Preview

Genij Ortopedii

Advanced search

Survival of isolated skin explants in remote interaction with stratiform periodic structures

https://doi.org/10.18019/1028-4427-2021-27-2-254-259

Abstract

Full-thickness skin grafts are used in reconstructive surgeries.

Objectives. Experimental study of the possibility of long-term preservation of viable skin grafts in severely impaired trophics at remote interaction with entities having stratiform periodic structure.

Material and methods. Full-thickness skin was excised from the rabbits' backside and dissected into explants sized 1.0 × 1.0 cm. The samples (n = 81) were divided into three groups and thermostated for 2 days at 37 °C at a various distance from the metal (aluminum) presented as a 20-layer package of smooth foil forming a stratiform periodic structure (SPS) (series I), chaotic layers of squeezed foil (series II) and a single-piece sheet (series III). Histological analysis was performed for the three series to evaluate the explants' viability after the thermostating.

Results. The highest survival estimates were seen in experimental explants of series I that interacted with the SPS of stratified foil layers. The wave nature of such remote interaction was suggested with delayed dystrophic and necrotic processes developing in the skin samples. Experimental samples of series III appeared to be less viable. The explant vitality in series II was sharply reduced due to rapidly spreading necrosis.

Conclusion. Skin explants were shown to retain viability for a longer time when interacting remotely with stratiform periodic structures in the absent trophics. These promising results can be practical for the development of wound dressings to improve survival of full-thickness skin transplantation in reconstruction of deep skin defects.

About the Authors

I. E. Nikityuk
H. Turner National Medical Research Center for Сhildren's Orthopedics and Trauma Surgery
Russian Federation

Igor E. Nikityuk, M.D., Ph.D.,

Saint Petersburg



K. A. Afonichev
H. Turner National Medical Research Center for Сhildren's Orthopedics and Trauma Surgery
Russian Federation

Konstantin A. Afonichev, M.D., Ph.D.,

Saint Petersburg



M. S. Nikitin
H. Turner National Medical Research Center for Сhildren's Orthopedics and Trauma Surgery
Russian Federation

Maxim S. Nikitin, M.D.,

Saint Petersburg



V. V. Petrash
Private Institution Educational Organization of Higher Education REAVIZ University
Russian Federation

Vladimir V. Petrash, Ph.D. of Biological Sciences, Professor,

Saint Petersburg



V. A. Kubasov
D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA)
Russian Federation

Vitalу A. Kubasov, Ph.D. of Physico-mathematical Sciences,

Saint Petersburg



References

1. Hein W. Der heutige Stand der örtlichen Verbrennungsbehandlung [The current state of local burn treatment]. Der Chirurg, 1957, vol. 28, no. 3, pp. 127-135. (in German)

2. Arev T.Ia. Termicheskie porazheniia [Thermal lesions]. L., Meditsina, 1966, 704 p. (in Russian)

3. Nikitiuk I.E., Kubasov V.A., Petrash V.V., Afonichev K.A. Eksperimentalnoe primenenie ranevykh pokrytii so svoistvami fotonnykh kristallov dlia vosstanovleniia glubokikh defektov kozhnykh pokrovov [Experimental application of wound coatings with the properties of photonic crystals for the restoration of deep defects of skin integuments]. Ortopediia, Travmatologiia i Vosstanovitelnaia Khirurgiia Detskogo Vozrasta, 2016, vol. 4, no. 3, pp. 63-70. (in Russian)

4. Richardson J.J., Björnmalm M., Caruso F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, vol. 348, no. 6233, pp. aaa2491. DOI: 10.1126/science.aaa2491

5. Shukla A., Almeida B. Advances in cellular and tissue engineering using layer-by-layer assembly. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, vol. 6, no. 5, pp. 411-421. DOI: 10.1002/wnan.1269

6. Gentile P., Carmagnola I., Nardo T., Chiono V. Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology, 2015, vol. 26, no. 42, pp. 422001. DOI: 10.1088/0957-4484/26/42/422001

7. Jan E., Kotov N.A. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett., 2007, vol. 7, no. 5, pp. 1123-1128. DOI: 10.1021/nl0620132

8. Zhang J., Fu Y., Mo A. Multilayered titanium carbide MXene film for guided bone regeneration. Int. J. Nanomedicine, 2019, vol. 14, pp. 10091- 10103. DOI: 10.2147/IJN.S227830

9. Chaudhari A.A., Vig K., Baganizi D.R., Sahu R., Dixit S., Dennis V., Singh S.R., Pillai S.R. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci., 2016, vol. 17, no. 12, pp. 1974. DOI: 10.3390/ijms17121974

10. Tsuchida K., Iwasa T., Kobayashi M. Imaging of ultra-weak photon emission for evaluating the oxidative stress of human skin. J. Photochem. Photobiol. B, 2019, vol. 198, pp. 111562. DOI: 10.1016/j.jphotbiool.2019.111562

11. Calcerrada M., Garcia-Ruiz C. Human ultra-weak photon emission: key analytical aspects, results and future trends – a review. Crit. Rev. Anal. Chem., 2019, vol. 49, no. 4, pp. 368-381. DOI: 10.1080/10408347.2018.1534199

12. Ou-Yang H. The application of ultra-weak photon emission in dermatology. J. Photochem. Photobiol. B, 2014, vol. 139, pp. 63-70. DOI: 10.1016/j.jphotobiol.2013.10.003

13. Laager F. Light based cellular interactions: hypotheses and perspectives. Front. Phys., 2015, vol. 3, article 55. DOI: 10.3389/fphy.2015.00055

14. Dlask M., Kukal J., Poplová M., Sovka P., Cifra M. Short-time fractal analysis of biological autoluminescence. PLoS One, 2019, vol. 14, no. 7, pp. e0214427. DOI: 10.1371/journal.pone.0214427

15. Levin M., Martyniuk C.J. The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems, 2018, vol. 164, pp. 76-93. DOI: 10.1016/j.biosystems.2017.08.009

16. Petrash V.V., Nikitiuk I.E. Ispolzovanie effektov fotonno-volnovykh vzaimodeistvii biosistem s veshchestvom v prodlenii zhiznesposobnosti izolirovannykh kozhnykh loskutov [Using the effects of photon-wave interactions of biosystems with substance in prolonging the viability of isolated skin flaps]. Vestnik Sankt-Peterburgskoi Gos. Med. Akad. im. I.I. Mechnikova, 2007, vol. 8, no. 1, pp. 118-121. (in Russian)

17. Aktsipetrov O.A., Dolgova T.V., Fedyanin A.A., Murzina T.V., Inoue M., Nishimura K., Uchida H. Magnetization-induced second- and third harmonic generation in magnetophotonic crystals. J. Optical Soc. Am., 2005, vol. 22, no. 1, pp. 176-186. DOI: 10.1364/JOSAB.22.000176

18. Ilinskii A.V., Silva-Andrade F., Shadrin E.B., Samoilov V.O., Orbeli A.L. Biologicheskie struktury kak fotonnye obekty [Biological structures as photon objects]. Biofizika, 2006, vol. 51, no. 4, pp. 743-748. (in Russian)

19. Kubasov V.A., Nikitiuk I.E., Petrash V.V., Voroshilov (Shtrupp) B.M. Epidermis – sloisto-periodicheskaia biostruktura so svoistvami fotonnykh kristallov [Epidermis is a layered periodic biostructure with the properties of photonic crystals]. M., Editus, 2019, 236 p. (in Russian) DOI: 10.18720/SPBPU/2/z19-2

20. Ling Z., Ren C.E., Zhao M.Q., Yang J., Giammarco J.M., Qiu J., Barsoum M.W., Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 47, pp. 16676-16681. DOI: 10.1073/pnas.1414215111

21. Anasori B., Lukatskaya M., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2017, vol. 2, pp. 16098. DOI: 10.1038/natrevmats.2016.98

22. Ghidiu M., Lukatskaya M.R., Zhao M.Q., Gogotsi Y., Barsoum M.W. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 2014, vol. 516, no. 7529, pp. 78-81. DOI: 10.1038/nature13970

23. Zhang S., Xing M., Li B. Biomimetic layer-by-layer self-assembly of nanofilms, nanocoatings, and 3D scaffolds for tissue engineering. Int. J. Mol. Sci., 2018, vol. 19, no. 6, pp. 1641. DOI: 10.3390/ijms19061641

24. Nikitiuk I.E., Petrash V.V., Kubasov V.A., Zakharova N.G., Ilina L.V. Matrichnyi gistogenez biologicheskikh tkanei pri ikh regeneratsii na implantatakh so sloistoi periodicheskoi strukturoi [Matrix histogenesis of biological tissues during their regeneration on implants with layered periodic structure]. Fundamentalnye Issledovaniia, 2012, no. 7-2, pp. 372-376. (in Russian)


Review

For citations:


Nikityuk I.E., Afonichev K.A., Nikitin M.S., Petrash V.V., Kubasov V.A. Survival of isolated skin explants in remote interaction with stratiform periodic structures. Genij Ortopedii. 2021;27(2):254-259. https://doi.org/10.18019/1028-4427-2021-27-2-254-259

Views: 151


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)