Preview

Genij Ortopedii

Advanced search

Synthetic biomaterials based on hydroxyapatite and tricalcium phosphate: analysis of current clinical trials

https://doi.org/10.18019/1028-4427-2024-30-1-76-89

EDN: RTEQSR

Abstract

Introduction To date, a wide variety of synthetic materials, including metals, polymers and ceramics, have been proposed and used as a substitute for bone grafts in the field of traumatology/orthopedics, neurosurgery and oral and maxillofacial surgery (OMFS). However, the most studied materials are calcium phosphate ceramics (CPC), in particular hydroxyapatite and tricalcium phosphate, as well as their mixtures, called byphasic calcium phosphates. This interest stems from the fact that the main component of bone is the apatite mineral calcium phosphate. Hydroxyapatite and tricalcium phosphate are among the most commonly used and effective synthetic substitutes for bone grafts. They have not only osteoconductive properties, but also osteoinductive. These properties, combined with cell-mediated resorption, ensure complete regeneration of bone defects. This study will analyze existing clinical trials, registered on the clinicaltirals.gov website, on the use of hydroxyapatite and tricalcium phosphate in the field of traumatology and orthopedics, neurosurgery and OMFS.

Aim To identify the potential for clinical use, as well as possible side effects, of CPC as a replacement for bone grafts.

Materials and methods The search strategy was to use material from the clinicaltrials.gov website, which focused on key terms such as hydroxyapatite, tricalcium phosphate, hydroxyapatite and tricalcium phosphate, traumatology and orthopedics, maxillofacial surgery, dentistry, neurosurgery, bone, и diseases of the musculoskeletal system.

Results and discussion As of November 2022, there were approximately 85 clinical trials with hydroxyapatite application, approximately 49 clinical trials with tricalcium phosphate, and approximately 16 clinical trials with the hydroxyapatite/tricalcium phosphate combination. Most of the studies were Phase 1-2, Phase 2, or Phase 4. Most focused on tibial trauma therapy, osteoporosis/osteopenia, alveolar bone resorption, and spinal surgery. It was found that full results were published only in 3, 7 and 2 clinical trials on the use of hydroxyapatite, tricalcium phosphate and their combination, respectfully. All clinical trials had similar preparation methods and all of those clinical trials produced positive results without serious side effects.

Conclusion There is a wide potential for clinical use of CPC as synthetic bone graft substitutes without reports of serious side effects. Many preclinical and clinical studies are currently underway on the use of hydroxyapatite and tricalcium phosphate, and their future results will further explore their clinical potential.

About the Authors

U. F. Mukhametov
Republican Clinical Hospital named after. G.G. Kuvatova
Russian Federation

Ural F. Mukhametov – Candidate of Medical Sciences, Head of Department.

Ufa



D. S. Ivliev
Federal Centers of Traumatology, Orthopedics and Endoprosthetics; Smolensk State Medical University
Russian Federation

Denis S. Ivliev – neurosurgeon.

Smolensk



I. F. Gareev
Bashkir State Medical University
Russian Federation

Ilgiz F. Gareev – Ph.D., Senior Researcher.

Ufa



S. V. Lyulin
Carmel Medical Center
Russian Federation

Sergey V. Lyulin – Doctor of Medical Sciences, Head of Department.

Chelyabinsk



D. Yu. Borzunov
Ural State Medical University; Central City Clinical Hospital No. 23
Russian Federation

Dmitry Yu. Borzunov – Doctor of Medical Sciences, Professor, Professor of Department.

Ekaterinburg



References

1. Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi: 10.1038/s41580-020-00279-w

2. Люлин С.В., Ивлиев Д.С., Балаев П.И. и др. Результаты хирургического лечения метастатических поражений позвоночника с применением малоинвазивных методов лечения, в том числе 3D-видеоэндоскопических технологий. Вопросы нейрохирургии имени Н.Н. Бурденко. 2021;85(4):49-57. doi: 10.17116/neiro20218504149

3. Zhu Y, Goh C, Shrestha A. Biomaterial Properties Modulating Bone Regeneration. Macromol Biosci. 2021;21(4):e2000365. doi: 10.1002/mabi.202000365

4. Qi J, Yu T, Hu B, et al. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int J Mol Sci. 2021;22(19):10233. doi: 10.3390/ijms221910233

5. Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1-30. doi: 10.1016/j.actbio.2018.09.031

6. Liu M, Nakasaki M, Shih YV, Varghese S. Effect of age on biomaterial-mediated in situ bone tissue regeneration. Acta Biomater. 2018;78:329-340. doi: 10.1016/j.actbio.2018.06.035

7. Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury. 2021;52 Suppl 2:S18-S22. doi: 10.1016/j.injury.2021.01.043

8. Lyulin S, Balaev P, Subramanyam KN, et al. Three-Dimensional Endoscopy-Assisted Excision and Reconstruction for Metastatic Disease of the Dorsal and Lumbar Spine: Early Results. Clin Orthop Surg. 2022;14(1):148-154. doi: 10.4055/cios21006

9. Valtanen RS, Yang YP, Gurtner GC, et al. Synthetic and Bone tissue engineering graft substitutes: What is the future? Injury. 2021;52 Suppl 2:S72-S77. doi: 10.1016/j.injury.2020.07.040

10. Zeiter S, Koschitzki K, Alini M, et al. Evaluation of Preclinical Models for the Testing of Bone Tissue-Engineered Constructs. Tissue Eng Part C Methods. 2020;26(2):107-117. doi: 10.1089/ten.TEC.2019.0213

11. Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. Tissue Eng Part B Rev. 2018;24(2):155-169. doi: 10.1089/ten.TEB.2017.0305

12. Мухаметов У.Ф., Люлин С.В., Борзунов Д.Ю. и др. Аллопластические и имплантационные материалы для костной пластики: обзор литературы. Креативная хирургия и онкология. 2021;11(4):343-353. doi: 10.24060/2076-3093-2021-11-4-343-353

13. Hou X, Zhang L, Zhou Z, et al. Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater. 2022;13(4):187. doi: 10.3390/jfb13040187

14. Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci. 2022;23(17):9721. doi: 10.3390/ijms23179721

15. Safronova TV, Selezneva II, Tikhonova SA, et al. Biocompatibility of biphasic α,β-tricalcium phosphate ceramics in vitro. Bioact Mater. 2020;5(2):423-427. doi: 10.1016/j.bioactmat.2020.03.007

16. Pazarçeviren AE, Tezcaner A, Keskin D, et al. Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering. Biol Trace Elem Res. 2021;199(3):968-980. doi: 10.1007/s12011-020-02230-8

17. Bai Y, Sha J, Kanno T, et al. Comparison of the Bone Regenerative Capacity of Three-Dimensional Uncalcined and Unsintered Hydroxyapatite/Poly-d/l-Lactide and Beta-Tricalcium Phosphate Used as Bone Graft Substitutes. J Invest Surg. 2021;34(3):243-256. doi: 10.1080/08941939.2019

18. Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res B Appl Biomater. 2018;106(6):2493-2512. doi: 10.1002/jbm.b.34049

19. Ding X, Li A, Yang F, et al. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering. J Biomater Appl. 2020;34(9):1294-1299. doi: 10.1177/0885328220903989

20. Madhumathi K, Rubaiya Y, Doble M, et al. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. Drug Deliv Transl Res. 2018;8(5):1066-1077. doi: 10.1007/s13346-018-0532-6

21. Wierichs RJ, Wolf TG, Campus G, Carvalho TS. Efficacy of nano-hydroxyapatite on caries prevention-a systematic review and meta-analysis. Clin Oral Investig. 2022;26(4):3373-3381. doi: 10.1007/s00784-022-04390-4

22. Alenezi A, Chrcanovic B, Wennerberg A. Effects of Local Drug and Chemical Compound Delivery on Bone Regeneration Around Dental Implants in Animal Models: A Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implants. 2018;33(1):e1-e18. doi: 10.11607/jomi.6333

23. Shimazaki K, Mooney V. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J Orthop Res. 1985;3(3):301-10. doi: 10.1002/jor.1100030306

24. Pan J, Prabakaran S, Rajan M. In-vivo assessment of minerals substituted hydroxyapatite / poly sorbitol sebacate glutamate (PSSG) composite coating on titanium metal implant for orthopedic implantation. Biomed Pharmacother. 2019;119:109404. doi: 10.1016/j.biopha.2019.109404

25. Tripathi G, Sugiura Y, Kareiva A, et al. Feasibility evaluation of low-crystallinity β-tricalcium phosphate blocks as a bone substitute fabricated by a dissolution-precipitation reaction from β-tricalcium phosphate blocks. J Biomater Appl. 2018;33(2):259-270. doi: 10.1177/0885328218788255

26. Correa D, Almirall A, Carrodeguas RG, et al. α-Tricalcium phosphate cements modified with β-dicalcium silicate and tricalcium aluminate: physicochemical characterization, in vitro bioactivity and cytotoxicity. J Biomed Mater Res B Appl Biomater. 2015;103(1):72-83. doi: 10.1002/jbm.b.33176

27. Ebrahimi M, Botelho MG, Dorozhkin SV. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater Sci Eng C Mater Biol Appl. 2017;71:1293-1312. doi: 10.1016/j.msec.2016.11.039

28. Ebrahimi M, Botelho M. Biphasic calcium phosphates (BCP) of hydroxyapatite (HA) and tricalcium phosphate (TCP) as bone substitutes: Importance of physicochemical characterizations in biomaterials studies. Data Brief. 2016;10:93-97. doi: 10.1016/j.dib.2016.11.080

29. Kim SE, Park K. Recent Advances of Biphasic Calcium Phosphate Bioceramics for Bone Tissue Regeneration. Adv Exp Med Biol. 2020;1250:177-188. doi: 10.1007/978-981-15-3262-7_12

30. DileepKumar VG, Sridhar MS, Aramwit P, et al. A review on the synthesis and properties of hydroxyapatite for biomedical applications. J Biomater Sci Polym Ed. 2022;33(2):229-261. doi: 10.1080/09205063.2021.1980985

31. Ramesh N, Moratti SC, Dias GJ. Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater. 2018;106(5):2046-2057. doi: 10.1002/jbm.b.33950

32. Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, et al. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm. 2020;46(7):1035-1062. doi: 10.1080/03639045.2020.1776321

33. Lytkina D, Gutsalova A, Fedorishin D, et al. Synthesis and Properties of Zinc-Modified Hydroxyapatite. J Funct Biomater. 2020;11(1):10. doi: 10.3390/jfb11010010

34. Coutinho TC, Tardioli PW, Farinas CS. Hydroxyapatite nanoparticles modified with metal ions for xylanase immobilization. Int J Biol Macromol. 2020;150:344-353. doi: 10.1016/j.ijbiomac.2020.02.058

35. Huang SM, Liu SM, Ko CL, Chen WC. Advances of Hydroxyapatite Hybrid Organic Composite Used as Drug or Protein Carriers for Biomedical Applications: A Review. Polymers (Basel). 2022;14(5):976. doi: 10.3390/polym14050976

36. Higino T, França R. Drug-delivery nanoparticles for bone-tissue and dental applications. Biomed Phys Eng Express. 2022;8(4). doi: 10.1088/2057-1976/ac682c

37. Trabelsi M, AlShahrani I, Algarni H, et al. Mechanical and tribological properties of the tricalcium phosphate - magnesium oxide composites. Mater Sci Eng C Mater Biol Appl. 2019;96:716-729. doi: 10.1016/j.msec.2018.11.070

38. Vahabzadeh S, Robertson S, Bose S. Beta-phase Stabilization and Increased Osteogenic Differentiation of Stem Cells by Solid-State Synthesized Magnesium Tricalcium Phosphate. J Mater Res. 2021;36(15):3041-3049. doi: 10.1557/s43578-021-00311-5

39. Jinno T, Davy DT, Goldberg VM. Comparison of hydroxyapatite and hydroxyapatite tricalcium-phosphate coatings. J Arthroplasty. 2002;17(7):902-9. doi: 10.1054/arth.2002.34821

40. Ji W, Kerckhofs G, Geeroms C, et al. Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs. Acta Biomater. 2018;80:97-107. doi: 10.1016/j.actbio.2018.09.046

41. Kerckhofs G, Chai YC, Luyten FP, Geris L. Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation. Acta Biomater. 2016;35:330-40. doi: 10.1016/j.actbio.2016.02.037


Review

For citations:


Mukhametov U.F., Ivliev D.S., Gareev I.F., Lyulin S.V., Borzunov D.Yu. Synthetic biomaterials based on hydroxyapatite and tricalcium phosphate: analysis of current clinical trials. Genij Ortopedii. 2024;30(1):76-89. https://doi.org/10.18019/1028-4427-2024-30-1-76-89. EDN: RTEQSR

Views: 363


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)