Robot-assisted knee arthroplasty: first experience (a prospective randomized study)
https://doi.org/10.18019/1028-4427-2023-29-5-475-480
EDN: PXAFKP
Abstract
Introduction Primary total knee arthroplasty has long been proven effective in the treatment of stage 3–4 knee osteoarthritis. It is well known that this intervention not only improves the quality of life, but also helps to restore the function of the joint and eliminate axial deformities.
Purpose To compare early results of total knee arthroplasty using robot-assisted technology with conventional manual technique.
Materials and Methods 20 patients diagnosed with stage 3 osteoarthritis of the knee joint and varus deformity of the knee joint axis were included in a prospective randomized study. Patients were divided into 2 representative groups, 10 subjects underwent robot-assisted knee arthroplasty, and the conventional manual technique was used in the other 10 patients. For clinical assessment, functional scales KSS, WOMAC, Lysholm Score were used, postoperative radiographs were evaluated.
Results According to clinical functional scales, 10 days after surgery, there was an improvement in performance in the patients of both groups (p < 0.05); the duration of the operation in the patients of both groups did not differ in general; intra-operative blood loss in the group with robot‑assisted arthroplasty was lower; and assessment of postoperative results by radiological imaging showed a better component positioning according to preoperative planning in the robotic group.
Discussion When the operation is performed by experienced surgeons, one can expect the correct position of the components and the balance of the ligamentous apparatus in standard arthroplasty. However, the use of robot-assisted technology provides a secure intervention performance even at a hospital where a small number of such operations is performed.
Conclusion Despite the high cost and the need for additional consumables, robot-assisted arthroplasty has a number of advantages over classical manual techniques. These advantages include: accurate restoration of the limb axis even in extra-articular deformities, correct position of the endoprosthesis components, reduction of intraoperative blood loss due to closed medullary canals, and safety for patients. However, the role of the surgeon in such operations remains paramount, as it is the surgeon who is responsible for planning the operation, performing it, and achieving soft tissue balance.
About the Authors
G. A. AirapetovRussian Federation
Georgii A. Airapetov – Doctor of Medical Sciences, Head of the Center for Joint Surgery, Head of Department
St. Petersburg
P. K. Yablonskiy
Russian Federation
Petr K. Yablonskiy – Doctor of Medical Sciences, Professor, Director
St. Petersburg
M. S. Serdobintsev
Russian Federation
Mikhail S. Serdobincev – Doctor of Medical Sciences, Professor, Leading Researcher
St. Petersburg
Z. V. Dziov
Russian Federation
Zaurbek V. Dziov – traumatologist-orthopedist
St. Petersburg
D. G. Naumov
Russian Federation
Denis G. Naumov – Candidate of Medical Sciences, Head of Department
St. Petersburg
References
1. Ferguson RJ, Palmer AJ, Taylor A, et al. Hip replacement. Lancet. 2018 Nov 3;392(10158):1662-1671. doi: 10.1016/S0140-6736(18)31777-X
2. Tan Z, Cao G, Wang G, Zhou Z, Pei F. Total hospital cost, length of stay, and complications between simultaneous and staged bilateral total hip arthroplasty: A nationwide retrospective cohort study in China. Medicine (Baltimore). 2019;98(11):e14687. doi: 10.1097/MD.0000000000014687
3. Насырова Н.И., Озолиня Л.А., Борисова М.С., Аскерова Н.Г. Применение робот-ассистированных операций в гинекологии (обзор литературы). Вестник РГМУ. 2014;(1):36-41.
4. Атрощенко А.О., Поздняков С.В. История развития роботизированной хирургии и ее место в современной колопроктологии: обзор литературы. Злокачественные опухоли. 2014;(1):3-13. doi: 10.18027/2224-5057-2014-1-3-13
5. Колонтарев К.Б., Пушкарь Д.Ю., Говоров А.В., Шептунов С.А. История развития роботических технологий в медицине. Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2014;4 (32):125-140.
6. Яблонский П.К., Кудряшов Г.Г., Васильев И.В. и др. Эффективность и безопасность робот-ассистированных торакоскопических лобэктомий притуберкулезе легких. Туберкулез и болезни легких. 2018;96(5):28-35. doi: 10.21292/2075-1230-2018-96-5-28-35
7. Matsen FA 3rd, Garbini JL, Sidles JA, Pratt B, Baumgarten D, Kaiura R. Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty. Clin Orthop Relat Res. 1993;(296):178-186.
8. Лычагин А.В., Рукин Я.А., Грицюк А.А., Елизаров М.П., Первый опыт роботизированного эндопротезирования коленного сустава. Кафедра травматологии и ортопедии. 2019;4:27-33. doi: 10.17238/issn2226-2016.2019.4.27-33
9. Kayani B, Konan S, Ayuob A, et al. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev. 2019;4(10):611-617. doi: 10.1302/2058-5241.4.190022
10. Dorr LD. CORR Insights®: Does Robotic-assisted TKA Result in Better Outcome Scores or Long-Term Survivorship Than Conventional TKA? A Randomized, Controlled Trial. Clin Orthop Relat Res. 2020;478(2):276-278. doi: 10.1097/CORR.0000000000000969
11. Kim CW, Lee CR. Effects of Femoral Lateral Bowing on Coronal Alignment and Component Position after Total Knee Arthroplasty: A Comparison of Conventional and Navigation-Assisted Surgery. Knee Surg Relat Res. 2018;30(1):64-73. doi: 10.5792/ksrr.17.056
12. Kim SH, Park YB, Song MK, et al. Reliability and Validity of the Femorotibial Mechanical Axis Angle in Primary Total Knee Arthroplasty: Navigation versus Weight Bearing or Supine Whole Leg Radiographs. Knee Surg Relat Res. 2018;30(4):326-333. doi: 10.5792/ksrr.18.028
13. Chowdhry M, Khakha RS, Norris M, et al. Improved Survival of Computer-Assisted Unicompartmental Knee Arthroplasty: 252 Cases With a Minimum Follow-Up of 5 Years. J Arthroplasty. 2017;32(4):1132-1136. doi: 10.1016/j.arth.2016.11.027
14. Agarwal N, To K, McDonnell S, Khan W. Clinical and Radiological Outcomes in Robotic-Assisted Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J Arthroplasty. 2020;35(11):3393-3409.e2. doi: 10.1016/j.arth.2020.03.005
15. Bhimani SJ, Bhimani R, Smith A, et al. Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt Open. 2020;1(2):8-12. doi: 10.1302/2633-1462
16. Hampp EL, Chughtai M, Scholl LY, et al. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques. J Knee Surg. 2019;32(3):239-250. doi: 10.1055/s-0038-1641729
17. Кузовлев А.Н., Ядгаров М.Я., Берикашвили Л.Б. и др. Выбор метода статистического анализа. Анестезиология и реаниматология. 2021;(3):88-93. doi: 10.17116/anaesthesiology202103188
18. Begum FA, Kayani B, Morgan SDJ, et al. Robotic technology: current concepts, operative techniques and emerging uses in unicompartmental knee arthroplasty. EFORT Open Rev. 2020;5(5):312-318. doi: 10.1302/2058-5241.5.190089
19. Kayani B, Konan S, Huq SS, et al. Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1132-1141. doi: 10.1007/s00167-018-5138-5
20. Kayani B, Tahmassebi J, Ayuob A, et al. A prospective randomized controlled trial comparing the systemic inflammatory response in conventional jigbased total knee arthroplasty versus robotic-arm assisted total knee arthroplasty. Bone Joint J. 2021;103-B(1):113-122. doi:10.1302/0301-620X.103B1. BJJ-2020-0602.R2
Review
For citations:
Airapetov G.A., Yablonskiy P.K., Serdobintsev M.S., Dziov Z.V., Naumov D.G. Robot-assisted knee arthroplasty: first experience (a prospective randomized study). Genij Ortopedii. 2023;29(5):475-480. https://doi.org/10.18019/1028-4427-2023-29-5-475-480. EDN: PXAFKP