Preview

Genij Ortopedii

Advanced search

Comparative evaluation of osseointegration of new percutaneous implants made of Ti Grade 4 ultrafine‑grained alloy

https://doi.org/10.18019/1028-4427-2023-29-5-526-534

EDN: ELJGET

Abstract

Introduction It has been shown that titanium implants with a structured surface provide an increased rate of osseointegration what makes their application quite promising.

The purpose of this work was to conduct a comparative evaluation of the efficiency of osseointegration of new percutaneous implants for prosthetics made of ultrafine-grained Ti Grade 4 alloy.

Materials and methods The study was carried out on 12 male rabbits of the Soviet Chinchilla breed. Six rabbits of the control group had implants made of Ti6Al4V powder using selective laser sintering technology that were osseointegrated into the tibia, 6 rabbits of the experimental group had implants made of Ti Grade 4 by equal channel angular pressing. The formation of the "bone-implant" block was examined 26 weeks after the implantation.

Results Histologically, after 26 weeks of the experiment, porous changes, enlargement of the Haversian canals, and pronounced osteoclastic resorption were not detected in the animals of the experimental group throughout the stump in the compact plate. Around the implant, a bony case repeating the bone shape was formed, represented by lamellar bone tissue. Using X-ray electron probe microanalysis, it was found that in the substrate formed on the surface of the implant in rabbits of the experimental group, there was significantly more calcium in all areas over the implant relative to the animals of the control group. In the control group, relative to the experimental group, an increased level of C-reactive protein in blood serum was retained longer. Complications and significant clinical and laboratory abnormalities were not found in both groups during the entire experiment.

Discussion Our data are consistent with the results of other experimental studies, which unambiguously noted that titanium implants with a structured surface show increased osseointegration characteristics in comparative studies relative to implants without modification of the structure of the material of the threaded surface. The absence of complications and undesirable reactions of the animal organism also indicates the acceptable safety of the tested products.

Conclusion Osseointegration of a percutaneous implant that has a mixed nanocrystalline and ultrafine-grained structure was more effective than the reference implant. This makes the use of such implant promising for solving clinical problems in prosthetics.

About the Authors

M. V. Stogov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Maksim V. Stogov – Doctor of Biological Sciences, Associate Professor, Head of Department

Kurgan



A. A. Emanov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Andrey A. Emanov – Candidate of Veterinary Sciences, Leading Researcher

Kurgan



V. P. Kuznetsov
Ilizarov National Medical Research Centre for Traumatology and Orthopedics; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Viktor P. Kuznetsov – Doctor of Technical Sciences, Professor, Head of Laboratory, Professor of the Department

 Kurgan;

Ekaterinburg



E. N. Gorbach
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Elena N. Gorbach – Candidate of Biological Sciences, Leading Researcher

Kurgan



E. A. Kireeva
Ilizarov National Medical Research Centre for Traumatology and Orthopedics
Russian Federation

Elena A. Kireeva – Candidate of Biological Sciences, Senior Researcher

Kurgan



A. V. Korelin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Andrey V. Korelin – Candidate of Technical Sciences, Associate Professor, Head of Department

Ekaterinburg



References

1. Sánchez-Bodón J, Andrade Del Olmo J, Alonso JM, et al. Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers (Basel). 2021;14(1):165. doi: 10.3390/polym1401016

2. Xu J, Zhang J, Shi Y, et al. Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances. Materials (Basel). 2022;15(5):1749. doi: 10.3390/ma15051749

3. Jain S, Parashar V. Analytical review on the biocompatibility of surface-treated Ti-alloys for joint replacement applications. Expert Rev Med Devices. 2022;19(9):699-719. doi: 10.1080/17434440.2022.2132146

4. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 2019;102:844-862. doi: 10.1016/j.msec.2019.04.064

5. Su EP, Justin DF, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 2018;100-B(1 Supple A):9-16. doi: 10.1302/0301-620X.100B1.BJJ-2017-0551.R1

6. Zhan X, Li S, Cui Y, et al. Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods. Mater Sci Eng C Mater Biol Appl. 2020;113:111018. doi: 10.1016/j.msec.2020.111018

7. Чекишева Т.Н. Наноматериалы и их роль в регенерации костной ткани. Клиническая и экспериментальная морфология. 2019;8(4):19-24. doi: 10.31088/CEM2019.8.4.19-24

8. Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112-131. doi: 10.1016/j.actbio.2019.05.045

9. Шулятникова О.А., Рогожников Г.И., Порозова С.Е. и др. Функциональные наноструктурированные материалы на основе диоксида титана для использования в ортопедической стоматологии. Проблемы стоматологии. 2020;16(1):171-177. doi: 10.18481/2077-7566-20-16-1-171-177

10. Wang C, Gao S, Lu R, et al. In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells. 2022;11(21):3417. doi: 10.3390/cells11213417

11. Zhang Y, Gulati K, Li Z, et al. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. Nanomaterials (Basel). 2021;11(10):2489. doi: 10.3390/nano11102489

12. Darter BJ, Syrett ED, Foreman KB, et al. Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP). PLoS One. 2023;18(2):e0281339. doi: 10.1371/journal.pone.0281339

13. Hagberg K, Ghasemi Jahani SA, Omar O, Thomsen P. Osseointegrated prostheses for the rehabilitation of patients with transfemoral amputations: A prospective ten-year cohort study of patient-reported outcomes and complications. J Orthop Translat. 2022;38:56-64. doi: 10.1016/j.jot.2022.09.004

14. Sinclair S, Beck JP, Webster J, et al. The First FDA Approved Early Feasibility Study of a Novel Percutaneous Bone Anchored Prosthesis for Transfemoral Amputees: A Prospective 1-year Follow-up Cohort Study. Arch Phys Med Rehabil. 2022;103(11):2092-2104. doi: 10.1016/j. apmr.2022.06.008

15. Еманов А.А., Горбач Е.Н., Стогов М.В. и др. Выживаемость чрескожных имплантатов в условиях различной механической нагрузки на кость. Гений ортопедии. 2018;24(4):500-506. doi: 10.3390/10.18019/1028-4427-2018-24-4-500-506

16. Кузнецов В.П., Горгоц В.Г., Аникеев А.В., Еманов А.А. Производство новых внутрикостных остеоинтегрируемых имплантатов методом аддитивных технологий. Вестник Курганского государственного университета. Серия «Технические науки». 2017;(2):120-125.

17. Каплан М.А., Смирнов М.А., Кирсанкин А.А., Севостьянов М.А. Свойства изделий из титанового сплава Ti6-Al4-V, полученных методом селективного лазерного плавления. Физика и химия обработки материалов. 2019;(3):46-57. doi: 10.30791/0015-3214-2019-3-46-57

18. Almeida D, Sartoretto SC, Calasans-Maia JA, et al. In vivo osseointegration evaluation of implants coated with nanostructured hydroxyapatite in low density bone. PLoS One. 2023;18(2):e0282067. doi: 10.1371/journal.pone.0282067

19. Cao NJ, Zhu YH, Gao F, et al. Gradient nanostructured titanium stimulates cell responses in vitro and enhances osseointegration in vivo. Ann Transl Med. 2021;9(7):531. doi: 10.21037/atm-20-7588

20. Das S, Dholam K, Gurav S, et al. Accentuated osseointegration in osteogenic nanofibrous coated titanium implants. Sci Rep. 2019;9(1):17638. doi: 10.1038/s41598-019-53884-x

21. Hasegawa M, Saruta J, Hirota M, et al. A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration. Int J Mol Sci. 2020;21(3):783. doi: 10.3390/ijms21030783

22. He W, Yin X, Xie L, et al. Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification. J Mater Sci Mater Med. 2019;30(6):73. doi: 10.1007/s10856-019-6276-0

23. Hoornaert A, Vidal L, Besnier R, et al. Biocompatibility and osseointegration of nanostructured titanium dental implants in minipigs. Clin Oral Implants Res. 2020;31(6):526-535. doi: 10.1111/clr.13589

24. Salou L, Hoornaert A, Stanovici J, et al. Comparative bone tissue integration of nanostructured and microroughened dental implants. Nanomedicine (Lond). 2015;10(5):741-51. doi: 10.2217/nnm.14.223

25. Farrell BJ, Prilutsky BI, Ritter JM, et al. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants. J Biomed Mater Res A. 2014;102(5):1305-15. doi: 10.1002/jbm.a.34807

26. Van den Borre CE, Zigterman BGR, Mommaerts MY, Braem A. How surface coatings on titanium implants affect keratinized tissue: A systematic review. J Biomed Mater Res B Appl Biomater. 2022;110(7):1713-1723. doi: 10.1002/jbm.b.35025

27. Jones CF, Quarrington RD, Tsangari H, et al. A Novel Nanostructured Surface on Titanium Implants Increases Osseointegration in a Sheep Model. Clin Orthop Relat Res. 2022;480(11):2232-2250. doi: 10.1097/CORR.0000000000002327

28. Morandini Rodrigues L, Lima Zutin EA, Sartori EM, et al. Nanoscale hybrid implant surfaces and Osterix-mediated osseointegration. J Biomed Mater Res A. 2022;110(3):696-707. doi: 10.1002/jbm.a.37323

29. Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: A review. Mater Sci Eng C Mater Biol Appl. 2017;77:1261-1274. doi: 10.1016/j.msec.2017.04.102

30. Ding M, Shi J, Wang W, et al. Early osseointegration of micro-arc oxidation coated titanium alloy implants containing Ag: a histomorphometric study. BMC Oral Health. 2022;22(1):628. doi: 10.1186/s12903-022-02673-6

31. Li X, Wang M, Zhang W, et al. A Magnesium-Incorporated Nanoporous Titanium Coating for Rapid Osseointegration. Int J Nanomedicine. 2020;15:6593-6603. doi: 10.2147/IJN.S255486

32. Gulati K, Scimeca JC, Ivanovski S, Verron E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discov Today. 2021;26(11):2734-2742. doi: 10.1016/j.drudis.2021.07.004

33. Jayasree A, Ivanovski S, Gulati K. ON or OFF: Triggered therapies from anodized nano-engineered titanium implants. J Control Release. 2021;333:521-535. doi: 10.1016/j.jconrel.2021.03.020


Review

For citations:


Stogov M.V., Emanov A.A., Kuznetsov V.P., Gorbach E.N., Kireeva E.A., Korelin A.V. Comparative evaluation of osseointegration of new percutaneous implants made of Ti Grade 4 ultrafine‑grained alloy. Genij Ortopedii. 2023;29(5):526-534. https://doi.org/10.18019/1028-4427-2023-29-5-526-534. EDN: ELJGET

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)