Additive technologies in the management of patients with extensive lower limb bone defects
https://doi.org/10.18019/1028-4427-2021-27-2-227-231
Abstract
Introduction. Implant instability with the formation of bone defects is one of the complications after primary osteosynthesis and joint arthroplasties. Augments and reinforcing constructs made of titanium with a porous coating have been used for bone defect management in addition to osteoplastic materials. Additive technologies in traumatology and orthopedics for extensive defects in bones and joints have been applied when it is impossible to use standard designs.
The purpose of the study was to evaluate short-term results and perspectives of using additive technologies for bone defects after failed joint arthroplasties and osteosynthesis.
Materials and methods. In 2018 to November 2019, seven patients with lower extremity bone defects underwent treatment at the Department of Traumatology and Orthopedics of the Moscow Regional Research and Clinical Institute with custom-made implants fabricated with additive technologies. The operations were carefully planned using CT scans, 3D modeling, and implant printing. Particular attention was paid to clean the implant from residual metal powder. Patients were distributed depending on the type of defect and the operation performed (arthroplasty, revision arthroplasty).
Results. The short-term results of using customized implants were analyzed in this study. The average Harris hip score before surgery was 37.8 points, and after the surgery it was 80.2 points. Pain after surgery in all patients was also evaluated by Harris scale and was 37.1 points; the functionality of patients after surgery was 38.4 points. The custom-made designs have a number of distinguishing advantages against the standard ones. A customized anatomical design provides easier fixation; ergonomic design allows implant retention without removing metal fixators if exist; there is less soft tissue injury during surgery (allinside principle); and convenient bone grafting around the implant.
Conclusions. The use of additive technologies for bone defects improves the functional results and life quality of the patient. At the moment, practical application of 3D designs has a number of limitations in financial and legal support in practical health care. Further implementation of additive technologies in traumatology and orthopedics will be supported by the grant from the President of the Russian Federation.
About the Authors
V. P. VoloshinRussian Federation
Victor P. Voloshin, M.D., Ph.D., Professor,
Moscow
A. G. Galkin
Russian Federation
Anatolii G. Galkin, M.D.,
Moscow
S. A. Oshkukov
Russian Federation
Sergei A. Oshkukov, M.D.,
Moscow
A. S. Sankaranarayanan
Russian Federation
Arumugam S. Sankaranarayanan, M.D.,
Shchelkovo
E. V. Stepanov
Russian Federation
Evgenii V. Stepanov, M.D.,
Moscow
A. A. Afanasev
Russian Federation
Anton A. Afanasev, M.D.,
Moscow
References
1. Ling T.X., Li J.L., Zhou K., Xiao Q., Pei F.X., Zhou Z.K. The use of porous tantalum augments for the reconstruction of acetabular defect in primary total hip arthroplasty. J. Arthroplasty, 2018, vol. 33, no. 2, pp. 453-459. doi: 10.1016/j.arth.2017.09.030
2. Migaud H., Common H., Girard J., Huten D., Putman S. Acetabular reconstruction using porous metallic material in complex revision total hip arthroplasty: A systematic review. Orthop. Traumatol. Surg. Res., 2019, vol. 105, no. 1S, pp. S53-S61. DOI: 10.1016/j.otsr.2018.04.030
3. Schreurs B.W., Busch V.J., Welten M.L., Verdonschot N., Slooff T.J., Gardeniers J.W. Acetabular reconstruction with impaction bone-grafting and a cemented cup in patients younger than fifty years old. J. Bone Joint Surg. Am., 2004, vol. 86, no. 11, pp. 2385- 2392. DOI: 10.2106/00004623-200411000-00004
4. Murylev V.Iu., Petrov N.V., Rukin Ia.A., Elizarov P.M., Kalashnik A.D. Revizionnoe endoprotezirovanie vertluzhnogo komponenta endoproteza tazobedrennogo sustava [Revision arthroplasty of the acetabular component of the hip implant]. Kafedra Travmatologii i Ortopedii, 2012, no. 1, pp. 20-25. (in Russian)
5. Kieser D.C., Ailabouni R., Kieser S.C.J., Wyatt M.C., Aarmour P.C., Coates M.H., Hooper G.J. The use of an Ossis custom 3D-printed tri-flanged acetabular implant for major bone loss: minimum 2-year follow-up. Hip Int., 2018, vol. 28, no. 6, pp. 668- 674. DOI: 10.1177/1120700018760817
6. De Martino I., Strigelli V., Cacciola G., Gu A., Bostrom M.P., Sculco P.K. Survivorship and clinical outcomes of custom triflange acetabular components in revision total hip arthroplasty: a systematic review. J. Arthroplasty, 2019, vol. 34, no. 10, pp. 2511-2518. DOI: 10.1016/j.arth.2019.05.032
7. Citak M., Kochsiek L., Gehrke T., Haasper C., Suero E.M., Mau H. Preliminary results of a 3D-printed acetabular component in the management of extensive defects. Hip Int., 2018, vol. 28, no. 3, pp. 266-271. DOI: 10.5301/hipint.5000561
8. Hoang D., Perrault D., Stevanovic M., Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature and how to get started. Ann. Transl. Med., 2016, vol. 4, no. 23, pp. 456. DOI: 10.21037/atm.2016.12.18
9. Tan X.P., Tan Y.J., Chow C.S.L., Tor S.B., Yeong W.Y. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng. C. Mater. Biol. Appl., 2017, vol. 76, pp. 1328-1343. DOI: 10.1016/j.msec.2017.02.094
10. Kariakin N.N., Gorbatov R.O. Primenenie additivnykh tekhnologii 3D pechati v travmatologii, ortopedii i rekonstruktivnoi khirurgii [Application of additive 3D printing technologies in traumatology, orthopedics and reconstructive surgery]. Tezisy II Kongressa «Meditsina Chrezvychainykh Situatsii. Sovremennye Tekhnologii v Travmatologii i Ortopedii» [Proceedings of the 2nd Congress “Emergency Medicine. Modern Technologies in Traumatology and Orthopedics”]. Pervyi Mosk. Gos. Med. Un-t im. I.M. Sechenova. M., 2017, pp. 25. (in Russian)
11. Tikhilov R.D., Shubniakov I.I., Kovalenko A.N., Bilyk S.S., Tsybin A.V., Denisov A.O., Dmitrevich G.D., Vopilovskii P.N. Primenenie individualnoi trekhflantsevoi konstruktsii pri revizionnom edoprotezirovanii s narusheniem tselostnosti tazovogo koltsa (klinicheskii sluchai) [The use of an individual three-flange design in revision arthroplasty with the interruption of the pelvic ring integrity (clinical observation)]. Travmatologiia i Ortopediia Rossii, 2016, vol. 22, no. 1, pp. 108-116. (in Russian) Available at: https://www.elibrary.ru/item.asp?id=25952941(accessed 19.11.2019).
12. Shastov A.L., Kononovich N.A., Gorbach E.N. Problema zameshcheniia posttravmaticheskikh defektov dlinnykh kostei v otechestvennoi travmatologo-ortopedicheskoi praktike (obzor literatury) [Management of posttraumatic long bone defects in the national orthopedic practice (literature review)]. Genij Ortopedii, 2018, vol. 24, no. 2, pp. 252-257. DOI: 10.18019/1028-4427-2018-24-2-252-257
13. Tikhilov R.M., Shubniakov I.I., Denisov A.O. Klassifikatsii defektov vertluzhnoi vpadiny: daiut li oni obektivnuiu kartinu slozhnosti revizionnogo endoprotezirovaniia tazobedrennogo sustava? (kriticheskii obzor literatury i sobstvennykh nabliudenii) [Classifications of the acetabulum defects: do they provide an objective picture of the complexity of the hip revision arthroplasty? (a critical review of the literature and personal observations)]. Travmatologiia i Ortopediia Rossii, 2019, vol. 25, no. 1, pp. 122-141. (in Russian) DOI: 10.21823/2311-2905-2019-25-1122-141
14. Moore M.S., McAuley J.P., Young A.M., Engh C.A. Sr. Radiographic signs of osseointegration in porous-coated acetabular components. Clin. Orthop. Relat. Res., 2006, vol. 444, pp. 176-183. DOI: 10.1097/01.blo.0000201149.14078.50
15. Kovalenko A.N., Dzhavadov A.A., Shubniakov I.I., Bilyk S.S., Denisov A.O., Cherkasov M.A., Midaev A.I., Tikhilov R.M. Srednesrochnye rezultaty ispolzovaniia individualnykh konstruktsii pri revizionnom endoprotezirovanii tazobedrennogo sustava [Mid-term results of using individual structures for the hip revision arthroplasty]. Travmatologiia i Ortopediia Rossii, 2019, vol. 25, no. 3, pp. 37-46. (in Russian) DOI: 10.21823/2311-2905-2019-25-3-37-46
16. Glas P.Y., Béjui-Hugues J., Carret J.P. Arthroplastie de hanche pour séquelle de fracture de l'acétabulum [Total hip arthroplasty after treatment of acetabular fracture]. Rev. Chir. Orthop. Reparatrice Appar. Mot., 2005, vol. 91, no. 2, pp. 124-131. (in French) DOI: 10.1016/s0035-1040(05)84289-8
17. Paprosky W.G., Muir J.M. Intellijoint HIP®: a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty. Med. Devices (Auckl), 2016, vol. 9, pp. 401-408. DOI: 10.2147/MDER.S119161
Review
For citations:
Voloshin V.P., Galkin A.G., Oshkukov S.A., Sankaranarayanan A.S., Stepanov E.V., Afanasev A.A. Additive technologies in the management of patients with extensive lower limb bone defects. Genij Ortopedii. 2021;27(2):227-231. https://doi.org/10.18019/1028-4427-2021-27-2-227-231