Preview

Genij Ortopedii

Advanced search

Factors of radial bone strength after marginal defect formation

https://doi.org/10.18019/1028-4427-2021-27-2-187-198

Abstract

Purpose. To determine the effect of biometrical parameters of the radial bone and due to edge defect formed on the radius strength properties using calculation methods.

Materials and Methods. The study of bone strength affecting factors was conducted with the aid of experimental and calculation methods. Biometrical parameters were studied in 10 pairs of the human cadaveric radius as an intact bone initially and after the formation of rectangular or triangle-shaped edge cuts. To determine the stress-strain behaviour, mathematical calculations were performed based on the beam flexural theory for isotropic materials. Computation study were conducted using the finite element method with the NX Siemens software package. Based on assumed mathematical models, the actual areas of safe loads in the presence of cuts and values of destructive loads depending on the depth and shape of a cut taking into account the initial curvature of the bone as well as the criteria of a required residual strength in variation of influencing parameters were identified by means of calculations.

Results. It was established that an increase in bone curvature results in the reduction of longitudinal destructive loads and in increasing values of the normal strength. The 0.05 bone curvature combined with the 0.5 cut causes a decrease in the ultimate load by 20 times (up to 4.8 % for a rectangular cut and to 5.4 % for a triangular cut). A 0.5-deep cut in the bone which curvature is 0.05 enhances the normal stress by 6.9 times for a triangular cut and by 7.8 times for a rectangular one as compared to a bone without curvature. The critical values for the curvature and depth of the cut were established which permit to avoid additional bone reinforcement.

Conclusion. The strength of the radius with a maginal defect depends not only on the depth of a cut but on its location, shape and on the radius curvature

About the Authors

N. M. Aleksandrov
Privolzhsky Research Medical University; Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Nikolai M. Aleksandrov, M.D., Ph.D.,

Nizhny Novgorod



V. D. Veshutkin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Vladimir D. Veshutkin, Ph.D. of Engineering Sciences,

Nizhny Novgorod



A. E. Zhukov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Aleksandr E. Zhukov, Ph.D. of Engineering Sciences,

Nizhny Novgorod



I. D. Veshaev
Privolzhsky Research Medical University
Russian Federation

Ivan D. Veshaev, M.D.,

Nizhny Novgorod



D. A. Kuptsov
Privolzhsky Research Medical University
Russian Federation

Dmitriy A. Kuptsov, M.D.,

Nizhny Novgorod



O. I. Uglev
Privolzhsky Research Medical University
Russian Federation

Oleg I. Uglev, M.D.,

Nizhny Novgorod



References

1. Alvi S.A., Hamill C.S., Lepse J.P., Ayala M., Girod D.A., Tsue T.T., Shnayder Y., Kakarala K. Outcomes after free tissue transfer for composite oral cavity resections involving skin. Head Neck, 2018, vol. 40, no. 5, pp. 973-984. DOI: 10.1002/hed.25062

2. Zenn M.R., Hidalgo D.A., Cordeiro P.G., Shah J.P., Strong E.W., Kraus D.H. Current role of the radial forearm free flap in mandibular reconstruction. Plast. Reconstr. Surg., 1997, vol. 99, no. 4, pp. 1012-1017. DOI: 10.1097/00006534-199704000-00014

3. Frederick J.W., Sweeny L., Carroll W.R., Peters G.E., Rosenthal E.L. Outcomes in head and neck reconstruction by surgical site and donor site. Laryngoscope, 2013, vol. 123, no. 7, pp. 1612-1617. DOI: 10.1002/lary.23775

4. Jones N.F., Jarrahy R., Kaufman M.R. Pedicled and free radial forearm flaps for reconstruction of the elbov, wrist, and hand. Plast. Reconstr. Surg., 2008, vol. 121, no. 3, pp. 887-898. DOI: 10.1097/01.prs.0000299924.69019.57

5. Kim S.K., Kim T.H., Yang J.I., Kim M.H., Kim M.S., Lee K.C. The etiology and treatment of the softened phallus after the radial forearm osteocutaneous free flap phalloplasty. Arch. Plast. Surg., 2012, vol. 39, no. 4, pp. 390-396. DOI: 10.5999/aps.2012.39.4.390

6. Shnayder Y., Tsue T.T., Toby E.B., Werle A.H., Girod D.A. Safe osteocutaneous radial forearm flap harvest with prophylactic internal fixation. Craniomaxillofac. Тrauma Reconstr., 2011, vol. 4, no. 3, pp. 129-136. DOI: 10.1055/s-0031-1279675.

7. Sinclair C.F., Gleysteen J.P., Zimmermann T.M., Wax M.K., Givi B., Schneider D., Rosenthal E.L. Assessment of donor site morbidity for free radial forearm osteocutaneous flaps. Microsurgery, 2012, vol. 32, no. 4, pp. 255-260. DOI: 10.1002/micr.21950

8. Satteson E.S., Satteson A.C., Waltonen J.D., Li Z., Wiesler E.R., Apel P.J., Graves B.R. Donor-Site Outcomes for the Osteocutaneous Radial Forearm Free Flap. J. Recоnstr. Microsurg., 2017, vol. 33, no. 8, pp. 544-548. DOI: 10.1055/s-0037-1602740

9. Werle A.H., Tsue T.T., Toby E.B., Girod D.A. Osteocutaneous radial forearm free flap: its use without significant donor site morbidity. Otolaryngol. Head Neck Surg., 2000, vol. 123, no. 6, pp. 711-717. DOI: 10.1067/mhn.2000.110865

10. De Witt C.A., de Bree R., Verdonck-de Leeuw I.M., Quak J.J., Leemans C.R. Donor site morbidity of the fasciocutaneous radial forearm flap: what does the patient really bother? Eur. Arch. Otorhinolaryngol., 2007, vol. 264, no. 8, pp. 929-934. DOI: 10.1007/s00405-007-0277-1

11. Lipatov K.V., Gavriushenko N.S., Stan E.A. Obosnovanie vybora tipa khirurgicheskoi trepanatsii dlinnoi kosti pri lechenii bolnykh khronicheskim osteomielitom (eksperimentalnoe issledovanie) [Rationale for choosing the type of long bone surgical trepanation in the treatment of patients with chronic osteomyelitis]. Vestnik Travmatologii i Ortopedii im. N.N. Priorova, 2008, no. 3, pp. 62-66. (in Russian)

12. Connolly T.M., Sweeny L., Greene B., Morlandt A., Carroll W.R., Rosenthal E.L. Reconstruction of midface defects with the osteocutaneous radial forearm flap: Evaluation of long term outcomes including patient reported quality of life. Microsurgery, 2017, vol. 37, no. 7, pp. 752-762. DOI: 10.1002/micr.30201

13. Waits C.A., Toby E.B., Girod D.A., Tsue T.T. Osteocutaneous radial forearm free flap: long-term radiographic evaluation of donor site morbidity after prophylactic plating of radius. J. Reconsr. Microsurg., 2007, vol. 23, no. 7, pp. 367-372. DOI: 10.1055/s-2007-992342

14. Bardsley A.F., Soutar D.S., Elliot D., Batchelor A.G. Reducing morbidity in the radial forearm flap donor site. Plast. Reconstr. Surg., 1990, vol. 86, no. 2, pp. 287-294.

15. Thoma A., Khadaroo R., Grigenas O., Archibald S., Jackson S., Young J.E., Veltri K. Oromandibular reconstruction with the radial-forearm osteocutaneous flap: experience with 60 consecutive cases. Plast. Reconstr. Surg., 1999, vol. 104, no. 2, pp. 368-380. DOI: 10.1097/00006534-199908000-00007

16. Bowers K.W., Edmonds J.L., Girod D.A., Jayaraman G., Chua C.P., Toby E.B. Osteocutaneous radial forearm free flaps. The necessity of internal fixation of the donor-site defect to prevent pathological fracture. J. Bone Joint Surg. Am., 2000, vol. 82, no. 5, pp. 694-704.

17. Clark S., Greenwood M., Banks R.J., Parker R. Fracture of the radial donor site after composite free flap harvest: a ten-year review. Surgeon, 2004, vol. 2, no. 5, pp. 281-286. DOI: 10.1016/s1479-666x(04)80098-2

18. Meland N.B., Maki S., Chao E.Y., Rademaker B. The radial forearm flap: a biomechanical study of donor- site morbidity utilizing sheep tibia. Plast. Reconstr. Surg., 1992, vol. 90, no. 5, pp. 763-773.

19. Richardson D., Fisher S.E., Vaughan E.D., Brown J.S. Radial forearm flap donor-site complications and morbidity: a prospective study. Plast. Reconstr. Surg., 1997, vol. 99, no. 1, pp. 109-115. DOI: 10.1097/00006534-199701000-00017

20. Riecke B., Kohlmeier C., Assaf A.T., Wikner J., Drabik A., Catalá-Lehnen P., Heiland M., Rendenbach C. Prospective biomechanical evaluation of donor site morbidity after radial forearm free flap. Br. J. Oral Maxillofac. Surg., 2016, vol. 54, no. 2, pp. 181-186. DOI: 10.1016/j.bjoms.2015.11.021

21. Torina P.J., Matros E., Athanasian E.A., Cordeiro P.G. Immediate bone grafting and plating of the radial osteocutaneous free flap donor site. Ann. Plast. Surg., 2014, vol. 73, no. 3, pp. 315-320. DOI: 10.1097/SAP.0b013e31827a2fe4

22. Rebrov V.N., Gavriushenko N.S., Malygina M.A., Plotnikov S.Iu. Izuchenie prochnostnykh kharakteristik distalnogo metaepifiza luchevoi kosti i sistem «kost-fiksator» [Studying the strength characteristics of the distal radial meta-epiphysis and “bone-fixator” systems]. Vestnik Travmatologii i Ortopedii im. N.N. Priorova, 2008, no. 2, pp. 57-60. (in Russian)

23. Swanson E., Boyd J.B., Manktelow R.T. The radial forearm flap: reconstructive applications and donor-site defects in 35 consecutive patients. Plast. Reconstr. Surg., 1990, vol. 85, no. 2, pp. 258-266.

24. Loeffelbein D.J., Al-Benna S., Steinsträßer L., Satanovskij R.M., Rohleder N.H., Mücke T., Wolff K.D., Kesting M.R. Reduction of donor site morbidity of free radial forearm flaps: what level of evidence is available? Eplasty, 2012, vol. 12, pp. e9.

25. Varghese B., Short D., Penmetsa R., Goswami T., Hangartner T. Computed- tomography-based finite-element models of long bones can accurately capture strаin response to bending and torsion. J. Biomech., 2011, vol. 44, no. 7, pp. 1374-1379. DOI: 10.1016/j.jbiomech.2010.12.028

26. Ilichev N.A., Koliabin V.V., Kulepov V.F., Mikheev N.N., Naumov V.K. Opredelenie napriazhenii i raschety na prochnost sterzhnevykh sistem: ucheb. posobie [Determination of stresses and strength calculations of rod systems. Textbook]. Ed. by Iu.V. Gliavin. N. Novgorod, Nizhegorod. Gos. Tekhn. Un-t im. R.E. Alekseeva, 2009, 130 p. (in Russian)

27. Avery C.M., Bujtár P., Simonovics J., Dézsi T., Váradi K., Sándor G.K., Pan J. A finite element analysis of bone plates available for prophylactic internal fixation of the radial osteocutaneous donor site using the sheep tibia model. Med. Eng. Phys., 2013, vol. 35, no. 10, pp. 1421-1430. DOI: 10.1016/j.medengphy.2013.03.014

28. Matsuura Y., Kuniyoshi K., Suzuki T., Ogawa Y., Sukegawa K., Rokkaku T., Thoreson A.R., An K.N., Takahashi K. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material. Comput. Methods Biomech. Biomed. Engin., 2015, vol. 18, no. 16, pp. 1811-1817. DOI: 10.1080/10255842.2014.974579

29. Karamanoukian R., Gupta R., Evans G.R. A novel technique for the prophilactic plating of the osteocutaneos radial forearm flap donor site. Ann. Plast. Surg., 2006, vol. 56, no. 2, pp. 200-204. DOI: 10.1097/01.sap.0000186859.91656.ca

30. Aleksandrov N.M., Veshutkin V.D., Zhukov A.E., Bashkalina E.V., Uglev O.I., Volkov G.A. Izuchenie prochnostnykh svoistv donorskoi luchevoi kosti raschetno-eksperimentalnym metodom [Studying the strength properties of the donor radius by the calculation-experimental method]. Rossiiskii Zhurnal Biomekhaniki, 2017, vol. 21, no. 2, pp. 147-165. (in Russian)

31. Shaaban H., Giakas G., Bolton M., Williams R., Wicks P., Scheker L.R., Lees V.C. The load-bearing characteristics of the forearm: pattern of axial and bending force transmitted through ulna and radius. J. Hand Surg. Br., 2006, vol. 31, no. 3, pp. 274-279. DOI: 10.1016/j.jhsb.2005.12.009

32. Zatsiorskii V.M., Aruin A.S., Seluianov V.N. Biomekhanika dvigatelnogo apparata cheloveka [Biomechanics of the human locomotor system]. M., Fizkultura i Sport, 1981, 143 p. (in Russian)

33. Korolev S.B., Nosov O.B., Klenin A.A., Veshutkin V.D. Sravnenie stabilnosti razlichnykh sposobov osteosinteza pri perelomakh golovchatogo vozvysheniia plechevoi kosti metodom matematicheskogo modelirovaniia [Comparison of the stability of various methods of osteosynthesis in fractures of the capitate eminence of the humerus by the method of mathematical modeling]. Fundamentalnye Issledovaniia, 2013, no. 9-3, pp. 375-379. (in Russian)

34. Harberkorn-Butendeich E. Die Kraft des Musculus triceps brachii. Diss. … dr. med. [The power of the triceps brachii muscle. Dr. med. sci. diss.] Saarbrucken, 1973, 120 p. (in German)

35. Diakov I.F., Chernov S.A., Chernyi A.N. Metod konechnykh elementov v raschetakh sterzhnevykh sistem. Ucheb. posobie [The finite-element method in calculations of rod systems. Manual]. Ulianovsk, UlGTU, 2010, 133 p. (in Russian)

36. Zenkevich O. Metod konechnykh elementov v tekhnike [The finite-element method in engineering]. Ed. by Pobedria B.E. M., Mir, 1975, 542 p. (in Russian)

37. Bruiaka V.A., Fokin V.G., Kuraeva Ia.V. Inzhenernyi analiz v ANSYS Workbench. Ucheb. posobie. V 2 ch. [Engineering analysis in ANSYS Workbench. Manual. In 2 parts]. Samara, Samar. Gos. Tekhn. Un-t, 2010-2013. (in Russian)

38. Swanson E., Boyd J.B., Mulholland R.S. The radial forearm flap: а biomechanical study of the osteotomized radius. Plast. Reconstr. Surg., 1990, vol. 85, no. 2, pp. 267-272.

39. Shaaban H., Giakas G., Bolton M., Williams R., Scheker L.R., Lees V.C. The distal radioulnar joint as s load-bearning mechanism – a biomechanical study. J. Hand Surg. Am., 2004, vol. 29, no. 1, pp. 85-95. DOI: 10.1016/j.jhsa.2003.10.020


Review

For citations:


Aleksandrov N.M., Veshutkin V.D., Zhukov A.E., Veshaev I.D., Kuptsov D.A., Uglev O.I. Factors of radial bone strength after marginal defect formation. Genij Ortopedii. 2021;27(2):187-198. https://doi.org/10.18019/1028-4427-2021-27-2-187-198

Views: 243


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)