsky – orthopedic traumatologist, Head of Service.
Tyumen
R. V. Paskov
Russian Federation
Roman V. Paskov – Doctor of Medical Sciences, Professor of Department.
Tyumen
K. S. Sergeev
Russian Federation
Konstantin S. Sergeev – Doctor of Medical Sciences, Professor, Head of Department.
Tyumen
References
1. Минаев Т.Р., Юлдашев А.А., Низов О.Н. и др. Анализ результатов восстановительных операций при повреждениях сухожилий сгибателей пальцев кисти. Вестник экстренной медицины. 2014;(3):20-25.
2. Manninen M, Karjalainen T, Määttä J, Flinkkilä T. Epidemiology of Flexor Tendon Injuries of the Hand in a Northern Finnish Population. Scand J Surg. 2017;106(3):278-282. doi: 10.1177/1457496916665544
3. Зенченко А.В., Чернякова Ю.М. Биология срастания, изменения биомеханики и реабилитация после шва сухожилий сгибателей пальцев кисти. Медицинские новости. 2020;(10(313)):13-19.
4. Казантаев К.Е., Набиев Е.Н., Мухамедкерим К.Б. и др. Патоморфологические аспекты исследования при отдаленных последствиях травм сухожилий сгибателей пальцев кисти. Вестник КазНМУ. 2022;(1):279-285.
5. Battiston B, Triolo PF, Bernardi A, Artiaco S, Tos P. Secondary repair of flexor tendon injuries. Injury. 2013;44(3):340-345. doi: 10.1016/j.injury.2013.01.023
6. Tang JB, Amadio PC, Boyer MI, et al. Current practice of primary flexor tendon repair: a global view. Hand Clin. 2013;29(2):179-189. doi: 10.1016/j.hcl.2013.02.003
7. Chang JH, Shieh SJ, Kuo LC, Lee YL. The initial anatomical severity in patients with hand injuries predicts future health-related quality of life. J Trauma. 2011;71(5):1352-1358. doi: 10.1097/TA.0b013e318216a56e
8. Киселева А. Н., Наконечный Д.Г., Вебер Е.В. и др. Результаты лечения пациентов с повреждениями сухожилия сгибателей пальцев кисти. Современные достижения травматологии и ортопедии. Санкт-Петербург: РНИИТО; 2018:118-120.
9. Venkatramani H, Varadharajan V, Bhardwaj P, et al. Flexor tendon injuries. J Clin Orthop Trauma. 2019;10(5):853-861. doi: 10.1016/j.jcot.2019.08.005
10. Chang MK, Tay SC. Flexor Tendon Injuries and Repairs: A Single Centre Experience. J Hand Surg Asian Pac Vol. 2018;23(4):487-495. doi: 10.1142/S2424835518500479
11. Thangavelu M, Veerasamy N, Kanthan A. Study on evaluation and management of hand injuries. J Evol Med Dent Sci. 2016;(5):4703-4706. doi: 10.14260/jemds/2016/1072
12. Hurley CM, Reilly F, Callaghan S, Baig MN. Negative Predictors of Outcomes of Flexor Tendon Repairs. Cureus. 2019;11(3):e4303. doi: 10.7759/cureus.4303
13. Kadar A, Fainzack A, Vigler M. Dynamic Tendon Grip (DTG™) novel knot array compared to traditional sutures for zone two flexor tendon injury - a biomechanical feasibility study. BMC Musculoskelet Disord. 2022;23(1):320. doi: 10.1186/s12891-022-05279-9
14. Zafonte B, Rendulic D, Szabo RM. Flexor pulley system: anatomy, injury, and management. J Hand Surg Am. 2014;39(12):2525-32; quiz 2533. doi: 10.1016/j.jhsa.2014.06.005
15. Мирзоев М.Ш., Шакиров М.Н., Порохова Е.Д., and Джонибекова Р.Н. Экспериментальное изучение интеграционных особенностей пористо-проницаемого и сетчатого никелида титана in vivo. Вестник Авиценны. 2020;22(3):434-439. doi: 10.25005/2074-0581-2020-22-3-434-439
16. Кокорев О.В., Гюнтер С.В., Ходоренко В.Н. Влияние архитектоники и модифицированной поверхности клеточных носителей из пористо-проницаемого никелида титана на клеточную биосовместимость. Acta Biomedica Scientifica. 2018;3(3):188-194. doi 10.29413/ABS.2018-3.3.29
17. Фёдоров П.Г., Аршакян В.А., Гюнтер В.Э. и др. Современные шовные материалы (обзор литературы). Acta Biomedica Scientifica. 2017;2(6):157-162. doi: 10.12737/article_5a0a8e626adf33.46655939
18. Надеждин С.В., Ковалева М.Г., Колпаков А.Я. и др. Оценка биосовместимости и биорезистентности заготовок имплантатов из никелида титана с модифицированными наноразмерными поверхностными слоями в опытах in vivo. Биомедицина. 2016;(1):95-101.
19. Корнилов Д.Н., Попов И.В., Раевская Л.Ю. и др. Результаты применения сверхэластичного имплантата из никелид титана при повреждении сухожилия в эксперименте, морфологическое обоснование. Сибирский медицинский журнал (Иркутск). 2014;126(3):21-25.
20. Wu YF, Cao Y, Zhou YL, Tang JB. Biomechanical comparisons of four-strand tendon repairs with double-stranded sutures: effects of different locks and suture geometry. J Hand Surg Eur Vol. 2011;36(1):34-39. doi: 10.1177/1753193410379554
21. Tang JB. Tendon injuries across the world: treatment. Injury. 2006;37(11):1036-42. doi: 10.1016/j.injury.2006.07.027
22. Tang JB, Zhang Y, Cao Y, Xie RG. Core suture purchase affects strength of tendon repairs. J Hand Surg Am. 2005;30(6):1262-1266. doi: 10.1016/j.jhsa.2005.05.011
23. Bao R, Cheng S, Zhu J, et al. A Simplified Murine Model to Imitate Flexor Tendon Adhesion Formation without Suture. Biomimetics (Basel). 2022;7(3):92. doi: 10.3390/biomimetics7030092
24. Chang MK, Lim ZY, Wong YR, Tay SC. A review of cyclic testing protocols for flexor tendon repairs. Clin Biomech (Bristol, Avon). 2019;62:42-49. doi: 10.1016/j.clinbiomech.2018.12.007
25. de Wit T, Walbeehm ET, Hovius SE, McGrouther DA. The mechanical interaction between three geometric types of nylon core suture and a running epitenon suture in repair of porcine flexor tendons. J Hand Surg Eur Vol. 2013;38(7):788-94. doi: 10.1177/1753193413484876
26. Peltz TS, Haddad R, Walsh WR. The change in three-dimensional geometry of the Kessler flexor tendon repair under tension: a qualitative assessment using radiographs. J Hand Surg Eur Vol. 2010;35(8):676-677. doi: 10.1177/1753193409356374
27. Баврина А.П., Саперкин Н.В. Наблюдательные эпидемиологические исследования и особенности представления результатов в научном отчете. Медицинский альманах. 2021;(2(67)):83-89.
28. Орлов А.И. Основные этапы становления статистических методов. Научный журнал КубГАУ. 2014;(97(03)):73-85.
29. Weissman JP, Sasson DC, Chappell AG, et al. Practice Patterns in Operative Flexor Tendon Laceration Repair: A 15-Year Analysis of Continuous Certification Data from the American Board of Plastic Surgery. Plast Reconstr Surg Glob Open. 2022;10(10):e4558. doi: 10.1097/GOX.0000000000004558
30. Chinen S, Okubo H, Kusano N, et al. Effects of Different Core Suture Lengths on Tensile Strength of Multiple-Strand Sutures for Flexor Tendon Repair. J Hand Surg Glob Online. 2020;3(1):41-46. doi: 10.1016/j.jhsg.2020.10.006
31. Rawson SD, Margetts L, Wong JK, Cartmell SH. Sutured tendon repair; a multi-scale finite element model. Biomech Model Mechanobiol. 2015;14(1):123-33. doi: 10.1007/s10237-014-0593-5
32. Sull A, Inceoglu S, August A, et al. Comparison of Barbed Sutures in Porcine Flexor Tenorrhaphy. Hand (N Y). 2016;11(4):475-478. doi: 10.1177/1558944715626928
33. Wong YR, Tay SC. A Biomechanical Study of a Novel Asymmetric 6-Strand Flexor Tendon Repair Using Porcine Tendons. Hand (N Y). 2018;13(1):50-55. doi: 10.1177/1558944716685829
Review
For citations:
Malishevsky V.M., Paskov R.V., Sergeev K.S. Comparative experimental study of biomechanical features of suture materials in tendon repair. Genij Ortopedii. 2024;30(1):99-106. https://doi.org/10.18019/1028-4427-2024-30-1-99-106. EDN: YUQZRW