Preview

Genij Ortopedii

Advanced search

Features of organotopic remodeling of bone tissue and implanted osteoplastic material in Charcot neuro/osteoarthropathy

https://doi.org/10.18019/1028-4427-2023-29-4-395-401

EDN: KWFFNQ

Abstract

Introduction Despite the recognition of MRI as the gold diagnostic standard for Charcot arthropathy, there is evidence in the literature that MSCT is more informative for objective qualitative and quantitative diagnosis of the condition, primarily of the bone skeleton of the Charcot foot, in comparison with standard radiography. The sensitivity and specificity of these methods are different.

Purpose To reveal the features of organotopic remodeling of bone tissue and implanted osteoplastic material in the course of midfoot and hindfoot subtotal defects management in Charcot neuro-osteoarthropathy.

Materials and methods The analysis of bone tissue and implanted osteoplastic material density was carried out in a case series that included 11 patients with Charcot neuro-osteoarthropathy who underwent a two-stage procedure for bone defects in the hindfoot and midfoot with the Ilizarov apparatus. We studied CT and MRI scans and measured bone regenerate density before treatment, at the stages of transosseous osteosynthesis, and 3, 6, and 12 months after surgery.

Results In all patients, varying increase in the amount and volume of bone tissue was visualized due to intensive periosteal bone formation along with the formation of bone ankylosis in the joints along combined with a consistent increase in the optical density of bone regenerates. The formation of the new bone tissue ran without the signs of lysis or sequestration. The conducted studies indicate that the sizes and architectonics of bone fragments are more differentiated in CT than in MRI scans.

Discussion It is known that the bone, despite its high mineralization, continuously rebuilds, restores and adapts itself to certain functional conditions. This constant dynamic process of adaptive remodeling depends mostly on optimal blood supply, metabolic activity and the coordinated work of bone cell elements. The data obtained show angiogenesis in the compromised tissues in patients with Charcot foot and consistent remodeling of the graft into the new bone tissue.

Conclusion The allobone in the composition of the combined bone graft does not reduce the likelihood of complete remodeling of the newly formed bone tissue. Higher bone density by filling in a bone defect with a graft differs from distraction regenerate that initially has low bone density. CT and MRI are highly effective and informative diagnostic methods for surgical treatment. In reconstructive interventions in the patients with Charcot foot under the conditions of transosseous osteosynthesis, preference among radiological study methods should be given to CT.

About the Authors

S. A. Osnach
City Clinical Hospital. S.S. Yudina
Russian Federation

Stanislav A. Osnach – Traumatologist

Moscow



V. G. Protsko
City Clinical Hospital. S.S. Yudina
Russian Federation

Victor G. Protsko – Doctor of Medical Sciences, Associate Professor, Head of the Center for Foot Surgery

Moscow



V. V. Kuznetsov
City Clinical Hospital. S.S. Yudina
Russian Federation

Vasily V. Kuznetsov – Candidate of Medical Sciences, Traumatologist-orthopedist

Moscow



V. N. Obolensky
Pirogov Russian National Research Medical University; City Clinical Hospital No. 13 of the Moscow Department of Health
Russian Federation

Vladimir N. Obolensky – Candidate of Medical Sciences, Associate Professor, Head of Department

Moscow



S. K. Tamoev
City Clinical Hospital. S.S. Yudina
Russian Federation

Sargon K. Tamoev – Candidate of Medical Sciences, Traumatologist-orthopedist, head of the department

Moscow



Yu. V. Khamidullina
Tolyatti City Clinical Hospital No. 5
Russian Federation

Yulia V. Khamidullina – Radiologist

Tolyatti



D. Yu. Borzunov
Ural State Medical University; Central City Clinical Hospital No. 23
Russian Federation

Dmitry Yu. Borzunov – Doctor of Medical Sciences, Professor of the Department, Associate Professor, Traumatologist-orthopedist

Ekaterinburg



References

1. Galstyn GR, Vikulova OK, Isakov MA et al. Trends in the epidemiology of diabetic foot and lower limb amputations in Russian Federation according to the federal diabetes register (2013-2016). Diabetes Melitus 2018;21(3):170-177. doi: 10.14341/dm9688

2. Stupina TA, Migalkin NS, Sudnitsyn AS. Structural reorganization of the cartilage tissue in chronic osteomyelitis of the foot bones. Genij Ortopedii. 2019;25(4):523-527. doi: 10.18019/1028-4427-2019-25-4-523-527

3. Stupina TA, Migalkin NS, Shchudlo MM, et al. Microscopic Examination of Foot Joints Components in Charcot Arthropathy Complicated by Osteomyelitis. Traumatology and Orthopedics of Russia. 2020;26(4):112-120. doi: 10.21823/2311-2905-2020-26-4-112-120

4. Dedov II, Shestakova MV, Mayorov AYu, eds. Standards of specialized diabetes care. Moscow; 2021. (In Russ.) doi: 10.14341/DM12802

5. Chantelau EA, Grutzner G. Is the Eichenholtz classification still valid for the diabetic Charcot foot? Swiss Med Wkly. 2014;144:w13948. doi: 10.4414/smw.2014.13948

6. Zavadovskaya VD, Zorkal’tsev MA, Udodov VD, et al. Possibilities of a software-based hybrid single photon emission computed tomography/ computed tomography system in the diagnosis of complicated diabetic foot syndrome. Journal of Radiology and Nuclear Medicine. 2015;(6):24-29. (In Russ.)

7. Bozhko OV, Churayants VV, Gurieva IV, Kotukhova YaI. Experience of Following_up for Diabetic Neuroartropathy. MRI. Meditsinskaya vizualizatsiya [Medical visualization]. 2003;(2):101-108. (In Russ.)

8. Wurm M., Pagenstert G., Hunt M.M., et al. Charcot Neuroarthropathy of the Foot and Ankle. In: Foot and Ankle Disorders. Berlin; Heidelberg: Springer, 2016:531-553.

9. Solomon MA, Gilula LA, Oloff LM, Oloff J. CT scanning of the foot and ankle: 2. Clinical applications and review of the literature. AJR Am J Roentgenol. 1986;146(6):1204-1214. doi: 10.2214/ajr.146.6.1204

10. Galchina Yu.S., Karmazanovsky G.G., Paskhalova Yu.S. The Basic Methods of Diagnostics of Diabetic Foot Syndrome. Medical Visualization. 2016;(6):100-117. (In Russ.)

11. Eichenholtz SN. Charcot joints. With a foreword by P.D. Wilson. Springfield (Ill): Charles C. Thomas; 1966.

12. Ahluwalia R, Bilal A, Petrova N, et al. The Role of Bone Scintigraphy with SPECT/CT in the Characterization and Early Diagnosis of Stage 0 Charcot Neuroarthropathy. J Clin Med. 2020;9(12):4123. doi: 10.3390/jcm9124123

13. Basu S, Zhuang H, Alavi A. FDG PET and PET/CT Imaging in Complicated Diabetic Foot. PET Clin. 2012;7(2):151-60. doi: 10.1016/j.cpet.2012.01.003

14. Gold RH, Tong DJ, Crim JR, Seeger LL. Imaging the diabetic foot. Skeletal Radiol. 1995;24(8):563-71. doi: 10.1007/BF00204853

15. Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP. MR imaging of osteomyelitis and neuropathic osteoarthropathy in the feet of diabetics. Radiographics. 1996;16(6):1337-48. doi: 10.1148/radiographics

16. Tomas MB, Patel M, Marwin SE, Palestro CJ. The diabetic foot. Br J Radiol. 2000;73(868):443-50. doi: 10.1259/bjr.73.868.10844873

17. Alexeeva E.A., Vasilyev A.U. Magnetic resonance imaging in diagnostics of the complicated forms of the syndrome of diabetic foot. Kuban Scientific Medical Bulletin. 2010;(3-4):14-17. (In Russ.)

18. Klyushkin I.V., Fatykhov R.I. Modern diagnostic methods in diabetic foot syndrome. Kazan medical journal. 2012;93(2):298-300. (In Russ.)

19. Chantelau EA, Richter A. The acute diabetic Charcot foot managed on the basis of magnetic resonance imaging – a review of 71 cases. Swiss Med Wkly. 2013;143:w13831. doi: 10.4414/smw.2013.13831

20. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97-122.

21. Shchourov VA, Boutorina NI, Shchourov IV. Ultrasound Dopplerography of high frequency in the diagnostics of regenerated bone status. Genij Ortopedii. 2007;(4):25-7. (In Russ.)

22. Gorbach EN, Gorbach ES, Kononovich NA, Popkov AV. Analysis of the regenerated bone optical density under the leg automatic lengthening with the increased rate in case of different types of bone integrity break. Modern problems of science and education. 2018;(4):156-158. (In Russ.) doi: 10.17513/spno.27804

23. Rusakov SA, Muha YP. The methodic of determening the bone tissue's axial hardness. Modern problems of science and education. 2013;(2):239. (In Russ.)

24. Obolenskiy VN, Protsko VG, Komelyagina EY. Classification of diabetic foot, revisited. Wound Medicine. 2017;18:1-7. doi: 10.1016/j.wndm.2017.06.001

25. Osnach SА, Obolensky VN, Protsko VG, et al. Method of two-stage treatment of total and subtotal defects of the foot in Charcot neuroosteoarthropathy. Genij Ortopedii. 2022;28(4):523-531. doi: 10.18019/1028-4427-2022-28-4-523-531

26. Senck S, Plank B, Kastner J, et al. Visualisierung lokaler kortikaler Defekte im Charcot-Fuß mittels Mikrocomputertomographie [Visualization of local cortical defects in Charcot foot using microcomputed tomography]. Orthopade. 2015;44(1):8-13. (In German) doi: 10.1007/s00132-014-3053-0

27. Sanverdi SE, Ergen BF, Oznur A. Current challenges in imaging of the diabetic foot. Diabet Foot Ankle. 2012;3. doi: 10.3402/dfa.v3i0.18754

28. Diachkova GV, Sudnitsyn AS, Kliushin NM, et al. MSCT semiotics of diabetic osteoarthropathy complicated by chronic osteomyelitis. Genij Ortopedii. 2022;28(3):378-385. doi: 10.18019/1028-4427-2022-28-3-378-385. EDN: MHSSKB.

29. Mautone M, Naidoo P. What the radiologist needs to know about Charcot foot. J Med Imaging Radiat Oncol. 2015;59(4):395-402. doi: 10.1111/1754-9485.12325

30. Crockett JC, Rogers MJ, Coxon FP, et al. Bone remodelling at a glance. J Cell Sci. 2011;124(Pt 7):991-998. doi: 10.1242/jcs.063032

31. Fierro FA, Nolta JA, Adamopoulos IE. Concise Review: Stem Cells in Osteoimmunology. Stem Cells. 2017;35(6):1461-1467. doi: 10.1002/stem.2625

32. Bouaicha S, von Rechenberg B, Osterhoff G, et al. Histological remodelling of demineralised bone matrix allograft in posterolateral fusion of the spine – an ex vivo study. BMC Surg. 2013;13:58. doi: 10.1186/1471-2482-13-58

33. Taira H, Moreno J, Ripalda P, Forriol F. Radiological and histological analysis of cortical allografts: an experimental study in sheep femora. Arch Orthop Trauma Surg. 2004;124(5):320-5. doi: 10.1007/s00402-004-0653-x

34. Brcic I, Pastl K, Plank H, et al. Incorporation of an Allogenic Cortical Bone Graft Following Arthrodesis of the First Metatarsophalangeal Joint in a Patient with Hallux Rigidus. Life (Basel). 2021;11(6):473. doi: 10.3390/life11060473

35. Diachkova GV, Neretin AS, Korabelnikov MA, Nizhechick SA. The roentgenologic peculiarities of bone tissue regeneration in treatment of patients with developmental foot anomalies. Genij Ortopedii. 2005;(4):98-101. (In Russ.)

36. Nizhechik SA. X-ray assessment of bone formation in the elimination of defects, deformities and anomalies in the development of the bones of the foot by transosseous osteosynthesis: Authoref. kand. dis. Obninsk, 2010:18. Available at: https://www.dissercat.com/content/rentgenologicheskayaotsenka-kosteobrazovaniya-pri-ustranenii-defektov-deformatsii-i-anomali. Accessed May 12, 2023. (In Russ.)

37. Sudnitsyn AS, Kliushin NM, Azimov PA. Treatment of diabetic osteoarthropathy with the Ilizarov method. Innovative Medicine of Kuban. 2021;(1):61-65. (In Russ.) doi: 10.35401/2500-0268-2021-21-1-61-65

38. Pastl K, Pastl E, Flöry D, et al. Arthrodesis and defect bridging of the upper ankle joint with allograft bone chips and allograft cortical bone screws (Shark Screw®) after removal of the salto-prosthesis in a multimorbidity patient: a case report. Life (Basel). 2022;12(7):1028. doi: 10.3390/life12071028


Review

For citations:


Osnach S.A., Protsko V.G., Kuznetsov V.V., Obolensky V.N., Tamoev S.K., Khamidullina Yu.V., Borzunov D.Yu. Features of organotopic remodeling of bone tissue and implanted osteoplastic material in Charcot neuro/osteoarthropathy. Genij Ortopedii. 2023;29(4):395-401. https://doi.org/10.18019/1028-4427-2023-29-4-395-401. EDN: KWFFNQ

Views: 513


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1028-4427 (Print)
ISSN 2542-131X (Online)