
ISSN 1028-4427 (Print) ISSN 2542-131X (Online)

2025 Nº5 Tom 31

Научно-теоретический и практический журнал

Гений Ортопедии Orthopaedic Genius

Том 31 № 5 2025

Научно-теоретический и практический журнал Основан в память академика Г.А. Илизарова

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Бурцев А.В. (Россия, Курган) – главный редактор

Аранович А.М. (Россия, Курган) – заместитель главного редактора

Samchukov M.L. (США) – заместитель главного редактора

Баиндурашвили А.Г. (Россия, Санкт-Петербург)

Борзунов Д.Ю. (Россия, Екатеринбург)

Волокитина Е.А. (Россия, Екатеринбург)

Губин А.В. (Россия, Санкт-Петербург)

Дьячкова Г.В. (Россия, Курган)

Коновалов Н.А. (Россия, Москва)

Котельников Г.П. (Россия, Самара)

Кутепов С.М. (Россия, Екатеринбург)

Линник С.А. (Россия, Санкт-Петербург)

Мироманов А.М. (Россия, Чита)

Попков А.В. (Россия, Курган) Попков Д.А. (Россия, Курган)

Рябых С.О. (Россия, Москва)

Скрябин Е.Г. (Россия, Тюмень)

Суфианов А.А. (Россия, Тюмень)

Тихилов Р.М. (Россия, Санкт-Петербург)

Birch J.G. (США)

Catagni M.A. (Италия)

Chaudhary M.M. (Индия)

Dubousset J.F. (Франция)

Glatt V. (CIIIA)

Hosny G.A. (Египет)

Kirienko A. (Италия)

Lascombes P. (Швейцария)

Madan S. (Великобритания)

Monsell F. (Великобритания)

Paley D. (CIIIA)

Pinzur M.S. (США)

Podeszwa D.A. (CIIIA)

Weiss H.-R. (Германия)

Борзунова О.Б. – ответственный секретарь Беляева М.А. – технический секретарь

THE EDITORS

A.V. Burtsev (Russia, Kurgan) – Editor in Chief

A.M. Aranovich (Russia, Kurgan) – **Deputy Editor**

M.L. Samchukov (USA) - Deputy Editor

A.G. Baindurashvili (Russia, St. Petersburg)

D.Yu. Borzunov (Russia, Ekaterinburg)

E.A. Volokitina (Russia, Ekaterinburg)

A.V. Gubin (Russia, St. Petersburg) G.V. Diachkova (Russia, Kurgan)

N.A. Konovalov (Russia, Moscow)

G.P. Kotel'nikov (Russia, Samara)

S.M. Kutepov (Russia, Ekaterinburg)

S.A. Linnik (Russia, St. Peterburg)

A.M. Miromanov (Russia, Chita)

A.V. Popkov (Russia, Kurgan)

D.A. Popkov (Russia, Kurgan)

S.O. Ryabykh (Russia, Moscow) E.G. Skryabin (Russia, Tyumen)

A.A. Sufianov (Russia, Tyumen)

R.M. Tikhilov (Russia, St. Petersburg)

J.G. Birch (USA)

M.A. Catagni (Italy)

M.M. Chaudhary (India)

J.F. Dubousset (France)

V. Glatt (USA)

G.A. Hosny (Egypt)

A. Kirienko (Italy)

P. Lascombes (Switzerland)

S. Madan (UK)

F. Monsell (UK)

D. Paley (USA)

M.S. Pinzur (USA)

D.A. Podeszwa (USA)

H.-R. Weiss (Germany)

O.B. Borzunova – Executive Secretary M.A. Beliaeva – Technical Secretary

Учредитель и издатель журнала:

федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова» Министерства здравоохранения Российской Федерации

Издание журнала осуществляется при поддержке Ассоциации по изучению и применению метода Илизарова России (A.S.A.M.I. Россия)

Журнал включен в перечень научных специализированных изданий ВАК, в которых могут публиковаться основные результаты диссертационных работ на соискание ученой степени кандидата наук, ученой степени доктора наук (3.1.8 – травматология и ортопедия)

Журнал включен в Реферативный журнал и Базы данных ВИНИТИ

Сведения о журнале ежегодно публикуются в международной справочной системе по периодическим и продолжающимся изданиям «Ulrich's Periodicals Directory»

Журнал включен в библиографические и реферативные базы данных РИНЦ и SCOPUS

Журнал включен в электронные информационные ресурсы базы данных EBSCO

Электронная версия журнала размещена на сайтах

https://ilizarov-journal.com

https://elibrary.ru https://cyberleninka.ru

Контент журнала доступен под лицензией Creative Commons – Attribution 4.0 International, CC-BY.

Адрес: 640021, Россия, г. Курган, ул. М. Ульяновой, 6

Телефоны: (3522) 43-06-94 – редакция

(3522) 23-42-60 – реклама

Интернет: https://ilizarov-journal.com/

Email: genius@ilizarov.ru

Оригинал-макет изготовлен ОИАиВР ФГБУ «НМИЦ ТО имени академика Г.А. Илизарова» Минздрава России

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций ПИ № ФС77-68207 от 30 декабря 2016 года

Территория распространения: Российская Федерация, зарубежные страны

Язык: русский, английский

Издается 6 раз в год

Цена свободная

© Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова» Министерства здравоохранения Российской Федерации, 2025

Оригинальные статьи

· ·	
Анатомическая вариативность медиального пяточного нерва: кадаверное исследование	551
Д.Г. Агафонов, Г.А. Айрапетов, М.С. Сердобинцев, Н.И. Карпович, Р.А. Ханмурадов, Д.Г. Наумов, М.А. Джериев	
Сравнение функциональных результатов лечения пациентов с переломом проксимального отдела плечевой кости методами закрытой репозиции и фиксации системой внешней стабилизации JESS и открытой репозиции и внутренней фиксации пластиной PHILOS	558
D. Garg, N.P. Wagh, M.B. Shinde, K. Sarwey, S. Jethliya, R. Bahl, S. Chunawala, D. Yadav, A. Zaveri, Y.N. Singh, A. Gupta, V. Kaulgud	
Реконструкция передней крестообразной связки: корреляция функционального результата с положением бедренного и большеберцового каналов	567
M.B. Shinde, M.R. Patel, K. Sarwey, S. Jethlia, V. Kaulgud, R. Datta, A. Modi, S. Kharate, S. Singh, T. Bopardikar, V. Beniwal, Sh. Chiwadshetti	
Сравнительный анализ результатов бедренно-большеберцового синостозирования при перипротезной инфекции	574
Г.А. Бугаев, А.Е. Виноградский, Д.С. Прокопьев, Д.Ю. Борзунов	
Особенности выбора антибиотиков для лечения пациентов с ортопедической инфекцией, вызванной грамотрицательными возбудителями: результаты 12-летнего наблюдения	587
О.С. Туфанова, С.А. Божкова, А.Р. Касимова, Е.М. Гордина, А.Н. Гвоздецкий, Р.М.Тихилов	
Эволюция походки после многоуровневых ортопедических операций, выполненных для коррекции ортопедических осложнений у детей дошкольного и младшего школьного возраста со спастической диплегией	602
Методология оценки ходьбы для выявления усталостных и декомпенсаторных механизмов работы опорно-двигательной системы у больных коксартрозом	614
Оценка склеростина как нового биомаркера в диагностике остеопороза	625
Особенности ортопедической патологии у больных нейрофиброматозом I типа в республике Башкортостан	632
Аудиограмма шумов керамической пары трения эндопротеза тазобедренного сустава и их связь с положением вертлужного компонента	639
Клинические случаи	
Результат лечения пациентки с инфекцией коленного сустава после артроскопической пластики передней крестообразной связки	648
Э.Г. Давлетова, А.С. Тряпичников, А.М. Ермаков, А.В. Каминский	010
Редкий случай тяжелой деформации у пациента с анкилозирующим спондилитом	655
Обзорные статьи	
Лечение пациентов с разрывом ахиллова сухожилия: хирургический или консервативный метод N.S.N. Wijaya, N.L.P.S.W. Putri, S. Mahadhana, C.G.O. Dharmayuda, I.G.N.W. Aryana, I.W.S. Dusak, I.W. Subawa	666
Анализ результатов лечения пациентов с культура-негативной перипротезной инфекцией тазобедренного и коленного суставов в зависимости от подхода к ее определению	678

Original Articles D.G. Agafonov, G.A. Ayrapetov, M.S. Serdobintsev, N.I. Karpovich, R.A. Khanmuradov, D.G. Naumov, M.A. Djeriev A comparative study between functional outcomes of proximal humerus fracture treated using closed reduction and JESS external stabilization system and open reduction and internal fixation D. Garg, N.P. Wagh, M.B. Shinde, K. Sarwey, S. Jethliya, R. Bahl, S. Chunawala, D. Yadav, A. Zaveri, Y.N. Singh, A. Gupta, V. Kaulgud ACL reconstruction: correlation of the functional outcome with the position of femoral and tibial tunnels 567 M.B. Shinde, M.R. Patel, K. Sarwey, S. Jethlia, V. Kaulgud, R. Datta, A. Modi, S. Kharate, S. Singh, T. Bopardikar, V. Beniwal, Sh. Chiwadshetti G.A. Bugaev, A.E. Vinogradsky, D.S. Prokopyev, D.Yu. Borzunov Antibiotic therapy for orthopedic infections caused by gram-negative pathogens over a 12-year observation period ________587 O.S. Tufanova, S.A. Bozhkova, A.R. Kasimova, E.M. Gordina, A.N. Gvozdetsky, R.M. Tikhilov Evolution of gait in preschool and primary school children after multilevel orthopedic surgeries performed O.I.Gatamov. T.I. Dolganova. A.D. Tomov. D.A. Popkov Methodology of gait assessment for identifying mechanisms of decompensatory musculoskeletal fatigue S.V. Koroleva, A.S. Mulyk, V.V. Kravchenko, A.A. Akulaev, A.V. Gubin A.K.H. Al-Masoody, S.A. Naser, M.N. AL-Khafaji, A.A. Al-Fahham Specific features of orthopedic pathology in neurofibromatosis type I patients R.N. Mustafin Audiogram of ceramic friction noises in total hip arthroplasty and their relationship B.R. Tashtanov, V.V. Pavlov, M.A. Raifeld, V.N. Vasyukov, N.B. Baktyyarov, A.A. Korytkin Clinical Cases Treatment outcome in a patient with knee joint infection developed after arthroscopic plasty E.G. Davletova, A.S. Triapichnikov, A.M. Ermakov, A.V. Kaminsky I.V. Basankin, A.A. Giulzatyan, I.E. Gritsaev, K.K. Takhmazyan

Review Articles

Yu.V. Oleinik, S.A. Bozhkova

N.S.N. Wijaya, N.L.P.S.W. Putri, S. Mahadhana, C.G.O. Dharmayuda, I.G.N.W. Aryana, I.W.S. Dusak, I.W. Subawa

Analysis of existing approaches to determine culture-negative periprosthetic infection

Научная статья

УДК 617.586.2-009.7:616-091 https://doi.org/10.18019/1028-4427-2025-31-5-551-557

Анатомическая вариативность медиального пяточного нерва: кадаверное исследование

Д.Г. Агафонов $^{1 \boxtimes}$, Г.А. Айрапетов 2,3 , М.С. Сердобинцев 1 , Н.И. Карпович 2 , Р.А. Ханмурадов 1 , Д.Г. Наумов 1 , М.А. Джериев 1

- ¹ Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии, Санкт-Петербург, Россия
- ² Российский университет дружбы народов имени Патриса Лумумбы, Москва, Россия
- ³ Городская клиническая больница №31 им. академика Г.М. Савельевой, Москва, Россия

Автор, ответственный за переписку: Даниил Германович Агафонов, ortho spot@bk.ru

Аннотация

Введение. Одной из недооцененных причин болей в пяточной области является невропатия медиального пяточного нерва, которая может как имитировать, так и сопровождать подошвенный фасциит. Некоторые исследователи отмечают, что невропатия медиальной пяточной ветви большеберцового нерва является причиной болевого синдрома, локализующегося в пяточной области. Знание основных ориентиров и анатомической вариативности прохождения медиального пяточного нерва стопы может облегчить проведение анестезии, выполнение хирургических вмешательств, в том числе, гидродиссекции.

Цель работы — определить анатомическую вариативность медиального пяточного нерва, включая уровень его отхождения, поперечный диаметр и топографическое расположение относительно основных анатомических ориентиров медиальной пяточной области, для применения полученных данных в хирургии стопы, регионарной анестезии и дифференциальной диагностике болевого синдрома, локализующегося в пяточной зоне.

Материалы и методы. Препарирование медиальной пяточной области проведено у 16 трупов (32 стопы). Измеряли толщину большеберцового и медиального пяточного нервов каждого образца, определяли расстояние от верхушки медиальной лодыжки до точки отхождения медиального пяточного нерва от большеберцового нерва, а также до точки деления большеберцового нерва на медиальный и латеральный подошвенные нервы.

Результаты. Установлено, что медиальный пяточный нерв ответвлялся от большеберцового нерва на $(2,7\pm0,7)$ см дистальнее верхушки медиальной лодыжки. Величина его поперечного сечения варьировала, составляя $(1,9\pm1,2)$ см. В некоторых случаях (15,6%) медиальный пяточный нерв отдавал дополнительную ветвь. В подавляющем числе случаев (72%) медиальный пяточный нерв заканчивался в подкожно-жировом слое медиальной поверхности пяточной области.

Обсуждение. Полученные данные подтвердили значительную анатомическую вариативность медиального пяточного нерва. В 15,6 % случаев выявлено его отхождение от латеральной подошвенной ветви, что сопоставимо с результатами других исследователей. Морфологические особенности ветвления большеберцового нерва и его дистальных отделов наиболее значимы в области хирургии стопы, так как при вмешательствах в проекции тарзального канала (в том числе при проведении радиочастотной денервации или эндоскопического релиза) возможно непреднамеренное повреждение нервных структур.

Заключение. Проведённое кадаверное исследование подтвердило наличие анатомической многообразности медиального пяточного нерва. Полученные данные расширяют представление о вариативной анатомии пяточной области и могут быть использованы при интерпретации клинических случаев болевого синдрома, обусловленного компрессией или травматизацией медиального пяточного нерва, а также при выполнении регионарной анестезии.

Ключевые слова: медиальный пяточный нерв, подошвенный фасциит, анатомия медиальной пяточной области

Для цитирования: Агафонов Д.Г., Айрапетов Г.А., Сердобинцев М.С., Карпович Н.И., Ханмурадов Р.А., Наумов Д.Г., Джериев М.А. Анатомическая вариативность медиального пяточного нерва: кадаверное исследование. *Гений ортопедии*. 2025;31(5):551-557. doi: 10.18019/1028-4427-2025-31-5-551-557.

© Агафонов Д.Г., Айрапетов Г.А., Сердобинцев М.С., Карпович Н.И., Ханмурадов Р.А., Наумов Д.Г., Джериев М.А., 2025

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-551-557

Anatomical variations of the medial calcaneal nerve: a cadaveric study

D.G. Agafonov^{1⊠}, G.A. Ayrapetov^{2,3}, M.S. Serdobintsev¹, N.I. Karpovich², R.A. Khanmuradov¹, D.G. Naumov¹, M.A. Djeriev¹

- ¹ Saint Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russian Federation
- ² Patrice Lumumba Peoples' Friendship University of Russia, Moscow, Russian Federation
- ³ Academician Savelyeva City Clinical Hospital No. 31, Moscow, Russian Federation

Corresponding author: Daniil G. Agafonov, ortho_spot@bk.ru

Abstract

Introduction One of the underestimated causes of pain in the heel area is neuropathy of the medial calcaneal nerve, which can both imitate and accompany plantar fasciitis. Some researchers note that neuropathy of the medial calcaneal branch of the tibial nerve is the cause of pain syndrome localized in the heel area. Knowledge of the main landmarks and anatomical variability of the medial calcaneal nerve passage in the foot can facilitate anesthesia, surgical interventions, including hydrodissection.

Purpose To determine the anatomical variability of the medial calcaneal nerve, including the level of its origin, transverse diameter and topographic location relative to the main anatomical landmarks of the medial calcaneal area in order to use the obtained data in foot surgery, regional anesthesia and differential diagnosis of pain syndrome localized in the calcaneal area.

Materials and methods Dissection of the medial heel region was performed in 16 cadavers (32 feet). For each specimen, we measured the thickness of the tibial and medial calcaneal nerves, as well as the distance (centimeters) from the tip of the medial malleolus to the point where the medial calcaneal nerve branched off from the tibial nerve, and to the bifurcation point of the tibial nerve into the medial and lateral plantar nerves.

Results The study found that the medial calcaneal nerve branched from the tibial nerve at a distance of 2.7 ± 0.7 cm distal to the tip of the medial malleolus. The cross-sectional diameter of the nerve varied and averaged 1.9 ± 1.2 cm. In 15.6 % of cases, the medial calcaneal nerve had an additional branch. In the vast majority of cases (72 %), it terminated within the subcutaneous fat of the medial aspect of the calcaneous.

Discussion The findings confirmed considerable anatomical variability of the medial calcaneal nerve. In 15.6 % of cases, it originated from the lateral plantar branch, which is consistent with the findings of other researchers. The morphological features of branching in the tibial nerve and its distal segments are of particular importance in foot surgery. Unintentional nerve injury is possible during interventions in the region of the tarsal tunnel (including radiofrequency denervation or endoscopic release).

Conclusion This cadaveric study confirmed marked anatomical variability of the medial calcaneal nerve. These findings expand our understanding of the variable anatomy of the heel area and may aid in interpreting clinical cases of pain caused by compression or trauma to the medial calcaneal nerve, as well as in performing regional anesthesia.

Keywords: medial calcaneal nerve, plantar fasciitis, anatomy of the medial calcaneous

For citation: Agafonov DG, Ayrapetov GA, Serdobintsev MS, Karpovich NI, Khanmuradov RA, Naumov DG, Djeriev MA. Anatomical variations of the medial calcaneal nerve: a cadaveric study. *Genij Ortopedii*. 2025;31(5):551-557. doi: 10.18019/1028-4427-2025-31-5-551-557.

_

[©] Agafonov D.G., Ayrapetov G.A., Serdobintsev M.S., Karpovich N.I., Khanmuradov R.A., Naumov D.G., Djeriev M.A., 2025 © Translator Tatyana A. Malkova, 2025

ВВЕДЕНИЕ

Понимание анатомии медиальной пяточной области стопы имеет фундаментальное значение для диагностики и лечения различных заболеваний, проявляющихся болью в пяточной области, выделяют подошвенный фасциит. Болевой синдром в пяточной области у пациентов с подошвенным фасциитом часто рассматривают как проявление энтезопатии, но причина боли может быть связана и с невропатическими факторами [1]. Патологические изменения при данном заболевании протекают в первую очередь в месте прикрепления подошвенной фасции к пяточной кости [2]. Болевой синдром сохраняется в течение периода профессиональной активности, что оказывает выраженное негативное влияние на качество жизни пациентов. Аспект хронического повреждения подошвенной фасции продолжает оставаться предметом научных дискуссий в современной травматологии и ортопедии [3]. Исследователи ассоциируют развитие подошвенного фасциита с рядом предрасполагающих факторов, включая биомеханические нарушения, избыточные механические нагрузки, выраженную пронацию стопы, ограничение тыльного сгибания в голеностопном суставе, а также травматические воздействия [4, 5].

Одной из недооцененных причин болей в пяточной области является невропатия медиального пяточного нерва, которая может как имитировать, так и сопровождать подошвенный фасциит. Некоторые исследователи отмечают, что невропатия медиальной пяточной ветви большеберцового нерва является причиной болевого синдрома, локализующегося в пяточной области [6, 7], что также подтверждено электрофизиологическими исследованиями [8]. В настоящее время данную невропатию характеризуют как самостоятельную нозологическую единицу или как сопутствующее состояние при подошвенном фасциите [9], так как передача афферентных болевых импульсов происходит по медиальному пяточному нерву стопы [10].

Цель работы — определить анатомическую вариативность медиального пяточного нерва, включая уровень его отхождения, поперечный диаметр и топографическое расположение относительно основных анатомических ориентиров медиальной пяточной области, для применения полученных данных в хирургии стопы, регионарной анестезии и дифференциальной диагностике болевого синдрома, локализующегося в пяточной зоне.

МАТЕРИАЛЫ И МЕТОДЫ

Препарирование медиальной пяточной области проведено у 16 трупов (9 женщин и 7 мужчин) на 32 стопах. Средний возраст женщин составил (47 \pm 11) лет, рост — (164 \pm 6) см; средний возраст мужчин — (53 \pm 12) года, рост — (175 \pm 7) см. Критериями исключения для использования трупных образцов были видимые признаки предыдущей травмы или операции в области лодыжки или стопы, патологические деформации, различные повреждения или внешние дефекты.

Исследование проведено на кадаверном материале, полученном в рамках учебно-научной деятельности, с соблюдением действующего законодательства Российской Федерации, регулирующего обращение с биологическими объектами. Все процедуры соответствовали общепринятым этическим принципам и не противоречили Хельсинкской декларации Всемирной медицинской ассоциации (редакция 2013 г.). Исследование проведено в условиях СПб ГБУЗ «Городское патологоанатомическое бюро» Калининского района (Санкт-Петербург).

Статистическую обработку выполняли с использованием программ Microsoft Excel и SPSS Statistics v.22. Для количественных переменных рассчитывали средние значения, стандартные отклонения (M \pm SD), медиану (Me). Нормальность распределения оценивали с использованием критерия Шапиро – Уилка. При сравнении двух групп применяли t-критерий Стьюдента или U-критерий Манна – Уитни в зависимости от типа распределения. Статистически значимыми считались различия при уровне p < 0.05.

Каждая нижняя конечность была перемещена в анатомическое положение, а стопа была перпендикулярна оси большеберцовой кости, чтобы свести к минимуму ошибки измерений. Препарирование кожи и подкожно-жировой клетчатки производили путем формирования Y-образного разреза, лоскуты были отведены для лучшей визуализации. Сухожильно-мышечный комплекс медиальной части стопы и подошвенный апоневроз были частично удалены, чтобы обнажить нервные волокна. Большеберцовый нерв и его ветви были препарированы от дистальной трети голени к подошве. В данном исследовании для каждого образца измеряли толщину большеберцового нерва и медиального пяточного нерва, определяли расстояние (в см) от верхушки медиальной лодыжки до точки отхождения медиального пяточного нерва от большеберцового нерва, а также до точки деления большеберцового нерва на медиальный и латеральный подошвенные нервы. Дополнительно фиксировали количество стволов медиального пяточного нерва (число отдельных ветвей, отходящих от большеберцового нерва к пяточной области) и анатомическую зону окончания медиального пяточного нерва (в подкожно-жировой клетчатке пяточной области либо у медиальной бугристости пяточной кости).

РЕЗУЛЬТАТЫ

При препарировании медиальный пяточный нерв был обнаружен на всех 32 стопах. Диаметр (толщина) большеберцового нерва в области тарзального канала составил (5,6 ± 0,5 мм (4,3–5,9 мм). Толщина

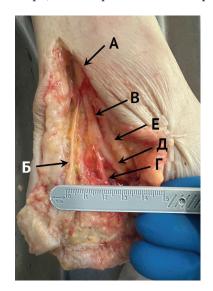


Рис. 1. Топографическая картина медиальной пяточной области: A — большеберцовый нерв; B — медиальный пяточный нерв; B — латеральный подошвенный нерв; Γ — первая ветвь латерального подошвенного нерва; Π — продолжение латерального подошвенного нерва; Π — медиальный подошвенный нерв

(наружный диаметр) медиального пяточного нерва варьировала от 0,5 до 5,4 мм, в среднем составляя $(1,9\pm1,2)$ мм (рис 1).

У большинства образцов (68,8 %, 22 случая) толщина медиального пяточного нерва составляла 0,5-2,0 мм, в пяти случаях (15,6 %) — 2,1-3,0 мм, в двух случаях (6,3 %) — 3,1-4,9 мм, и в трех случаях (9,4 %) превышала или была равна 5,0 мм (максимальное зафиксированное значение — 5,4 мм) (рис. 2).



Рис. 2. Гистограмма распределения толщины медиального пяточного нерва

Отхождение медиального пяточного нерва от большеберцового нерва происходило на различных уровнях относительно верхушки медиальной лодыжки: минимальное расстояние составляло 1,0 см (проксимальнее верхушки), максимальное — 4,5 см (дистальнее, в направлении стопы). Средний уровень отхождения медиального пяточного нерва составил $(2,7\pm0,7)$ см дистальнее верхушки медиальной лодыжки (рис. 3).

В абсолютном большинстве наблюдений (84,4%) медиальный пяточный нерв отходил от большеберцового нерва единственным стволом. В пяти случаях (15,6%) выявлено два отдельных ствола медиального пяточного нерва, отходящих от большеберцового нерва и направляющихся к медиальной бугристости пяточной кости и в подкожно-жировой слой (рис. 4).

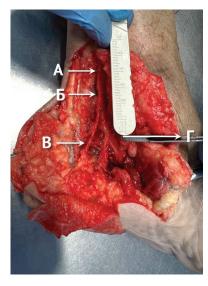


Рис. 3. Топографическая картина медиальной пяточной области: А — большеберцовый нерв; Б — зона отхождения медиального пяточного нерва от большеберцового нерва; В — медиальный пяточный нерв; Г — уровень верхушки медиальной лодыжки



Рис. 4. Топографическая картина медиальной пяточной области: А — зона отхождения дополнительного нервного ствола медиального пяточного Б — мединерва; альный пяточный нерв; В — латеральный подошвенный нерв; Γ — дополнительный нервный ствол медиального пяточного нерва

Сравнение правых и левых стоп не выявило существенных различий в морфометрических показателях медиального пяточного нерва. Различий толщины или уровня отхождения медиального пяточного нерва в зависимости от пола также не отмечено (p = 0.541) (табл. 1).

Таблица 1

Распределение толщины медиального пяточного нерва в исследуемой группе

Пол	n	Средняя толщина медиального пяточного нерва, мм	Стандартное отклонение	Минимальное значение	Максимальное значение
Мужчины	18	1,9	1,4	0,5	5,4
Женщины	14	2,1	1,2	0,7	5

В типичных случаях (более 80 %) медиальный пяточный нерв отходил от большеберцового нерва проксимальнее точки бифуркации на медиальный и латеральный подошвенные нервы. Однако в пяти наблюдениях (15,6 %) обнаружена нетипичная картина: медиальный пяточный нерв отходил дистальнее бифуркации, т.е. отходил не непосредственно от ствола большеберцового нерва, а от латерального подошвенного нерва. Таким образом, медиальный пяточный нерв являлся ветвью латерального подошвенного нерва, что указывает на вариант развития, значимый для понимания вариабельности иннервации пяточной области. Зона окончания медиального пяточного нерва оказалась относительно постоянной: 23 нерва (72 %) заканчивались в подкожно-жировой клетчатке пяточной области, образуя там разветвлённую сеть тонких веточек, обеспечивающих чувствительную иннервацию кожи пяточной области стопы. В остальных девяти случаях (28 %) ветвь медиального пяточного нерва доходила до области медиальной бугристости пяточной кости, где ее терминальные ветви уходили вглубь периоста и связочных структур.

ОБСУЖДЕНИЕ

Медиальный пяточный нерв — небольшая, но клинически значимая чувствительная ветвь, иннервирующая медиальную и задне-медиальную поверхность пяточной области стопы, включая область над пяточным бугром, удерживатель сгибателей и подкожно-жировой слой пяточной области [11]. Клиническая картина при невропатии медиального пяточного нерва включает жгучую боль, парестезии, онемение и гиперестезию в пяточной области. Боль усиливается при нагрузке на стопу, а в некоторых случаях возникает в ночное время. Нередко, пациенты описывают ощущения как «удары током» или «жжение» [12]. Связь между подошвенным фасциитом и невропатией медиального пяточного нерва подтверждена рядом клинических исследований. По данным различных авторов, до 18 % пациентов с хроническим подошвенным фасциитом имеют признаки невропатии. Верификация диагноза особенно важна, так как методы лечения этих состояний могут отличаться [13].

Визуализационные методы, такие как ультрасонография высокого разрешения и MPT, позволяют обнаруживать различные морфологические изменения тканей, включая фиброз, утолщение фасции и компрессию нервов [14]. Совмещение данных визуализации с электрофизиологическим исследованием помогает дифференцировать невропатическую боль от энтезопатии и уточнить причину хронической боли в пятке.

Хронический болевой синдром в пяточной области способен вызывать нарушение походки, компенсаторную перегрузку смежных суставов и, как следствие, формирование вторичных патологий в других отделах опорно-двигательной системы [15]. Ранняя диагностика и мультидисциплинарный подход, основанный на знании анатомических особенностей, являются ключевыми составляющими эффективного лечения пациентов с болевым синдромом в пяточной области. Понимание анатомии, топографии и вариантов ветвления медиального пяточного нерва стопы крайне важно при диагностике болей в пятке, планировании хирургических вмешательств и проведении анестезии.

Согласно анатомическим исследованиям, седалищный нерв в дистальном направлении разделяется на свои основные стволы на уровне подколенной ямки: малоберцовый и большеберцовый нервы. Большеберцовый нерв, проходя позади медиальной лодыжки, входит в проксимальный отдел тарзального канала, где он разделяется на латеральный подошвенный нерв, медиальный подошвенный нерв и медиальный пяточный нерв. Разветвление основных нервных стволов имеет анатомическую вариативность, в том числе включая и медиального пяточного нерва [16].

В литературе встречаются данные о том, что в большинстве случаев медиальный пяточный нерв возникает из большеберцового нерва внутри или проксимальнее тарзального канала [17, 18]. Расположение медиального пяточного нерва имеет очень большое значение для диагностики и лечения болевого синдрома в пяточной области, синдрома тарзального канала, травм мягких тканей и суставов, а также боли, вызванной фиброзом периневрия [19]. По данным литературы, при ответвлении медиального пяточного нерва от основного ствола — большеберцового нерва, он чаще всего располагается поверхностно по отношению к мышце, отводящей большой палец стопы и проходит через удерживатель сгибателей или над ним. Медиальный пяточный нерв и его ветви не проникают в подошвенный свод или глубокие структуры стопы [20]. Полученные в ходе исследования результаты описывают отхождение медиального пяточного нерва от большеберцового нерва (в более чем 80 % случаев), что соответствует данным литературы.

Описано разделение медиального пяточного нерва на две основные ветви: переднюю, идущую к мышце, отводящей большой палец стопы, и заднюю, идущую к коже, медиальной поверхности ахиллова сухожилия, пяточной кости и подошвенной жировой прослойке [21]. В другом исследовании отмечено,

что медиальный пяточный нерв может отходить от большеберцового нерва и/или латерального подошвенного нерва [22]. Полученные нами данные подтверждают это положение: медиальный пяточный нерв может отходить не напрямую от большеберцового нерва, а от латерального подошвенного нерва. Ранее подобные варианты упоминались, однако, по нашим данным, их частота составляет около 15 %. Это несколько ниже, чем сообщалось в единичных зарубежных работах (около 27 %), что может быть обусловлено размером выборки [23].

Исследователи выявили, что медиальный пяточный нерв также может отходить от медиального подошвенного нерва, пересекать кровеносные сосуды в пяточном канале и иннервировать пяточную область [24]. Количество медиальных пяточных нервов варьирует от одного до четырёх, но сообщалось и о пяти [25, 26]. В проведенном исследовании в пяти случаях (15,6 %) выявлено два отдельных ствола медиального пяточного нерва, отходящих от большеберцового нерва и направляющихся к медиальной бугристости пяточной кости и в подкожно-жировой слой. Более двух стволов обнаружены не были, что может быть обусловлено размером выборки или индивидуальными особенностями исследуемых биологических образцов.

Настоящее исследование дополняет существующие анатомические данные о медиальном пяточном нерве и подчёркивает необходимость индивидуализированного подхода при вмешательствах в пяточной области. Результаты могут служить морфологическим основанием для улучшения диагностики и профилактики нейропатической боли пятки.

Полученные результаты демонстрируют значительную анатомическую вариативность медиального пяточного нерва. В частности, уровень отхождения медиального пяточного нерва от большеберцового нерва колеблется в диапазоне от 1 см дистальнее до 4,5 см проксимальнее относительно ориентира (верхушки медиальной лодыжки). Это подтверждает данные отдельных исследований о вариабельности прохождения пяточных ветвей большеберцового нерва. В ходе исследования представлены данные о толщине (диаметре) медиального пяточного нерва на трупном материале, количественно описан данный показатель с вычислением средних и экстремальных значений.

ЗАКЛЮЧЕНИЕ

Анатомия тарзального канала и пяточных нервов важна для ортопедов, травматологов и нейрохирургов, выполняющих операции в области стопы. Кроме того, вариативность толщины медиального пяточного нерва означает, что выраженность клинических проявлений при его невропатии может различаться, — более крупные стволы потенциально более уязвимы к сдавлению. Для неврологов знание вариантов окончания медиального пяточного нерва важно при диагностике поражений: при подкожной локализации окончаний медиального пяточного нерва возможно поверхностное расположение болевых точек, тогда как при окончании у пяточной кости симптомы могут имитировать подошвенный фасциит. Знание основных ориентиров и анатомической вариативности прохождения дополнительных стволов медиального пяточного нерва может облегчить проведение анестезии, выполнение хирургических вмешательств в том числе и гидродиссекции.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования. **Этические нормы**. Исследование проведено в соответствии с этическими стандартами Хельсинской декларации Всемирной медицинской ассоциации.

СПИСОК ИСТОЧНИКОВ

- 1. Allam AE, Chang KV. Plantar heel pain. 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
- 2. Айрапетов Г.А., Агафонов Д.Г., Сердобинцев М.С., Кафтырев А.С.. Представления о клинике, диагностике и комплексном лечении плантарного фасциита: обзор литературы. Вестник восстановительной медицины. 2024;23(2):49-56. doi: 10.38025/2078-1962-2024-23-2-49-56.
- 3. Sajja S, Elahi N, Ganti L. Plantar Fasciitis With a Calcaneal Spur. Cureus. 2023;15(12):e51242. doi: 10.7759/cureus.51242.
- 4. Luffy L, Grosel J, Thomas R, So E. Plantar fasciitis: A review of treatments. *JAAPA*. 2018;31(1):20-24. doi: 10.1097/01. JAA.0000527695.76041.99.
- Li S, Wang K, Sun H, et al. Clinical effects of extracorporeal shock-wave therapy and ultrasound-guided local corticosteroid injections for plantar fasciitis in adults: A meta-analysis of randomized controlled trials. *Medicine (Baltimore)*. 2018;97(50):e13687. doi: 10.1097/ MD.00000000013687.
- 6. Fortier LM, Leethy KN, Smith M, et al. An Update on Posterior Tarsal Tunnel Syndrome. Orthop Rev (Pavia). 2022;14(4):35444. doi: 10.52965/001c.35444.
- 7. Arslan A, Koca TT, Utkan A, et al. Treatment of Chronic Plantar Heel Pain With Radiofrequency Neural Ablation of the First Branch of the Lateral Plantar Nerve and Medial Calcaneal Nerve Branches. *J Foot Ankle Surg.* 2016;55(4):767-771. doi: 10.1053/j.jfas.2016.03.009.
- 8. Seo JH, Oh SJ. Near-nerve needle sensory conduction study of the medial calcaneal nerve: New method and report of four cases of medial calcaneal neuropathy. *Muscle Nerve*. 2002;26(5):654-658. doi: 10.1002/mus.10264.
- 9. Rodríguez-Merchán EC, Moracia-Ochagavía I. Tarsal tunnel syndrome: current rationale, indications and results. *EFORT Open Rev.* 2021;6(12):1140-1147. doi: 10.1302/2058-5241.6.210031.
- 10. Diers DJ. Medial calcaneal nerve entrapment as a cause for chronic heel pain. *Physiother Theory Pract.* 2008;24(4):291-298. doi: 10.1080/09593980701738392.

- 11. Priya A, Ghosh SK, Walocha JA, et al. Variations in the branching pattern of tibial nerve in foot: a review of literature and relevant clinical anatomy. *Folia Morphol (Warsz)*. 2023;82(2):231-241. doi: 10.5603/FM.a2022.0042.
- 12. Cheong IY, Kim KH, Park BK, Kim DH. Medial calcaneal neuropathy as a cause of intractable heel pain. Am J Phys Med Rehabil. 2016;95(4):e62. doi: 10.1097/PHM.0000000000000444.
- 13. Potocnik P, Hochreiter B, Harrasser N, et al. Differential diagnosis of heel pain. Orthopade. 2019;48(3):261-280. (In German) doi: 10.1007/s00132-019-03690-0.
- 14. Bordalo M, Felippe de Paula Correa M, Yamashiro E. High-resolution ultrasound of the foot and ankle. Clin Podiatr Med Surg. 2024;41(4):853-864. doi: 10.1016/j.cpm.2024.04.013.
- 15. Herchenröder M, Wilfling D, Steinhäuser J. Evidence for foot orthoses for adults with flatfoot: a systematic review. J Foot Ankle Res. 2021;14(1):57. doi: 10.1186/s13047-021-00499-z.
- 16. Warchol Ł, Walocha JA, Mizia E, et al. Ultrasound-guided topographic anatomy of the medial calcaneal branches of the tibial nerve. Folia Morphol (Warsz). 2021;80(2):267-274. doi: 10.5603/FM.a2020.0062.
- 17. Awadelseid KMF. Branching pattern of the medial calcaneal neurovascular bundle in porta pedis of the human foot. Int J Hum Anatom. 2019;1(4):2-12. doi: 10.14302/issn.2577-2279.ijha-19-3013.
- 18. Lopes JG, Rodrigues-Pinho A, Neves MA, et al. An anatomical approach to the tarsal tunnel syndrome: what can ankle's medial side anatomy reveal to us? J Foot Ankle Res. 2023;16(1):80. doi: 10.1186/s13047-023-00682-4.
- 19. Moroni S, Zwierzina M, Starke V, et al. Clinical-anatomic mapping of the tarsal tunnel with regard to Baxter's neuropathy in recalcitrant heel pain syndrome: part I. Surg Radiol Anat. 2019;41(1):29-41. doi: 10.1007/s00276-018-2124-z.
- 20. Louisia S, Masquelet AC. The medial and inferior calcaneal nerves: an anatomic study. Surg Radiol Anat. 1999;21(3):169-173. doi: 10.1007/BF01630895.
- 21. Govsa F, Bilge O, Ozer MA. Variations in the origin of the medial and inferior calcaneal nerves. Arch Orthop Trauma Surg. 2006;126(1):6-14. doi: 10.1007/s00402-005-0088-z.
- 22. Kwon J, Park HB, Kwon S, et al. Morphometric assessment of tibial nerve and its branches around the ankle. Medicine (Baltimore). 2024:103(15):e37745. doi: 10.1097/MD.0000000000037745.
- 23. Kim BS, Choung PW, Kwon SW, et al. Branching patterns of medial and inferior calcaneal nerves around the tarsal tunnel. Ann Rehabil Med. 2015;39(1):52-55. doi: 10.5535/arm.2015.39.1.52.
- 24. Dellon AL, Kim J, Spaulding CM. Variations in the origin of the medial calcaneal nerve. J Am Podiatr Med Assoc. 2002;92(2):97-101. doi: 10.7547/87507315-92-2-97.
- 25. Kim DI, Kim YS, Han SH. Topography of human ankle joint: focused on posterior tibial artery and tibial nerve. Anat Cell Biol. 2015;48(2):130-137. doi: 10.5115/acb.2015.48.2.130.
- 26. Dellon AL, Mackinnon SE. Tibial nerve branching in the tarsal tunnel. Arch Neurol. 1984;41(6):645-646. doi: 10.1001/ archneur.1984.04210080053013.

Статья поступила 14.07.2025; одобрена после рецензирования 18.07.2025; принята к публикации 25.08.2025.

The article was submitted 14.07.2025; approved after reviewing 18.07.2025; accepted for publication 25.08.2025.

Информация об авторах:

Даниил Германович Агафонов — врач — травматолог-ортопед, младший научный сотрудник, ortho_spot@bk.ru, https://orcid.org/0009-0002-5957-1548;

Георгий Александрович Айрапетов — доктор медицинских наук, профессор кафедры, заместитель главного врача, airapetovga@yandex.ru, https://orcid.org/0000-0001-7507-7772;

Михаил Сергеевич Сердобинцев — доктор медицинских наук, профессор, ведущий научный сотрудник,

osteolog@mail.ru, https://orcid.org/0000-0002-4066-1087;

Николай Иванович Карпович — кандидат медицинских наук, доцент кафедры,

karpovich_ni@pfur.ru, https://orcid.org/orcid.org/0000-0002-5656-1005;

Руслан Агамуратович Ханмурадов — врач — травматолог-ортопед, заведующий отделением, ottogross@bk.ru, https://orcid.org/0009-0005-6963-2027;

Денис Георгиевич Наумов — кандидат медицинских наук, доцент, врач — травматолог-ортопед; заместитель директора, ведущий научный сотрудник. dg.naumov@spbniif.ru, https://orcid.org/0000-0002-9892-6260;

Михаил Анатольевич Джериев — врач — травматолог-ортопед, djeriev135@mail.ru.

Information about the authors:

Daniil G. Agafonov — orthopaedic surgeon, junior researcher, ortho_spot@bk.ru, https://orcid.org/0009-0002-5957-1548;

Georgy A. Airapetov — Doctor of Medical Sciences, Professor of the Department, Deputy Chief Physician,

airapetovga@yandex.ru, https://orcid.org/0000-0001-7507-7772;

Mikhail S. Serdobintsev — Doctor of Medical Sciences, Professor, Leading Researcher, osteolog@mail.ru, https://orcid.org/0000-0002-4066-1087;

Nikolay I. Karpovich — Candidate of Medical Sciences, Associate Professor of the Department,

karpovich_ni@pfur.ru, https://orcid.org/orcid.org/0000-0002-5656-1005;

Ruslan A. Khanmuradov — orthopaedic surgeon, Head of Department, ottogross@bk.ru, https://orcid.org/0009-0005-6963-2027;

Denis G. Naumov — Candidate of Medical Sciences, Associate Professor of the Department, Deputy Director, Leading Researcher, dg.naumov@spbniif.ru, https://orcid.org/0000-0002-9892-6260;

Mikhail A. Djeriev — orthopaedic surgeon, djeriev135@mail.ru.

Вклад авторов:

Агафонов Д.Г. — написание текста рукописи и ее редактирование.

Айрапетов Г.А. — концептуализация, методология, исследование, контроль, управление проектом.

Сердобинцев М.С. — рецензирование и редактирование.

Карпович Н.И. — сбор, анализ или интерпретация данных.

Ханмурадов Р.А. — валидация, обработка данных.

Наумов Д.Г. — утверждение окончательного варианта рукописи для публикации

Джериев М.А. — формальный анализ.

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-558-566

A comparative study between functional outcomes of proximal humerus fracture treated using closed reduction and JESS external stabilization system and open reduction and internal fixation with PHILOS plate at a tertiary health care center

D. Garg^{1,2}, N.P. Wagh³, M.B. Shinde^{1,2⊠}, K. Sarwey^{1,2}, S. Jethliya^{1,2}, R. Bahl^{1,2}, S. Chunawala^{1,2}, D. Yadav^{1,2}, A. Zaveri^{1,2}, Y.N. Singh^{1,2}, A. Gupta^{1,2}, V. Kaulgud^{1,2}

Corresponding author: Mahesh B. Shinde, mahesh.shinde.1466@gmail.com

Abstract

Introduction Proximal humerus fractures account for 5 % of all fractures. Their incidence increases with age, especially in women over 60. Most of them (85 %) are minimally displaced and managed non-operatively, while 15 % require surgery. Neer's classification guides treatment, which includes conservative methods and operative methods. The operative techniques are PHILOS plating, pinning, nailing, or arthroplasty. The JESS fixator, developed by Dr. B.B. Joshi, offers a minimally invasive alternative.

Purpose To compare the functional results of proximal humerus fractures treated with PHILOS plating and JESS fixation.

Material and method The prospective observational study was conducted over 24 months on 36 patients with proximal humerus fractures. Patients were divided into two groups, 18 in each group, based on the surgical technique used: JESS fixation and PHILLOS plating. JESS group had more females, while PHILOS had more males. The Constant – Murley Scores were used to compare the functional outcome in both groups at regular intervals. Complications of both techniques were assessed.

Results Falls were the main cause in JESS (72.22 %), while road accidents were more common in PHILOS (55.55 %) group. Both groups showed significant improvement in Constant – Murley Scores (p < 0.005). JESS group had one case each of avascular necrosis, malunion, and pin tract infection. PHILOS group had one implant failure and one avascular necrosis case, both managed effectively.

Conclusion In the management of proximal humerus fractures, JESS fixation and PHILOS plating are equally effective. This study also led us to the conclusion that JESS fixation for proximal humerus fractures is a semi-rigid, inexpensive technique that permits early mobilization, needs few implants, requires a short hospital stay and surgical period, resulting in good to excellent functional results with a minimal risk of complications.

Keywords: JESS, PHILOS, proximal humerus, Constant – Murley Scores, osteoporosis

For citation: Garg D, Wagh NP, Shinde MB, Sarwey K, Jethliya S, Bahl R, Chunawala S, Yadav D, Zaveri A, Singh YN, Gupta A, Kaulgud V. A comparative study between functional outcomes of proximal humerus fracture treated using closed reduction and internal fixation with JESS and open reduction and internal fixation with PHILOS plate at a tertiary health care center. *Genij Ortopedii*. 2025;31(5):558-566. doi: 10.18019/1028-4427-2025-31-5-558-566.

Гений ортопедии. 2025;31(5)

¹ H.B.T. Medical college and Dr. R.N. Cooper hospital, Mumbai, Maharashtra, India

² Bhaktivedanta Swami Road Mumbai Juhu, Mumbai, Maharashtra, India

³ Vasant Rao Pawar Medical College and Research Center, Nashik, Maharashtra, India

[©] Garg D., Wagh N.P., Shinde M.B., Sarwey K., Jethliya S., Bahl R., Chunawala S., Yadav D., Zaveri A., Singh Y.N., Gupta A., Kaulgud V., 2025

Научная статья

УДК 616.717.41/.43-001.5-089.227.84:616-089.168 https://doi.org/10.18019/1028-4427-2025-31-5-558-566

Сравнение функциональных результатов лечения пациентов с переломом проксимального отдела плечевой кости методами закрытой репозиции и фиксации системой внешней стабилизации JESS и открытой репозиции и внутренней фиксации пластиной PHILOS

D. Garg^{1,2}, N.P. Wagh³, M.B. Shinde^{1,2⊠}, K. Sarwey^{1,2}, S. Jethliya^{1,2}, R. Bahl^{1,2}, S. Chunawala^{1,2}, D. Yadav^{1,2}, A. Zaveri^{1,2}, Y.N. Singh^{1,2}, A. Gupta^{1,2}, V. Kaulgud^{1,2}

Автор, ответственный за переписку: Mahesh B. Shinde, mahesh.shinde.1466@gmail.com

Аннотация

Введение. Переломы проксимального отдела плечевой кости составляют 5 % всех переломов. Их число увеличивается с возрастом, особенно у женщин старше 60 лет. Большинство переломов (85 %) сопровождается минимальным смещением отломков, таких пострадавших лечат консервативно, в то время как 15 % переломов требуют хирургического вмешательства. Выбор консервативного или оперативного метода лечения определяют с учетом классификация Neer. Оперативные методы представлены остеосинтезом пластиной PHILOS, штифтом, гвоздями или артропластикой. Использование фиксатора JESS (англ.: Joshi External Stabilizing System) является малоинвазивной альтернативой этим методам.

Цель работы — сравнить функциональные результаты остеосинтеза пластинами PHILOS и JESS при лечении пациентов с переломами проксимального отдела плечевой кости.

Материалы и методы. Проспективное наблюдательное исследование с участием 36 пациентов с переломами проксимального отдела плечевой кости проводили в течение 24 месяцев. Пациенты разделены на две группы по 18 человек в зависимости от использованной хирургической методики: фиксация пластинами JESS и фиксация пластинами PHILLOS. В группе JESS было больше женщин, в группе PHILOS — мужчин. Падения являлись основной причиной в группе JESS (72,22 %), в то время как последствия дорожно-транспортных происшествий чаще встречались в группе PHILOS (55,55 %). Для сравнения функциональных результатов в обеих группах с регулярными интервалами использовали шкалу Constant – Murley. Также оценивали осложнения при обеих методиках.

Результаты. В обеих группах наблюдали значительное улучшение показателей по шкале Constant – Murley (p < 0,005). В группе JESS зарегистрировано по одному случаю аваскулярного некроза, неправильного сращения перелома и инфекции спицевого канала. В группе PHILOS — по одному случаю несостоятельности имплантата и аваскулярного некроза, оба пациента были успешно пролечены.

Заключение. Методы закрытой репозиции и фиксации системой внешней стабилизации JESS и открытой репозиции и внутренней фиксации пластиной PHILOS являются одинаково эффективными при лечении пациентов с переломами проксимального отдела плечевой кости. Фиксация JESS при переломах проксимальной плечевой кости является экономичным методом, позволяющим проводить раннюю мобилизацию, с малыми сроками пребывания в стационаре, коротким хирургическим периодом, обеспечивающим хорошие или отличные функциональные результаты с минимальным риском осложнений.

Ключевые слова: JESS, PHILOS, проксимальный отдел плечевой кости, шкала Constant – Murley, остеопороз

Для цитирования: Garg D., Wagh N.P., Shinde M.B., Sarwey K., Jethliya S., Bahl R., Chunawala S., Yadav D., Zaveri A., Singh Y.N., Gupta A., Kaulgud V. Сравнение функциональных результатов лечения пациентов с переломом проксимального отдела плечевой кости методами закрытой репозиции и фиксации системой внешней стабилизации JESS и открытой репозиции и внутренней фиксации пластиной PHILOS. *Гений ортопедии*. 2025;31(5):558-566. doi: 10.18019/1028-4427-2025-31-5-558-566.

Гений ортопедии. 2025;31(5)

¹ H.B.T. Medical college and Dr. R.N. Cooper hospital, Mumbai, Maharashtra, India

² Bhaktivedanta Swami Road Mumbai Juhu, Mumbai, Maharashtra, India

³ Vasant Rao Pawar Medical College and Research Center, Nashik, Maharashtra, India

[©] Garg D., Wagh N.P., Shinde M.B., Sarwey K., Jethliya S., Bahl R., Chunawala S., Yadav D., Zaveri A., Singh Y.N., Gupta A., Kaulgud V., 2025

INTRODUCTION

Roughly 5% of all fractures are proximal humerus fractures, making them common injuries [1]. Their frequency rises with age, especially in individuals over 60 with a female-to-male ratio of 3:1 in this age group [2]. While 15% of these fractures necessitate surgical intervention because of the substantial displacement of fracture fragments, the majority (85%) are minimally displaced and manageable non-operatively [3]. Falling on an outstretched arm is the most common cause of proximal humerus fractures, especially in older individuals with osteoporosis [4]. A thorough clinical history is essential, including the patient's age, hand dominance, mechanism of injury, and injury severity [5]. Additionally, any pre-existing medical conditions, previous shoulder surgeries, and symptoms such as paresthesia, elbow or wrist pain, or functional impairment of the affected limb should be evaluated [6].

Neer CS classified these fractures to determine which cases would benefit from open reduction and which were at higher risk of avascular necrosis, necessitating prosthetic replacement [7]. Successful therapy depends on the correct diagnosis and classification of the fracture [8]. The formation and displacement of fracture fragments depend on the force exerted by muscles attached to the greater and lesser tuberosities and the humeral shaft [9].

The treatment of proximal humerus fractures varies based on fracture severity and patient factors. Conservative management includes the use of a U-slab (hanging cast), a universal shoulder immobilizer (USI), or functional bracing [10]. Surgical alternatives include closed reduction with percutaneous pinning, open reduction with internal fixation utilizing a locked PHILOS plate, trans-osseous suture fixation, intramedullary nailing, hemiarthroplasty, total shoulder arthroplasty, and reverse shoulder arthroplasty [11]. The surgical procedure used is determined by criteria such as fracture type, patient's age, bone quality, comorbidities, and the surgeon's expertise and preferences [12].

Dr. B.B. Joshi of Bombay devised a highly modular small external fixator device that offers a simple and effective solution for handling difficult upper limb fractures [13]. This method is minimally invasive, has a high safety rating, and enables early physiotherapy [14]. It is simple to use, even in remote locations, and requires little instrumentation, making it a viable alternative to the present treatment options [15].

The **purpose** of this study is to compare the functional results of proximal humerus fractures treated with PHILOS plating and JESS fixation.

MATERIALS AND METHODS

This prospective observational study was conducted over 24 months and included 36 patients with proximal humerus fractures. Institutional ethics committee approval was obtained, and informed consent was collected from all participants. Patient details were documented using a standardized clinical history proforma at a tertiary care center.

Inclusion Criteria:

- Patients with displaced two- or three-part humerus fractures;
- Age over 18 years;
- Injury that occurred within two weeks before surgery.

Exclusion Criteria:

- Pediatric patients with active growth plates;
- Open fractures;
- Proximal humerus fractures with pre-existing shoulder conditions such as arthritis, rotator cuff tears, or frozen shoulder;
- Associated ipsilateral upper limb injuries or fractures;
- Cases with neurovascular compromise.

Preoperative evaluation included an assessment of the patient's general health and a thorough examination of the neurovascular status of the upper extremity. Radiographic evaluation consisted of anteroposterior and axillary views of the shoulder and a CT scan for detailed fracture visualization.

Surgical Procedure

Joshi External Stabilizing System (JESS)

The surgical technique was carried out under general or local anesthesia, with the patient lying supine and a sandbag used to elevate the shoulder. We used 2.5-mm pins. The greater tuberosity pins posed a risk to the axillary nerve and the posterior humeral circumflex artery. In contrast, the proximal lateral pins

posed a risk to the anterior branch of the axillary nerve. Additionally, the cephalic vein, biceps tendon, and musculocutaneous nerve were at risk during anterior pin implantation. The greater tuberosity pins were inserted with the shoulder externally rotated to reduce danger, moving the axillary nerve and posterior circumflex artery away from the humeral neck. Three pins were placed into the humeral head at 30° intervals in the same horizontal plane: one just lateral to the bicipital groove, another in the appropriate lateral plane, and a third posterior to the central one. Two more wires were inserted into the shaft near the greater tuberosity. These fixator wires functioned as joysticks to aid with reduction before attaching the frame. The purpose of reduction was to re-establish proper alignment, with an angulation of less than 45° and displacement of less than 1 cm.

After reduction, beta clamps were used to secure each pin to the external fixator bars, resulting in a stable construction. On the first day following surgery, patients were advised to start actively mobilizing the afflicted extremity while wearing a triangle sling for comfort. After evaluating radiological union and functional improvement, the external fixator was removed.

PHILOS (Proximal Humeral Internal Locking System) Plate Fixation

In this technique, a "beach chair" position was given to the patient after general or regional anaesthesia. A single preoperative dose of 1.5 grams of Cefuroxime was administered intravenously at the initiation of anaesthesia. Surgical landmarks for the deltopectoral approach were marked. A 10-cm incision from the coracoid process to the shaft of the humerus was taken. The conjoint tendon retracted medially to allow access to the fracture site.

With the help of an image intensifier, the fracture fragments were directly reduced, and K-wires were used for the temporary fixation of these fragments. Ethibond No 5 was also used for manipulation of the proximal fracture to aid in reduction. After confirmation of fracture reduction, the PHILOS plate was positioned. Care was taken to position this plate at least 8 mm distal to the upper end of the greater tuberosity using an insertion guide. The biceps tendon was also used to guide for plate positioning. To avoid tendon impingement, the plate was positioned laterally to the long head of the biceps tendon. The locking screws were used to secure the humeral head fragment and metaphyseal shaft. The appropriate-length locking screws were inserted using a specially designed star drive screwdriver. The anteroposterior and axillary views were taken using an image intensifier for the final confirmation of fracture reduction and plate positioning. Before the procedure was completed, the stability, range of motion, and absence of impingement were evaluated intraoperatively. Following surgery, all patients were placed in either a sling or an abduction brace for support.

Postoperative Protocol

Following surgery, physical therapy was started right away on the next day. It started with pendulum exercises, passive forward flexion, and external rotation exercises, and advanced to unrestricted range of motion by 6–7 weeks. Exercises including active range of motion and active assistance were recommended. Patients were monitored for clinical and radiological union at 4, 8, and 12 weeks.

Outcome Assessment

Functional outcomes were assessed using the Constant-Murley Score (CMS), a 100-point scale evaluating pain levels and the patient's ability to perform daily activities [15]. The CMS is interpreted as follows:

- 0-55 points = Poor;
- 56–70 points = Fair;
- 71–85 points = Good;
- 86–100 points = Excellent.

Complications, including pin-tract infections, malunion, avascular necrosis, and implant failure, were documented throughout the follow-up period.

Statistical Analysis

Statistical analysis was performed using SPSS software, version 22. Qualitative data were presented as frequency and percentage, while quantitative data were analyzed using a paired t-test. A p-value of < 0.05 was considered statistically significant.

RESULTS

This study included 36 patients. Both groups had a total of 18 patients each. In the JESS group, there were eight males (44.44 %) and 10 females (55.55 %), while in the PHILOS group there were 15 males (83.33 %) and three females (16.67 %). The mode of injury in the JESS group was fall in 13 cases (72.22 %) and road traffic accidents in five cases (27.78 %), whereas in the PHILOS group, eight cases (44.44 %) were due to falls

and 10 cases (55.55 %) resulted from road traffic accidents. Neer's classification showed seven two-part (38.90 %) and 11 three-part (61.10 %) fractures in the JESS group, while the PHILOS group had nine two-part (50 %) and nine three-part (50 %) fractures. Both groups had a total of 18 patients each (Table 1).

Demographic details

Table 1

		JESS (<i>n</i> = 18)		PHILOS	(n = 18)
		n	%	n	%
Male		8	44.44	15	83.33
Female		10	55.55	3	16.67
Mode of injury	Fall	13	72.22	8	44.44
Mode of injury	Road traffic accident	5	27.78	10	55.55
Neer's type	2 parts	7	38.90	9	50
	3 parts	11	61.10	9	50

In the JESS group, the mean Constant-Murley Score increased from 29.02 before surgery to 60.27 at four weeks postoperatively, 70 at eight weeks postoperatively, and 82.33 at 12 weeks postoperatively. Similarly, in the PHILOS group, the mean Constant-Murley Score increased from 32.12 preoperatively to 55.82 at four weeks postoperatively, 66.76 at eight weeks postoperatively, and 77.06 at 12 weeks postoperatively. When comparing preoperative assessments with postoperative scores at 4, 8, and 12 weeks, the p-value for both groups was less than 0.005, suggesting a highly significant improvement (Table 2).

Constant Murley Score at a regular interval

Table 2

Constant Murley Score									
Pre-op Post-op 4 weeks Post-op 8 weeks Post-op 12 weeks									
Technique		- r	1		1		1		<i>P</i> -value
-	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
JESS	29.22	5.58	60.27	8.04	70	8.6	82.33	11	< 0.001
PHILOS	32.12	5.02	55.82	5.04	66.76	7.88	77.06	11.42	< 0.001

In the JESS fixation group, there were three cases of complications: one case of avascular necrosis of the humeral head (successfully treated with hemiarthroplasty), one case of malunion (without significant impact on the functional outcome), and one case of pin-tract infection (successfully managed with daily dressing and oral antibiotics). On the other hand, with PHILOS fixation, there were two complications: one case of avascular necrosis (treated with hemiarthroplasty) and one case of implant failure (screw backout) (Table 3).

Table 3

Complications

Technique	Implant failure		Malunion		Avascular necrosis		Infection		None	
	n	%	n	%	n	%	n	%	n	%
JESS (<i>n</i> = 18)	0		1	5.55	1	5.55	1	5.55	15	83.33
PHILOS (<i>n</i> = 18)	1	5.55	0		1	5.55	0		16	88.88

Fig. 1. Pre-op JESS

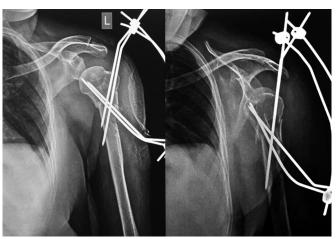


Fig. 2. Post-op JESS

Fig. 3. 12 weeks post-op JESS

Fig. 4. Pre-op PHILOS

Fig. 5. Post-op PHILOS

Fig. 6. 12 weeks Post-op PHILOS

DISCUSSION

Proximal humerus fractures are rather common in the elderly, and there are numerous treatment options for closed fractures. These options range from minimally invasive percutaneous pinning to hemiarthroplasty, and each has pros and downsides. One main disadvantage of non-operative treatment is delayed mobilization, which frequently results in joint stiffness. Additionally, conservative treatment increases the risk of malunion or nonunion of fractures.

Joshi External Stabilization

In our research, the application of an external fixator system facilitated satisfactory bone healing, accompanied by favourable to outstanding functional results. The procedure generally took less time, under 30 minutes, was economical, and utilized minimal resources. Despite the suboptimal anatomical reduction achieved through this percutaneous fixation method, the functional results remained favorable. These findings are supported by multiple studies. Some techniques incorporate a locking mechanism attached to the pins to prevent migration while operating on the same principle as percutaneous fixation. Additionally, the mutual connection of K-wires generates extra valgus force, counteracting the deforming forces exerted by the supraspinatus and deltoid muscles. However, further biomechanical studies are needed to validate this claim.

Another approach, known as the "hybrid technique", involves initial open reduction followed by stabilization with K-wires and an external fixator [16]. While this method yields comparable functional and radiographic results, it is associated with wound healing complications.

Our study included eight female and ten male patients, with a mean age of 61 years. All patients underwent surgery within three days of injury, and the procedure took less than 30 minutes, with minimal to no blood loss. Postoperatively, active-assisted shoulder flexion and extension exercises, along with wrist and elbow range-of-motion exercises, were initiated on the first day. Patients were advised to maintain upper limb exercises and perform external fixator care at home. Follow-up assessments were conducted at four, eight, and twelve weeks.

A steady improvement in functional outcomes, as assessed by the Constant – Murley Score, was observed: 60.27 at four weeks, 70.00 at eight weeks, and 82.33 at twelve weeks. Complications such as avascular necrosis, pin-tract infection, and malunion were rare, with only one case of each; all of which were successfully treated. A.K. Gupta et al. [17] found that in their research of JESS fixation, the average postoperative VAS score was $2.1 (\pm 0.73)$, while the Constant Score averaged $78.1 (\pm 9.61)$ over a follow-up period of six months. The average time required for union was $6.5 (\pm 1.18)$ weeks. Reported complications included one instance of K-wire loosening and one occurrence of pin tract infection.

T. Goyal et al. [18] in their study found that the mean preoperative Constant-Murley Score was 29.09, which improved to 60.39 at four weeks postoperatively, 69.97 at eight weeks postoperatively, and 79.64 at twelve weeks postoperatively. Similarly, P.R. Kandel et al. [19] reported comparable results and concluded that surgically treating displaced proximal humerus fractures with JESS leads to good functional and radiological outcomes. It results in less pain, reduced stiffness, and greater range of motion (ROM). Consequently, the JESS fixator serves as an economical and effective alternative treatment for proximal humerus fractures, presenting minimal complications.

Internal Fixation with Locking Plates

Historically, internal fixation using non-locking plates was associated with high failure rates and unsatisfactory clinical outcomes. Pre-contoured anatomical locking compression plates offer greater adaptability and higher union rates, particularly in osteoporotic bone [20]. Regardless of the fixation method, fracture reduction remains critical for optimal surgical outcomes. Proper plate positioning is equally important, as even minor displacement can result in shoulder impingement. According to AO-OTA principles, the upper edge of the plate should be placed 5–8 mm distal to the greater tuberosity to avoid impingement.

Our study included fifteen male and three female patients, with a mean age of 48 years. Physiotherapy was initiated in the second postoperative week, beginning with passive-assisted range-of-motion exercises, followed by active exercises starting from the third week. Follow-up assessments at four, eight, and twelve weeks showed continuous improvement in functional outcomes, with Constant-Murley Scores of 55.82 at four weeks, 66.76 at eight weeks, and 77.06 at twelve weeks.

Despite the advantages of locking plates, they are associated with complications such as plate breakage, screw cutout, avascular necrosis, varus malreduction, and the need for revision surgery. R. Jhamnani et al. [21] studied 32 proximal humerus fractures treated with PHILOS plating, reporting excellent outcomes in 62.5 %, satisfactory in 21.87 %, poor in 9.38 %, and failure in 6.25 %. Two-part fractures had better results than three-part fractures. Complications were minimal, with 65.6 % showing stiffness, malunion (9.38 %), and avascular necrosis (6.25 %) were noted. In the study by P. Spolia et al. [22], the mean Constant – Murley Score at six months was 79.4 (range: 38-92). Among 30 patients, 40 % had excellent, 30 % good, 20 % moderate, and 10 % poor outcomes. One four-part fracture had the lowest score (38). Complications (16.7 %) included varus malunion, avascular necrosis, and stiffness. A similar study was done by P. Ethirajk et al. [23], on 40 patients and reported that the functional outcome was found to be excellent in 2 patients (5 %), good in 22 patients (55 %), fair in 7 patients (17.5 %), and poor in 9 patients (22.5 %). The mean Constant – Murley score achieved was 68.75 ± 14.03 .

In our study, the screw cutout (implant failure) rate was significantly lower at 5.55 %. In a study by K.C. Owsley et al. [24], involving 53 patients, the screw cutout rate was reported to be 23 %, identifying it as a leading cause of revision surgery. C. Doshi et al. [25] also reported 5.66 % screw cutout rate in their study. Another long-term complication observed in comminuted three- and four-part fractures is avascular necrosis, which typically develops years after fixation and can compromise functional outcomes. We encountered avascular necrosis in 5.55 % of cases. E.V. Geiger et al. [26] reported 7.28 % cases of avascular necrosis in their study on 28 patients. A. Kaushal et al. [27] showed 2.5 % cases of avascular necrosis following PHILOS plating.

Alternative Surgical Approaches

Hemiarthroplasty and reverse total shoulder arthroplasty are viable alternatives, particularly for complex fractures. However, these procedures require advanced surgical skills and tertiary healthcare facilities, which are often inaccessible in our country. A more biological approach has been proposed, though it poses risks to the articular cartilage and is commonly associated with persistent shoulder pain. Intramedullary nailing is another technique preferred by some orthopaedic surgeons.

The main limitation of this study was a relatively small sample size. A larger randomized controlled trial comparing various fixation techniques would provide more comprehensive insights into this treatment approach.

CONCLUSION

This study concluded that both techniques, JESS fixation and PHILOS plating, are equally effective in treating proximal humerus fractures in terms of functional outcome. This study also led us to the conclusion that JESS fixation for proximal humerus fractures is a semi-rigid, inexpensive technique that permits early mobilization, needs few implants, requires a short hospital stay and surgical period, resulting in good to excellent functional results with a minimal risk of complications.

Conflict of interest The authors have no conflicts of interest to declare.

Funding source There is no funding source for the research work.

Ethics approval Ethics committee approval was taken from the institutional Ethics committee.

Consent for publication Consent was taken from all the participants.

Availability of data and materials The datasets used in and/or analyzed in the current study are available from the corresponding author upon reasonable request.

The manuscript was read and approved by all the authors.

REFERENCES

- 1. Baker HP, Gutbrod J, Strelzow JA, et al. Management of Proximal Humerus Fractures in Adults-A Scoping Review. *J Clin Med.* 2022;11(20):6140. doi: 10.3390/jcm11206140.
- 2. Iglesias-Rodríguez S, Domínguez-Prado DM, García-Reza A, et al. Epidemiology of proximal humerus fractures. *J Orthop Surg Res*. 2021;16(1):402. doi: 10.1186/s13018-021-02551-x.
- 3. Handoll HH, Elliott J, Thillemann TM, et al. Interventions for treating proximal humeral fractures in adults. *Cochrane Database Syst Rev.* 2022;6(6):CD000434. doi: 10.1002/14651858.CD000434.pub5.
- 4. Taskesen A, Göçer A, Uzel K, Yaradılmış YU. Effect of Osteoporosis on Proximal Humerus Fractures. *Geriatr Orthop Surg Rehabil*. 2020;11:2151459320985399. doi: 10.1177/2151459320985399.
- 5. Brorson S, Palm H. Proximal Humeral Fractures: The Choice of Treatment. 2020 Aug 21. In: Falaschi P, Marsh D, (eds.) *Orthogeriatrics: The Management of Older Patients with Fragility Fractures [Internet]*. 2nd ed. Cham (CH): Springer; 2021. Chapter 10. doi: 10.1007/978-3-030-48126-1 10.
- 6. Węgiel A, Karauda P, Zielinska N, et al. Radial nerve compression: anatomical perspective and clinical consequences. *Neurosurg Rev.* 2023;46(1):53. doi: 10.1007/s10143-023-01944-2.
- 7. Neer CS 2nd. Displaced proximal humeral fractures. I. Classification and evaluation. J Bone Joint Surg Am. 1970;52(6):1077-1089.
- 8. Younis Z, Hamid MA, Amin J, et al. Proximal Humerus Fractures: A Review of Anatomy, Classification, Management Strategies, and Complications. *Cureus*. 2024;16(11):e73075. doi: 10.7759/cureus.73075.
- 9. Klute L, Pfeifer C, Weiss I, et al. Displacement of the Greater Tuberosity in Humeral Head Fractures Does Not only Depend on Rotator Cuff Status. J Clin Med. 2021;10(18):4136. doi: 10.3390/jcm10184136.
- 10. Martinez-Catalan N. Conservative Treatment of Proximal Humerus Fractures: When, How, and What to Expect. *Curr Rev Musculoskelet Med.* 2023;16(2):75-84. doi: 10.1007/s12178-022-09817-9.
- 11. Miquel J, Martínez R, Santana F, et al. Surgical treatment of proximal humeral fractures with the transosseous suture fixation. *J Orthop Surg Res.* 2021;16(1):405. doi: 10.1186/s13018-021-02555-7
- 12. Gan-Or H, Maman D, Mahamid A, et al. Trends and factors influencing surgical choices for femoral neck fractures. *Surg Tech Dev.* 2024;13(4):337-346. doi:10.3390/std13040026.
- 13. Sinha S, Kumar A, Kumar S, et al. The Joshi External Stabilization System (JESS): Simple yet Versatile. *J Orthop Case Rep.* 2024;14(10):1-3. doi: 10.13107/jocr.2024.v14.i10.4788.
- 14. Thambusamy G, Subramanian K, Mathialagan S, et al. 6-Pin Technique Joshi External Stabilization System Fixation for Proximal Humerus Fractures A Case Series. *J Orthop Case Rep.* 2023;13(2):65-69. doi: 10.13107/jocr.2023.v13.i02.3560.
- 15. Michael G, George K, Canjirathinkal MA, et al. Functional Outcome of Joshi's External Stabilization System Fixation in Distal Radius Fractures. *Cureus*. 2022;14(4):e24215. doi: 10.7759/cureus.24215.
- 16. Maluta T, Amarossi A, Dorigotti A, et al. External fixation can be an option for proximal humerus fractures Neer 3-4. *Acta Biomed*. 2020;91(14-S):e2020017. doi: 10.23750/abm.y91i14-S.10979.
- 17. Gupta AK, Gupta M, Sengar G, Nath R. Functional outcome of closed fractures of proximal humerus managed by Joshi's external stabilizing system. *Indian J Orthop*. 2012;46(2):216-220. doi: 10.4103/0019-5413.93679.
- 18. Goyal T, Agrawal M, Pangavane S, Gandhi K. Functional Outcome of Joshi External Stabilisation System for Proximal Humerus Fractures in Tertiary Care Centre. MVP J. Med. Sci. 2021;8(1):94-98. doi: 10.18311/mvpjms/2021/v8i1/296.
- 19. Kandel PR, Shrestha B, Shrestha KM, et al. Functional Outcome of Proximal Humerus Fracture Managed Surgically by Joshi's External Stabilizing System. *J Univ Coll Med Sci.* 2021;9(2):8-13. doi: 10.3126/jucms.v9i02.41990.
- 20. Hu C, Zhou K, Pan F, et al. Application of pre-contoured anatomic locking plate for treatment of humerus split type greater tuberosity fractures: A prospective review of 68 cases with an average follow-up of 2.5 years. *Injury*. 2018;49(6):1108-1112. doi: 10.1016/j. injury.2018.04.013.
- 21. Jhamnani R, Dhanda MS, Surana A. Study of Functional Outcome and Postoperative Complications Among Proximal Humerus Fracture Patients Treated With Proximal Humerus Internal Locking System (PHILOS) Plating. *Cureus*. 2023;15(7):e42411. doi: 10.7759/cureus 42411.
- 22. Spolia P, Ghani A, Arfee S. Clinico-radiological and functional outcome of surgical management of displaced two part, three part and four part proximal humeral fractures in adults treated by PHILOS plate in a tertiary care hospital in North India: a prospective study of 30 patients. *Int J Res Med Sci.* 2021;9(10),3006–3011. doi: 10.18203/2320-6012.ijrms20213923.
- 23. Ethiraj P, Venkataraman S, S JK, et al. Does Proximal Humerus Inter Locking System (PHILOS) Plating Provide a Good Functional Outcome in Proximal Humerus Fractures? *Cureus*. 2022;14(6):e26474. doi: 10.7759/cureus.26474.
- 24. Owsley KC, Gorczyca JT. Fracture displacement and screw cutout after open reduction and locked plate fixation of proximal humeral fractures [corrected]. *J Bone Joint Surg Am.* 2008;90(2):233-240. doi: 10.2106/JBJS.F.01351.
- 25. Doshi C, Sharma GM, Naik LG, et al. Treatment of Proximal Humerus Fractures using PHILOS Plate. *J Clin Diagn Res*. 2017;11(7):RC10-RC13. doi: 10.7860/JCDR/2017/26782.10304.

- 26. Geiger EV, Maier M, Kelm A, et al. Functional outcome and complications following PHILOS plate fixation in proximal humeral fractures. *Acta Orthop Traumatol Turc*. 2010;44(1):1-6. doi: 10.3944/AOTT.2010.2270.
- 27. Kaushal A, Singhal V, Nand AA. A prospective study showing functional outcome & complications following PHILOS plating in proximal humerus fractures. *Int J Heal Clin Res.* 2022;5(2):794-800. URL: https://ijhcr.com/index.php/ijhcr/article/view/4875.

The article was submitted 03.04.2025; approved after reviewing 17.04.2025; accepted for publication 25.08.2025.

Статья поступила 03.04.2025; одобрена после рецензирования 17.04.2025; принята к публикации 25.08.2025.

Information about the authors:

Deepanshu Garg — M.D., Senior Resident, dgarg2311@gmail.com;

Nitin Prakash Wagh — M.D., Professor, drnitinwagh14@gmail.com;

Mahesh B. Shinde — M.D., Senior Resident, mahesh.shinde.1466@gmail.com;

Kshitij Sarwey — M.D., Junior Resident, kshitijsarwey@gmail.com;

Sanket Jethliya — M.D., Junior Resident, sanketjethliya1@gmail.com;

Rohan Bahl — Senior Resident, drrohanbahl@gmail.com;

Samreen Chunawala — Medical student, samreenchunawala2003@gmail.com;

Divya Yadav — Medical student, divyayadavv04@gmail.com;

Anika Zaveri — Medical student, anikazaveri@gmail.com;

Yash Nav Singh — Medical student, yash131200@gmail.com;

Abhay Gupta — Medical student, abhayg1310@gmail.com; Ved Kaulgud — Medical student, ved.kaulgud@gmail.com.

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-567-573

ACL reconstruction: correlation of the functional outcome with the position of femoral and tibial tunnels

M.B. Shinde[™], M.R. Patel, K. Sarwey, S. Jethlia, V. Kaulgud, R. Datta, A. Modi, S. Kharate, S. Singh, T. Bopardikar, V. Beniwal, Sh. Chiwadshetti

HBT Medical College and Dr. RN Cooper Hospital Juhu, Mumbai, India

Corresponding author: Mahesh B Shinde, mahesh.shinde.1466@gmail.com

Abstract

Introduction The anterior cruciate ligament (ACL) is the main ligament that stabilizes the knee and stops anterior translation. It is also essential to the screw-home mechanism and helps resist valgus and rotational stress. For ACL reconstruction, autograft arthroscopic single-bundle surgery is regarded as the "gold standard" procedure. Joint laxity is enhanced and cartilage degradation is avoided with anatomical ACL restoration. Negative results are frequently caused by technical surgical errors, such as improper tunnel placement.

This study **aims** to evaluate the functional outcome in ACL-reconstructed patients when a graft is placed in an anatomical position, as well as to compare it with when a graft is placed in a non-anatomical place.

Methodology This is a 24-month prospective observational study conducted on 44 patients who underwent arthroscopic ACL reconstruction, with post-op CT scans performed after permission from the institutional review board (IRB). The most common mode of injury was sports-related. Thirty patients belonged to the anatomical group, and 14 patients belonged to the non-anatomical group based on inclusion and exclusion criteria. The Lysholm scoring system was used for functional evaluation on follow-up at three, six, and 12 months.

Results The mean Lysholm score was 41.24 before surgery for the entire sample. In the anatomical group, the score improved to 80.91 at three months, 85.91 at six months, and 89.23 at twelve months. In the non-anatomical group, the score was 58.58 at three months, 65.13 at six months, and 58.58 at twelve months. The improvement in Lysholm scores in the anatomical group was statistically significant.

Conclusion This study concludes that the functional outcome of ACL reconstruction is better when the graft is placed in anatomical footprints than when it is placed in non-anatomical footprints.

Keywords: Femoral tunnel, tibial tunnel, ACL reconstruction, anatomical grafting, Lysholm score

For citation: Shinde MB, Patel MR, Sarwey K, Jethlia S, Kaulgud V, Datta R, Modi A, Kharate S, Singh S, Bopardikar T, Beniwal V, Chiwadshetti Sh. ACL reconstruction: correlation of the functional outcome with the position of femoral and tibial tunnels. *Genij Ortopedii*. 2025;31(5):567-573. doi: 10.18019/1028-4427-2025-31-5-567-573.

[©] Shinde M.B., Patel M.R., Sarwey K., Jethlia S., Kaulgud V., Datta R., Modi A., Kharate S., Singh S., Bopardikar T., Beniwal V., Chiwadshetti Sh., 2025

Научная статья

УДК 616.758.3-072.1]-089.168 https://doi.org/10.18019/1028-4427-2025-31-5-567-573

Реконструкция передней крестообразной связки: корреляция функционального результата с положением бедренного и большеберцового каналов

M.B. Shinde[™], M.R. Patel, K. Sarwey, S. Jethlia, V. Kaulgud, R. Datta, A. Modi, S. Kharate, S. Singh, T. Bopardikar, V. Beniwal, Sh. Chiwadshetti

HBT Medical College and Dr. RN Cooper Hospital Juhu, Mumbai, India

Автор, ответственный за переписку: Mahesh B Shinde, mahesh.shinde.1466@gmail.com

Аннотация

Введение. Передняя крестообразная связка (ПКС) является основной связкой, стабилизирующей колено и предотвращающей смещение голени вперед. Ее роль существенна в механизме винтовой фиксации, который помогает противостоять вальгусной и ротационной нагрузкам. Однопучковая артроскопическая аутопластика считается «золотым стандартом» при реконструкции ПКС, в результате которой стабилизируется сустав и предотвращается дегенерация хряща. Отрицательные результаты часто вызваны техническими ошибками во время операции, такими как неправильное положение канала для трансплантата.

Цель работы — сравнительная оценка функциональных результатов у пациентов с реконструкцией ПКС при помещении трансплантата в анатомическое и неанатомическое положения.

Материал и методы. Данное 24-месячное перспективное наблюдательное исследование проведено на 44 пациентах, которым выполняли артроскопическую реконструкцию ПКС и послеоперационное КТ-исследование. Пациенты разделены на две группы: группа с анатомическим положением трансплантата (30 пациентов) и группа с неанатомическим положением трансплантата (14 пациентов). Наиболее распространенным видом травмы была спортивная травма. Для функциональной оценки при контроле через три, шесть и 12 месяцев использовали оценочную шкалу Lysholm.

Результаты. Средний балл по Lysholm до операции составил 41,24 для всей выборки. В анатомической группе общий балл улучшился до 80,91 через три месяца, до 85,91 через шесть месяцев и до 89,23 через двенадцать месяцев. В неанатомической группе показатели составили соответственно: 58,58, 65,13 и 58,58 баллов. Улучшение суммы баллов по шкале Lysholm в анатомической группе было статистически значимым.

Заключение. Артроскопическая реконструкция ПКС имеет лучший функциональный результат при помещении трансплантата в анатомическое положение по сравнению с неанатомическим положением.

Ключевые слова: бедренный канал, большеберцовый канал, реконструкция ПКС, анатомическая трансплантация, оценка Lysholm

Для цитирования: Shinde M.B., Patel M.R., Sarwey K., Jethlia S., Kaulgud V., Datta R., Modi A., Kharate S., Singh S., Bopardikar T., Beniwal V., Chiwadshetti Sh. Реконструкция ПКС: корреляция функционального результата с положением бедренного и большеберцового каналов. *Гений ортопедии*. 2025;31(5):567-573. doi: 10.18019/1028-4427-2025-31-5-567-573.

Гений ортопедии. 2025;31(5)

[©] Shinde M.B., Patel M.R., Sarwey K., Jethlia S., Kaulgud V., Datta R., Modi A., Kharate S., Singh S., Bopardikar T., Beniwal V., Chiwadshetti Sh., 2025

INTRODUCTION

The anterior cruciate ligament (ACL) is the most frequently injured ligament, while the knee is the most frequently injured joint overall. The knee's main stabilizer, the ACL, stops the knee from anterior translation. Additionally, it plays a crucial role in reducing valgus and rotational stress and plays an important role in the screw home mechanism. Depending on the demography, the annual incidence rates of ACL injuries range from 30 to 40 ruptures per 100,000 people [1]. Incidence is more common in sports players. From the initial primary repair to extracapsular augmentation and tendon graft-based ACL reconstructions, surgical treatment of ACL-deficient knees has advanced. For ACL reconstruction, autograft arthroscopic single-bundle surgery is regarded as the "gold standard" [2]. Reconstruction of a ruptured ACL is a well-established procedure [3]. Restoring proper knee joint function and preventing the onset of secondary osteoarthritis are the goals of ACL restoration [4].

Up to 25 % of patients still do not achieve adequate function following an ACL repair, despite advancements in surgical procedures over the previous few decades [5]. One of the main difficulties in reconstructing the anterior cruciate ligament is the placement of anatomical grafts. Joint laxity is enhanced and cartilage degradation is avoided with anatomic ACL restoration [6]. These days, anatomical graft placements should be prioritized in ACL restoration to replicate normal physiologic graft tension and more precise knee kinematics [7]. Technical surgical errors, such as incorrect tunnel placement, are a common cause of poor outcomes [8]. The most frequent technical mistake that results in graft failure is tunnel misplacement; femoral tunnels positioned too anteriorly seem to be the most crucial of these mistakes [9]. It is estimated that up to 80 % of technical failures are based on improper tunnel placement [10]. Currently, the most effective technique to assess the proper positioning of the ACL tunnel and graft is three-dimensional (3D) reconstruction of computed tomography (CT) images [11–12].

Tunnel diameter, tunnel length, femur diaphyseal angle (coronal angle/coronal obliquity), and tunnel position utilizing the Bernard and Hertel grid are the usual anatomical parameters for the femoral tunnel [13]. Tunnel diameter, tunnel length, anteroposterior and mediolateral tunnel position using the quadrant technique, coronal angle, and sagittal angle are among the anatomical factors for a reconstructed tibial tunnel [14].

The Lysholm scoring method is widely used to assess functional results in knee joints [15]. Theoretically, ACL reconstruction with a non-anatomical graft may impair knee joint stability and kinematics. This non-anatomical reconstruction can potentially alter the functional outcome of an ACL reconstructed knee.

This study **aims** to evaluate the functional outcome in ACL-operated patients when a graft is placed in an anatomical position, as well as to compare it with when a graft is placed in a non-anatomical place.

MATERIALS AND METHODS

This is a 24-month prospective observational study of 44 patients with anterior cruciate ligament (ACL) tears that have been identified and operated on. The institutional ethics (Institutional Review Board — IRB) committee provided approval. Data were gathered using the clinical history proforma, and patient information was documented at a tertiary care facility. The study comprised patients who presented to the orthopaedic department using predetermined inclusion and exclusion criteria.

The study comprised patients with solitary ACL injuries, ACL tears with or without accompanying meniscus injuries (single cruciate ligament damage), fused epiphysis, average body mass index (18.5–24.9 kg/m²) and age ranging from 20 to 50 years. Patients with open injuries, associated posterior cruciate ligament injury, medial or lateral collateral ligament injuries, ACL re-injury, ipsilateral lower limb fractures around the knee, refusal to undergo a postoperative CT scan, and prior surgery on or around the same knee were excluded. Patients who volunteered to participate in the trial provided signed informed consent.

Preoperative evaluation involved an assessment of general health and a thorough examination of the affected knee. Radiographic evaluation included anteroposterior and lateral views as well as MRI of the affected knee. All patients underwent arthroscopic ACL reconstruction using a hamstring graft, performed by a senior consultant. Careful attention was given to the preparation of the graft, tunnel creation in the tibial and femoral regions, and secure fixation of the graft in the anatomical position. In the postoperative period, a CT scan of the operated limb was performed to check for anatomical graft placement.

The anatomical parameters used to assess graft placement were:

Femur

- Tunnel diameter;
- Tunnel length;
- Femoral diaphyseal angle (coronal angle/coronal obliquity);
- Tunnel position using the Bernard and Hertel grid.

Tibia

- Tunnel diameter;
- Tunnel length;
- Anteroposterior and mediolateral tibial tunnel position using the quadrant approach;
- The coronal and sagittal angles.

Based on these parameters, patients were categorized into two groups: anatomical (femoral and tibial tunnels in the anatomical position) and non-anatomical (femoral or tibial tunnel not in anatomical position). All the patients in both groups had no difference in an average BMI.

Outcome measures: Functional outcomes were assessed using the Lysholm score preoperatively, at three months, six months, and 12 months postoperatively. This scoring mechanism assumed a pivotal role, serving as a critical instrument in providing an intricate and in-depth assessment of the overall knee function and symptomatology experienced by individuals undergoing ACL reconstruction.

Statistical Analysis: A case record (PROFORMA) was filled out by an investigator using the interview technique. The collected data were tabulated in an Excel sheet under the guidance of a statistician. Means and standard deviations of the measurements per group were used for statistical analysis (SPSS 22.00 for Windows; SPSS Inc., Chicago, USA). The difference between the two groups was assessed using the chi-square test, with the level of significance set at p < 0.05.

RESULTS

The study included 44 patients of which 36 were male and eight were female. The mean age of participants was 28 years and the right side was more commonly injured than the left. The most common mechanism for the injury was sports-related. Out of 10 patients with meniscus injury, five patients belonged to each group, and there was no statistically significant difference between the groups (Table 1).

Demography

Table 1

		Group of anatomical graft placement (<i>n</i> = 30)	Group of nonanatomical graft placement (<i>n</i> = 14)	P value	Statistical significance	
Age (Mean)		$x \pm x = 28.2$ years	$x \pm x=27.7$ years	0.176	No	
Male	n	26	10			
wate	%	87	71	0.0000243	Yes	
Female	n	4	4	0.0000243	162	
remaie	%	13	29			
Bone Mass Index (Mean)		23.1± 2.6	23.5± 3.2	0.687	No	
Site Right	n	23	7			
Site Right	%	77	50	0.0159	Yes	
Site Left	n	7	7	0.0159	ies	
Site Left	%	23	50			
Mechanism of injury —	n	24	9			
sports	%	80	64			
Mechanism of injury —	n	5	2	0.0000000004	Voc	
road traffic accidents	%	17	14	0.0000000294	Yes	
Other mechanism	n	1	3			
Other mechanism	%	3	22			

In the anatomical group, preoperatively almost all patients had lower Lysholm scores. Post-operatively, the number of patients with improved Lysholm scores increased from 13 patients (43 %) at three months to 26 patients (87 %) at 12 months. None of the patients showed poor scores at 12 months. This improvement was statistically significant (Table 2). Pre-operatively, none of the patients had an excellent Lysholm score. The number of patients with an excellent and good score increased in the postoperative period for the anatomical group while the number of patients with fair and poor scores remained the same even at 12 months post-operatively. This improvement in the number of patients in the anatomical group was statistically significant.

The mean Lysholm score was 41.24 before surgery in the entire sample of patients. In the anatomical group, this score improved significantly at six months, as well as at twelve months. In the non-anatomical group, the score remained the same at twelve months. The improvement in Lysholm scores in the anatomical group was statistically significant (Table 3).

Table 2

Comparison of Lysholm scores

Lysholm score		cal graft placement = 30)	Group of nona placemer	<i>P</i> value	
	n	%	n	%	
Pre-op					
Excellent (91–100)	0	0	0	0	
Good (84-90)	2	7	0	0	0.553
Fair (65-83)	10	33	6	43	0.555
Poor (< 65)	18	60	8	57	
3 months					
Excellent (91–100)	4	13	0	0	
Good (84-90)	9	30	0	0	0.0075
Fair (65-83)	15	50	6	43	0.0075
Poor (< 65)	2	7	8	57	
6 months					
Excellent (91–100)	12	40	0	0	
Good (84-90)	10	33	2	14	0.0000247
Fair (65-83)	8	27	4	29	0.0000247
Poor (< 65)	0	0	8	57	
12 months					
Excellent (91–100)	17	57	0	0	
Good (84-90)	9	30	0	0	0.000000000
Fair (65-83)	4	13	8	57	0.000000603
Poor (< 65)	0	0	6	43	

Table 3

Lysholm score in the groups

Position		Dyroluo		
	3 months	6 months	12 months	<i>P</i> value
Anatomical	80.91	85.91	89.23	< 0.05
Non-anatomical	58.58	65.13	58.58	< 0.05

Only two patients from our study had swelling, one patient had a stiff knee and one patient had infection. The patients with post-op swelling and stiff knees were managed with physiotherapy and infection was treated with antibiotics.

DISCUSSION

These days, ACL tears are frequent injuries due to rising participation in sports and an increase in traffic accidents. Despite debate over whether ligament restoration is necessary for all individuals with ACL injuries, arthroscopic surgical reconstruction has emerged as the preferred course of treatment. Restoring knee stability is the main objective of this surgery, which enables the patient to resume a normal range of motion and engage in sports. Restoring normal knee kinematics and avoiding early arthritic alterations are additional goals. For ACL reconstruction, hamstring (semitendinosus and gracilis) tendon autograft is currently the recommended option. The purpose of our study was to compare the functional results of patients undergoing ACL restoration in anatomical footprints and those in non-anatomical footprints.

The mean age of the patients in our study was 28 years, and it ranged from 20 to 55 years. Most of the patients were between the ages of 25 and 35. Nine female patients and thirty-five male patients participated in this study. The prevalence of ACL injuries in men may be explained by the fact that men participate in sports and outdoor activities at higher rates than women. Patients' age ranged from 17 to 48 years, with a mean age of 26.3 years and a median age of 25.0 years, according to a series of studies by J.L. Johnson et al. [16]. The majority of the patients in their study were between the ages of 15 and 25, including 23 (92 %) men and two (8 %) girls.

Sports-related injuries accounted for 33 (75 %) and traffic accidents for seven (15.90 %) cases of the injuries in our study. Football and athletic activities were the most prevalent sports-related injuries. The increased participation in sports activities may be the cause of the variation in the manner of injury. Twenty-five individuals

with ACL deficit, ages 17–43, with an average age of 25.8 years, participated in a study by X. Li et al. [17]. It discovered that sports accounted for 68 % of the injuries, falls accounted for 24 %, and motor accidents accounted for 8 % of cases.

Thirteen individuals (31.81 %) in our study had left knee involvement, while thirty patients (68.18 %) had right knee involvement. In their study, A.M. Tayeb et al. [18] found that left-sided ACL injuries were less common (37.5 %), right-sided injuries accounted for the majority (62.5 %).

ACL tears were the most frequent main diagnosis in our study. Ten instances (22.2 %) had medial meniscus injury, and three cases (6.67 %) had lateral meniscus injury, for a total of thirteen patients (28.89 %) with combined meniscal injury and ACL tear. If a meniscal tear was discovered during surgery, a meniscectomy was carried out. ACL injuries were isolated in the 32 individuals (71.11 %) that remained. In their analysis of 107 patients, M. Kruger-Franke et al. [19] discovered that ACL ruptures were linked to 45 % of medial meniscus ruptures and 55 % of lateral meniscus tears.

Of 44 patients, 30 had anatomical graft placement (68.18 %), while 14 had non-anatomical graft placement (31.81 %). We used a 3D CT scan to check the post-operative anatomic placement of the reconstructed ACL. M. Kim et al. [5] and A.P. Parker et al. [20] also used a CT scan to check the anatomical placement. Femoral and tibial tunnel length and diameter, femoral diaphyseal angle, tunnel, and tunnel position using the Bernard and Hertel grid (femur) and quadrant method (tibia), as well as coronal and sagittal angles for the tibia, were the methods used for anatomical graft placement. In 2015, T. Vermersch et al. [21] did a study on CT assessment of femoral tunnel placement and found 124 femoral tunnels (68.9 %) were in the optimal position and 56 (31.1 %) were not. A radiologic evaluation of the femoral and tibial tunnel placement based on anatomic landmarks in arthroscopic single-bundle anterior cruciate ligament restoration was conducted in 2017 by S.K. Nema et al. [22]. M.R. Patel et al. [23] conducted a study on the tibial tunnel position of 39 patients using the above parameters and concluded that a CT scan is an imaging modality to study tunnel position after ACL reconstruction.

In our study, we used the Lysholm scoring system functional outcome evaluation. The scores improved from 80.91 at three months to 89.23 at 12 months in the anatomical group, while in the non-anatomical group, they remained the same (58.58) even at 12 months' follow-up. Of 30 patients from the anatomical group, 28 patients showed either excellent or good scores and only two patients had fair and poor scores. This is statistically significant. W. Wang et al. [24] in their study showed that the Lysholm scoring questionnaire is reliable, valid, and responsible for the evaluation of patients with ACL injuries and it would be an effective evaluation tool. D. Mashreghi et al. [25] used the Lysholm scoring system for the functional evaluation of ACL reconstruction in 140 operated cases with the hamstring graft.

In our study only two patients had swelling and one patient had a stiff knee which was managed with physiotherapy. One patient developed infection that was managed with antibiotics.

CONCLUSION

This study concludes that the functional outcome after arthroscopic anterior cruciate ligament reconstruction is better when the graft is placed in an anatomical footprint of native ACL for both femoral and tibial tunnels. Also, the functional scores in the anatomical group of patients improved after the surgery and at follow-ups.

Conflict of interest There is no conflicts of interest.

Funding None.

Ethics approval and consent to participate The study was approval by the institutional review board (IRB).

Consent for publication Consent was taken from all the participants.

Availability of data and materials The datasets used in and/or analyzed in the current study are available from the corresponding author upon reasonable request.

REFERENCES

- 1. Sanders TL, Maradit Kremers H, Bryan AJ, et al. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. *Am J Sports Med*. 2016;44(6):1502-1507. doi: 10.1177/0363546516629944.
- 2. Chahla J, Moatshe G, Ćinque ME, et al. Arthroscopic Anatomic Single-Bundle Anterior Cruciate Ligament Reconstruction Using Bone-Patellar Tendon-Bone Autograft: Pearls for an Accurate Reconstruction. *Arthrosc Tech.* 2017;6(4):e1159-e1167. doi: 10.1016/j. eats.2017.04.001.
- 3. D'Ambrosi R, Meena A, Arora ES, Attri M, Schäfer L, Migliorini F. Reconstruction of the anterior cruciate ligament: a historical view. *Ann Transl Med*. 2023;11(10):364. doi: 10.21037/atm-23-87.
- Rodriguez-Merchan EC, Encinas-Ullan CA. Knee Osteoarthritis Following Anterior Cruciate Ligament Reconstruction: Frequency, Contributory Elements, and Recent Interventions to Modify the Route of Degeneration. Arch Bone Jt Surg. 2022;10(11):951-958. doi: 10.22038/ABJS.2021.52790.2616.
- 5. Kim M, Choi YS, Kim H, Choi NH. Postoperative Evaluation after Anterior Cruciate Ligament Reconstruction: Measurements and Abnormalities on Radiographic and CT Imaging. *Korean J Radiol*. 2016;17(6):919-930. doi: 10.3348/kjr.2016.17.6.919.

- 6. DeFrate LE. Effects of ACL graft placement on in vivo knee function and cartilage thickness distributions. *J Orthop Res.* 2017;35(6):1160-1170. doi: 10.1002/jor.23541.
- 7. Vignos MF, Smith CR, Roth JD, et al. Anterior Cruciate Ligament Graft Tunnel Placement and Graft Angle Are Primary Determinants of Internal Knee Mechanics After Reconstructive Surgery. *Am J Sports Med.* 2020;48(14):3503-3514. doi: 10.1177/0363546520966721.
- 8. Di Benedetto P, Di Benedetto E, Fiocchi A, et al. Causes of Failure of Anterior Cruciate Ligament Reconstruction and Revision Surgical Strategies. *Knee Surg Relat Res.* 2016;28(4):319-324. doi: 10.5792/ksrr.16.007.
- 9. Wang KC, Keeley T, Lansdown DA. Anterior Cruciate Ligament Reconstruction: Common Intraoperative Mistakes and Techniques for Error Recovery. *Curr Rev Musculoskelet Med*. 2025. doi: 10.1007/s12178-025-09947-w.
- 10. Costa GG, Perelli S, Grassi A, et al. Minimizing the risk of graft failure after anterior cruciate ligament reconstruction in athletes. A narrative review of the current evidence. *J Exp Orthop*. 2022;9(1):26. doi: 10.1186/s40634-022-00461-3.
- 11. Kim MJ, Moon SG, Kang JH, Lee DW. Usefulness of 3-Dimensional Computed Tomography Assessment of Femoral Tunnel after Anterior Cruciate Ligament Reconstruction. *Medicina (Kaunas)*. 2023;59(10):1716. doi: 10.3390/medicina59101716.
- 12. Buscayret F, Temponi EF, Saithna A, et al. Three-Dimensional CT Evaluation of Tunnel Positioning in ACL Reconstruction Using the Single Anteromedial Bundle Biological Augmentation (SAMBBA) Technique. *Orthop J Sports Med.* 2017;5(5):2325967117706511. doi: 10.1177/2325967117706511.
- 13. Lee SS, Seo IW, Cho MS, Shin YS. Comparison of femoral tunnel length and obliquity of anatomic versus nonanatomic anterior cruciate ligament reconstruction: A meta-analysis. *PLoS One*. 2020;15(3):e0230497. doi: 10.1371/journal.pone.0230497.
- 14. Acevedo Tobler D, Hermosilla S, Otero N, et al. Anterior cruciate ligament reconstruction, can an anatomic femoral tunnel be achieved with the trans-tibial technique? Cadaveric study. *J Exp Orthop*. 2022;9(1):7. doi: 10.1186/s40634-021-00444-w.
- 15. E Albuquerque RP, Giordano V, Calixto A, et al. Analysis on the modified lysholm functional protocol among patients with normal knees. *Rev Bras Ortop*. 2015;46(6):668-674. doi: 10.1016/S2255-4971(15)30323-2.
- 16. Johnson JL, Capin JJ, Arundale AJH, et al. A Secondary Injury Prevention Program May Decrease Contralateral Anterior Cruciate Ligament Injuries in Female Athletes: 2-Year Injury Rates in the ACL-SPORTS Randomized Controlled Trial. *J Orthop Sports Phys Ther*. 2020;50(9):523-530. doi: 10.2519/jospt.2020.9407.
- 17. Gong X, Pan JC, Zhang YN. Letter regarding article by Li et al.: Single-bundle versus double-bundle anterior cruciate ligament reconstruction: an up-to-date meta-analysis. *Int Orthop*. 2013;37(10):2101. doi: 10.1007/s00264-013-2051-x.
- 18. Tayeb AM, Almohammadi AA, Hegaze AH, et al. Anterior Cruciate Ligament Injury in Association With Other Knee Injuries in King Abdulaziz University Hospital, Saudi Arabia. *Cureus*. 2020;12(9):e10240. doi: 10.7759/cureus.10240.
- 19. Krüger-Franke M, Reinmuth S, Kugler A, Rosemeyer B. Concomitant injuries with anterior cruciate ligament rupture. A retrospective study. *Unfallchirurg*. 1995;98(6):328-332. (In German).
- 20. Parkar AP, Adriaensen ME, Strand T, et al. How to read post-operative radiographs and CT scans after single-bundle anterior cruciate ligament reconstruction. *Skeletal Radiol.* 2013;42(11):1489-1500. doi: 10.1007/s00256-013-1686-4.
- 21. Vermersch T, Lustig S, Reynaud O, et al. CT assessment of femoral tunnel placement after partial ACL reconstruction. *Orthop Traumatol Surg Res.* 2016;102(2):197-202. doi: 10.1016/j.otsr.2015.12.012.
- 22. Nema SK, Balaji G, Akkilagunta S, et al. Radiologic assessment of femoral and tibial tunnel placement based on anatomic landmarks in arthroscopic single bundle anterior cruciate ligament reconstruction. Indian J Orthop. 2017;51(3):286-291. doi: 10.4103/ortho. IJOrtho 219 16.
- 23. Patel MR, Shinde MB, Butala U, et al. Computed Tomography Assessment of Tibial Tunnel after Arthroscopic Anterior Cruciate Ligament Reconstruction. *WIMJOURNAL*. 2023;10(1):46-51. URL: https://www.wimjournal.com/pdf/archives_2023/A9%20-%20vol-10.pdf.
- 24. Wang W, Liu L, Chang X, et al. Cross-cultural translation of the Lysholm knee score in Chinese and its validation in patients with anterior cruciate ligament injury. *BMC Musculoskelet Disord*. 2016;17(1):436. doi: 10.1186/s12891-016-1283-5.
- 25. Mashreghi D, Fakoor M, Arti H, et al. Investigating the effective factors on rehabilitation in anterior cruciate ligament reconstruction based on Lysholm knee score. *J Adv Pharm Educ Res.* 2024;14(3):43-48. doi: 10.51847/W4m2xHgTH7.

The article was submitted 26.02.2025; approved after reviewing 21.04.2025; accepted for publication 25.08.2025.

Статья поступила 26.02.2025; одобрена после рецензирования 21.04.2025; принята к публикации 25.08.2025.

Information about the authors:

Mahesh B Shinde — Senior resident, mahesh.shinde.1466@gmail.com, https://orcid.org/0000-0002-4091-9447;

Mihir R Patel — Additional Professor, mrpatel1981@gmail.com, https://orcid.org/0000-0001-6304-5845;

Kshitij Sarwey — Junior Resident, kshitijsarwey@gmail.com, https://orcid.org/0009-0000-3805-2445;

Sanket Jethlia — Junior Resident, sanketjethliya1@gmail.com, https://orcid.org/0009-0009-2745-4241;

 $Ved\ Kaulgud - Medical\ student, ved. kaulgud @gmail.com, https://orcid.org/0009-0003-0034-6925;$

 $Renema\ Datta-Medical\ student, dattarenema@gmail.com, https://orcid.org/0009-0006-7032-0829;$

Arnav Modi — Medical student, modiarnav17@gmail.com, https://orcid.org/0009-0001-3138-8824; Sushrut Kharate — Medical student, sushkharate@gmail.com, https://orcid.org/0009-0001-5698-7110;

Sukanya Singh — Medical student, sukanyasinghh2004@gmail.com, https://orcid.org/0009-0004-5200-4270;

Tej Bopardikar — Medical student, tejbopardikar@gmail.com, https://orcid.org/0009-0000-4167-4309;

Vanshika Beniwal — Medical student, vanshikaabeniwal@gmail.com, https://orcid.org/0009-0004-8122-3181;

 $Shreyasi\ Chiwadshetti-Medical\ student, chiwadshetti.s@gmail.com, https://orcid.org/0009-0008-2292-3312.$

Научная статья

УДК 616.728.3-089.844-06:616-022.1:[616.718.46+616.718.51]-089.881-036.8 https://doi.org/10.18019/1028-4427-2025-31-5-574-586

Сравнительный анализ результатов бедренно-большеберцового синостозирования при перипротезной инфекции

Г.А. Бугаев $^{2\boxtimes}$, А.Е. Виноградский 1,2 , Д.С. Прокопьев 1,2 , Д.Ю. Борзунов 1,2

- ¹ Уральский государственный медицинский университет, Екатеринбург, Россия
- ² Госпиталь для ветеранов войн, Екатеринбург, Россия

Автор, ответственный за переписку: Глеб Александрович Бугаев, glebbugaev97@gmail.com

Аннотация

Введение. Перипротезная инфекция (ППИ) после тотальной артропластики коленного сустава остается серьезной проблемой ортопедии, требующей применения радикальных методов лечения. Бедреннобольшеберцовое синостозирование (ББС) является одной из последних спасательных операций при неэффективности или невозможности ревизионного эндопротезирования. Однако в настоящее время нет единого мнения о рациональной технологии, обеспечивающей оптимальный анатомофункциональный результат хирургической реабилитации.

Цель работы — анализ клинических исходов хирургического лечения пациентов с ППИ при выполнении ББС коленного сустава с использованием интрамедуллярного стержня (ИС) и аппарата Илизарова (АИ).

Материалы и методы. Проведен сравнительный анализ 46 пациентов с ППИ, которым выполнен артродез коленного сустава (АКС). Пациенты разделены на две группы в зависимости от технологии остеосинтеза для создания костного блока между бедренной и большеберцовой костью: 25 пациентов в группе 1 (ИС) и 21 — в группе 2 (АИ). Оценивали клинические характеристики больных, коморбидный фон, тип костных дефектов и микробиологический профиль. Статистический анализ сравнения функциональных результатов, сроков анкилоза, укорочения конечности, рецидивов инфекции и осложнений выполнен с помощью программы Jamovi (версия 2.6.17).

Результаты. Средние сроки формирования костного блока были значимо меньше в группе 1 (ИС), — 4,5 месяца против семи месяцев в группе 2 (АИ), p = 0,027. Функциональные результаты между группами в целом были сопоставимы (p = 0,075). При значимых по утрате костной ткани дефектах (АОRI тип III) пациенты группы 2 (АИ) демонстрировали лучшие показатели LEFS (p = 0,018). Частота рецидивов инфекции составила 13 % в группе 1 (ИС) и 4,8 % в группе 2 (АИ), p = 0,609. Системные осложнения (6,5 %) выявлены только в группе 1 (ИС). Нежелательные явления учитывали с применением унифицированной классификации осложнений.

Обсуждение. Полученные результаты свидетельствуют, что ИС и АИ обеспечивают сопоставимую эффективность лечения пациентов с ППИ с различиями в сроках формирования костного блока и функциональных показателях при значительных по протяженности костных дефектах. Возрастающая распространенность полирезистентной микрофлоры и частота осложнений требуют внимательного и индивидуального подхода к выбору методики ББС.

Заключение. Результаты исследования демонстрируют эффективность обеих методик: использование ИС способствует более быстрому формированию костного блока между бедренной и большеберцовой костью, тогда как АИ обеспечивает лучшие анатомо-функциональные результаты у пациентов со значительной утратой костной ткани.

Ключевые слова: бедренно-большеберцовое синостозирование, артродез коленного сустава, перипротезная инфекция, интрамедуллярный стержень, аппарат Илизарова, клинические исходы, рецидив инфекции, осложнения артродеза

Для цитирования: Бугаев Г.А., Виноградский А.Е., Прокопьев Д.С., Борзунов Д.Ю. Сравнительный анализ результатов бедренно-большеберцового синостозирования при перипротезной инфекции. *Гений ортопедии*. 2025;31(5):574-586. doi: 10.18019/1028-4427-2025-31-5-574-586.

-

[©] Бугаев Г.А., Виноградский А.Е., Прокопьев Д.С., Борзунов Д.Ю., 2025

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-574-586

Comparative analysis of femoro-tibial synostosis results in periprosthetic infection

G.A. Bugaev^{2™}, A.E. Vinogradsky^{1,2}, D.S. Prokopyev^{1,2}, D.Yu. Borzunov^{1,2}

- ¹ Ural State Medical University, Ekaterinburg, Russian Federation
- ² Sverdlovsk Regional Clinical Psychoneurological Hospital for war veterans, Ekaterinburg, Russian Federation

Corresponding author: Gleb A. Bugaev, glebbugaev97@gmail.com

Abstract

Introduction Periprosthetic infection (PJI) after total knee arthroplasty remains a serious challenge for orthopedic surgeons and requires radical treatment methods. Femoro-tibial synostosis (FTS) is one of the last salvage operations if revision arthroplasty fails or impossible. However, there is currently no consensus on a rational technology that would provide an optimal anatomical and functional result of surgical rehabilitation.

The **aim** of the work was to analyze clinical outcomes of surgical treatment performing FTS of the knee joint in the patients with PPI using an intramedullary nail (IN) versus the Ilizarov apparatus (IA).

Materials and methods A comparative analysis of 46 patients with PPI who underwent arthrodesis of the knee joint (AKJ) was performed. The patients were divided into two groups depending on the osteosynthesis technology for bone fusion between the femur and tibia: 25 patients in group 1 (IN) and 21 in group 2 (IA). The clinical characteristics of the patients, comorbid background, type of bone defects and microbiological profile were assessed. Statistical analysis of the comparison of functional results, timing of ankylosis, limb shortening, recurrent infections and complications was performed using the Jamovi software (version 2.6.17).

Results The average time of bone fusion was significantly shorter in group 1 (IN), 4.5 months versus seven months in group 2 (IA), p = 0.027. Functional results of the groups were comparable (p = 0.075). In defects with significant bone loss (AORI type III), patients in group 2 (AI) demonstrated better LEFS indicators (p = 0.018). The infection recurrence rate was 13 % in group 1 (IN) and 4.8 % in group 2 (IA), p = 0.609. Systemic complications (6.5 %) were detected only in group 1 (IN). Adverse events were considered using the unified classification of complications.

Discussion The obtained results indicate that IN and IA provide comparable treatment efficacy in patients with PPI with differences in the timing of bone fusion and functional indicators in significant bone defects. The increasing prevalence of multiresistant microflora and the frequency of complications require a careful and individual approach to the choice of the FTS technique.

Conclusion The results of the study demonstrate the effectiveness of both techniques: the use of IN contributes to a more rapid bone fusion between the femur and tibia, while IA provides better anatomical and functional results in patients with significant bone loss.

Keywords: femorotibial synostosis, knee arthrodesis, periprosthetic infection, intramedullary nail, Ilizarov apparatus, clinical outcome, recurrent infection, arthrodesis complications

For citation: Бугаев Γ.A., Bugaev GA, Vinogradsky AE, Prokopyev DS, Borzunov DYu. Comparative analysis of femoro-tibial synostosis results in periprosthetic infection. *Genij Ortopedii*. 2025;31(5):574-586. doi: 10.18019/1028-4427-2025-31-5-574-586.

[©] Bugaev G.A., Vinogradsky A.E., Prokopyev D.S., Borzunov D.Yu., 2025

[©] Translator Tatyana A. Malkova, 2025

ВВЕДЕНИЕ

Бедренно-большеберцовое синостозирование (ББС) при перипротезной инфекции (ППИ) на сегодняшний день остается одной из наиболее дискуссионных и востребованных спасательных операций. Несмотря на значительный прогресс в области эндопротезирования и совершенствование алгоритмов профилактики инфекционных осложнений, развитие ППИ после первичного тотального эндопротезирования коленного сустава остается значимой проблемой. По современным литературным данным, частота возникновения ППИ после первичного тотального эндопротезирования коленного сустава колеблется от 0,2 % до 2 %, а после ревизионных вмешательств достигает 28 % [1]. Более того, риск рецидива инфекции возрастает с каждой последующей санирующей операцией, существенно влияя на качество жизни пациентов и увеличивая медицинскую и социальную нагрузку на общество [2].

Актуальная в настоящее время тактика лечения пациентов с ППИ, предложенная А.F. Chen, включает продолжительное применение антибактериальной терапии, хирургическую обработку с сохранением имплантата, одно- и двухэтапное ревизионное эндопротезирование, а также спасательные операции, к которым относят артродезирование сустава, резекционную артропластику и ампутацию конечности [3]. «Золотым стандартом» признано двухэтапное ревизионное эндопротезирование с использованием цементного спейсера, импрегнированного антибиотиком. Такой подход, впервые описанный J.N. Insall et al. [4], позволяет добиться эрадикации инфекции в 88–96 % случаев [5, 6].

Нередко в клинической практике можно столкнуться с ситуацией, когда ревизионное эндопротезирование выполнить невозможно. Причинами этого являются тотальные и субтотальные дефекты костей, образующих коленный сустав, тяжелая недостаточность или отсутствие разгибательного аппарата коленного сустава, а также наличие полирезистентной микрофлоры, вызывающей хроническую костную инфекцию с постоянными рецидивами и свищеобразованием. Совокупность перечисленных осложнений в исходе эндопротезирования в литературе именуют «ужасной триадой» (англ.: Terrible Triad) [7].

За последние 15 лет общая частота выполнения артродезирующих операций на коленном суставе по поводу ППИ составила 0,26 % [8], однако, как отмечают отечественные авторы, тенденция к увеличению числа таких вмешательств сохраняется [9].

Сравнительная оценка исходов спасательных операций показывает, что, несмотря на сохраняющиеся риски, артродез коленного сустава позволяет достигать более благоприятных функциональных результатов и ранней реабилитации, нежели ампутация, обеспечивая пациентам не только возможность самообслуживания, но и социализацию. Согласно систематическому обзору J. Low et al., 86,4 % пациентов после формирования ББС сохраняют способность к самостоятельному передвижению и уходу за собой, в то время как после ампутации конечности этот показатель составляет лишь 54,4 % [10].

Среди известных техник артродезирования, применяемых при ППИ коленного сустава, наибольшее распространение получили методы использования интрамедуллярного стержня (ИС) и аппарата Илизарова (АИ). Применение накостных пластин в современной практике ограничено из-за неоднозначных результатов, высокой частоты рецидива инфекции и необходимости длительной иммобилизации [11, 12]. Вместе с тем, несмотря на широкое распространение методов использования ИС и АИ, данные сравнительной эффективности этих подходов разрозненны и зачастую основаны на анализе ограниченных серий наблюдений. В отечественной литературе отсутствует комплексное сравнение клинических исходов, частоты рецидивов инфекции и осложнений после применения данных метолик при ППИ, что определяет актуальность и научную новизну настояшего исследования.

Цель работы — анализ клинических исходов хирургического лечения пациентов с ППИ при выполнении ББС коленного сустава с использованием ИС и АИ.

МАТЕРИАЛЫ И МЕТОДЫ

В исследование включены пациенты, проходившие лечение на базе Госпиталя ветеранов войн (Екатеринбург) в период с 2016 по 2024 гг. Анализ результатов и хирургическое лечение выполнено одним коллективом хирургов-исследователей.

Критерии включения в исследование:

- пациенты с ППИ коленного сустава и невозможностью ревизионного эндопротезирования;
- пациенты, прошедшие двухэтапное ревизионное эндопротезирование коленного сустава по поводу ППИ с последующим рецидивом;
- пациенты, прошедшие не менее двух санирующих операций по поводу ППИ;
- наличие дефектов костей, образующих коленный сустав;
- наличие полирезистентной микрофлоры по данным микробиологических исследований (МБИ);
- недостаточность/отсутствие разгибательного аппарата коленного сустава (в том числе надколенника).

Таблица 1

Критерии невключения:

- выполнение ББС по другим этиологическим причинам (посттравматические, остеомиелитические);
- неконтролируемое течение инфекционного процесса, приведшее к ампутации конечности;
- выполнение ББС по поводу ППИ с различными вариантами костной пластики;
- конверсия методов для проведения костного транспорта и уменьшения укорочения конечности в процессе синостозирования.

Критерий исключения — отказ пациента от участия в исследовании.

Всего в исследование включено 46 пациентов, которым выполнено ББС по поводу ППИ после тотальной артропластики коленного сустава: группа 1 (ИС) — 25 пациентов, группа 2 (АИ) — 21 пациент. В группу 1 (ИС) вошли 12 пациентов, наблюдавшихся проспективно, и 13 — ретроспективно. Группа 2 (АИ) сформирована на основании ретроспективных наблюдений.

Доля женщин в исследуемой выборке составила 67,4 % (n = 31), мужчин — 32,6 % (n = 15). Средний возраст женщин — (70,2 \pm 9,37) года, мужчин — (63,7 \pm 14,53) года. Средний индекс массы тела (ИМТ) пациентов обеих групп составил (28,7 \pm 3,99) кг/м².

Исходные характеристики пациентов в сравниваемых группах

Распределение пациентов по критериям коморбидности ASA (*англ*.: American Society of Anesthesiologists Physical Status Classification System) [13], типам инфекции по D.T Tsukayama [14] и костных дефектов по AORI (*англ*.: Anderson Orthopaedic Research Institute) [15] в обеих группах представлено в табл. 1. Группы были сопоставимы по основным поло-возрастным и клиническим характеристикам (p > 0.05).

Распределение пациентов по классификационным признакам

Параметры сравнения		Группа 1 (ИС), n = 25	Группа 2 (АИ), n = 21	<i>p</i> -value
Шкала ASA				
I	абс.	1	2	
1	%	2,2	4,3	
II	абс.	12	9	0,812
11	%	26,1	19,6	0,612
III	абс.	12	10	
111	%	26,1	21,7	
Время от ТЭП до дебюта ППИ, лет (Ме [МКИ])	2 [1-5]	2 [1-5]	0,821
Продолжительность ППИ, лет (Ме [МКИ	1])	3 [2-4]	4 [3-4]	0,474
Кол-во санирующих операций (Ме [МК	([ИХ	4 [3-6]	4 [3-5]	0,659
Тип ППИ по Tsukayama				
I тип (острая послеоперационная)	абс.	2	3	
т тип (острая послеоперационная)	%	4,35	6,52	
II тип (поздняя хроническая)	абс.	9	7	
п тип (поздняя хроническая)	%	19,57	15,22	0,921
III тип (острая гематогенная)	абс.	9	8	0,921
пт тип (острая тематогенная)	%	19,57	17,39	
IV	абс.	5	3	
IV тип (интраоперационная культура)	%	10,87	6,52	
Тип дефектов по AORI				
I my (F1 /F1)	абс.	5	5	
I тип (F1/T1)	%	10,87	10,87	
II /E2 A //E2 A \	абс.	5	6	
II тип (F2A/T2A)	%	10,87	13,04	0.655
II (F2D /F2D)	абс.	6	6	0,655
II тип (F2B/T2B)	%	13,04	13,04	
III (P7 /P7)	абс.	9	4	
III тип (F3/T3)	%	19,57	8,70	

Примечание: М — среднее значение; SD — стандартное отклонение; Ме — медиана; МКИ — межквартильный интервал; ASA — шкала коморбидности и оценки операционного риска; ТЭП — тотальное эндопротезирование; Tsukayama — классификация перипротезной инфекции; AORI — классификация дефектов костей, образующих коленный сустав.

Интервал времени от первичной установки эндопротеза коленного сустава до манифестации перипротезной инфекции в обеих группах составил два года (МКИ = 1-5; p=0,821). Продолжительность инфекционного процесса (включая рецидивы и ремиссии) в группе 1 (ИС) в среднем составила три года (МКИ = 2-4), в группе 2 (АИ) — четыре года (МКИ = 3-4; p=0,474). Медиана числа хирургических вмешательств на исследуемом сегменте до артродезирующей операции составила 4 (МКИ = 3-6) в группе 1 (ИС) и 4 (МКИ = 3-5) в группе 2 (АИ) (p=0,659).

Большинство пациентов обеих групп имели дефекты коленного сустава средних размеров II типа (F2A/T2A и F2B/F2B по классификации AORI), — 23,9 % и 26,0 % соответственно (p = 0,655). Значительные по величине дефекты III типа (F3/T3) выявлены у 19,6 % (n = 9) пациентов группы 1 (ИС) и у 8,7 % (n = 4) пациентов группы 2 (АИ) (p = 0,346). В обеих группах преобладали поздние хронические и острые гематогенные формы ППИ (по классификации Tsukayama), статистически значимых различий между группами не выявлено (p = 0,921). В обеих группах превалировал соматически отягощённый контингент пациентов III класса по шкале ASA с несколькими тяжёлыми сопутствующими заболеваниями, в том числе в стадии декомпенсации — 26,1 % (n = 12) в группе 1 (ИС) и 21,7 % (n = 10) в группе 2 (АИ), различия не достигали статистически значимой разницы (p = 0,812).

Больным выполняли стандартный комплекс обследования: клинические, лабораторные, рентгенологические и микробиологические исследования с целью подтверждения гнойно-воспалительного процесса и уточнения характера его течения. Пациентам группы 1 (ИС) за две недели до госпитализации выполняли КТ-исследование (Siemens SOMATOM, Германия) нижних конечностей для планирования и заказа индивидуального длинного бедренного стержня («ЦИТО», Россия). Стоит отметить, что все пациенты на момент выполнения артродезирующей операции прошли двухэтапное ревизионное эндопротезирование.

В положении пациента на спине производили обработку операционного поля. При наличии свища вводили в его канал красящий индикатор (раствор бриллиантовой зелени с 3 %-ной перекисью водорода) для определения пораженных костных участков, а также выявления скрытых затеков. Хирургический доступ выполняли по старому послеоперационному рубцу с его иссечением. По возможности малоинвазивно удаляли компоненты цементного спейсера. Производили забор тканевых биоптатов для микробиологического и гистологического исследований. Далее осуществляли радикальную хирургическую обработку очага инфекции в пределах здоровых тканей, вскрытие интрамедуллярных каналов.

При выполнении артродеза методом Илизарова следовал последовательный монтаж аппарата внешней фиксации на бедре и голени в спицевом или гибридном (спице-стержневом) вариантах. Количество опор зависело от размера костного дефекта и площади контакта бедренного и большеберцового концов. При малых размерах дефекта (AORI I тип) монтировали три кольцевых опоры, при более крупных, асимметричных или субтотальных дефектах (AORI II и III тип) — по четыре кольцевых опоры.

В случае выполнения АКС интрамедуллярным стержнем точку входа на уровне грушевидной ямки формировали ретроградно с помощью титановой развертки, интрамедуллярный стержень вводили антеградно [16]. После дистального блокирования производили обратное сколачивание стержня до полного контакта концов отломков бедренной и большеберцовой костей. Проксимальное блокирование выполняли по динамической схеме одним винтом при малых размерах дефекта (AORI I тип) и хорошем контакте поверхностей, либо по статической схеме с возможностью динамизации двумя винтами при крупных дефектах (AORI II и III тип). Устанавливали активный ПХВ-дренаж. Рану ушивали послойно.

В послеоперационном периоде все пациенты получали антибактериальную терапию: при наличии результатов бактериологических посевов и определении возбудителя на предыдущих этапах лечения — этиотропную, при их отсутствии — эмпирическую (Ванкомицин + Цефоперазон/сульбактам). По результатам МБИ интраоперационного материала антимикробную (противобактериальную или противогрибковую) терапию корректировали. Также пациенты получали противовоспалительную, обезболивающую, симптоматическую и сосудистую терапии. Перевязки выполняли один раз в два дня. Удаляли дренажи на вторые—четвертые сутки. Снятие швов выполняли на 14–16 сутки. Занятия с методистом ЛФК начинали со вторых суток после операции.

Осуществляли дозированную компрессию на стыке фрагментов в аппарате Илизарова, которую поддерживали на протяжении периода внешней фиксации. Всех пациентов наблюдали травматологи по месту жительства и приглашали на контрольный осмотр один раз в два-три месяца до появления рентгенологических признаков формирования костного блока между бедренной и большеберцовой костями. При замедленном формировании костной мозоли межфрагментарную компрессию в аппарате Илизарова увеличивали.

При статической схеме блокирования интрамедуллярного стержня пациента госпитализировали через два-три месяца для динамизации стержня. По достижении формирования костного блока в условиях стационара выполняли клинический тест на состоятельность костного сращения (отсутствие подвижности), после чего аппарат демонтировали. Ни в одном случае при достижении костного анкилоза стержень не удаляли. Укорочение оперируемой конечности компенсировали ортопедической обувью. В дальнейшем пациентов вызвали на контрольный осмотр для оценки результатов динамического наблюдения в отдаленные периоды.

Функциональный результат оценивали с применением опросника LEFS (*англ.*: Lower Extremity Functional Scale) через четыре—шесть месяцев после операции (по достижении анкилоза). Сумму баллов менее 19 оценивали как минимальную функцию или отсутствие функции; 20–39 б. — значительное ограничение функции; 40–59 б. — умеренное ограничение, 60–79 б. — незначительное ограничение. Сумма в 80 баллов считалась максимальной и подразумевала наличие полной функции [17].

Укорочение конечности определяли с помощью сантиметровой ленты при финальном осмотре в сравнении с контралатеральной конечностью. Конечной точкой для определения срока ББС являлось формирование костного блока при визуализации рентгенограмм, состоятельности клинического теста для группы 2 (АИ) и ходьбе с полной нагрузкой на оперированную конечность для обеих групп пациентов.

В настоящий момент отсутствует классификация, стандартизирующая учет осложнений для обеих методик. В связи с этим, нами предложена унифицированная классификация для регистрации и анализа осложнений ББС:

- **Категория 0**. Отсутствие осложнений:
 - ♦ отсутствие каких-либо осложнений.
- Категория 1. Незначимые осложнения:
 - ◆ 1.1 лёгкие контрактуры в смежных суставах;
 - ♦ 1.2 незначительное воспаление мягких тканей (купируемое консервативно);
 - ◆ 1.3 незначительные остаточные деформации, не нарушающие функцию;
 - ♦ 1.4 тракционная невропатия (купируемая консервативно).
- **Категория 2**. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода:
 - ♦ 2.1 воспаление мягких тканей, требующее повторных вмешательств;
 - ◆ 2.2 переломы на уровне регенерата, устраняемые консервативно или малоинвазивно;
 - ◆ 2.3 подвывихи/контрактуры средней тяжести, требующие вмешательства;
 - ◆ 2.4 нестабильность фиксирующих элементов, требующая вмешательства.
- Категория 3. Значимые осложнения с негативным влиянием на результат:
 - ♦ 3.1 несостоятельность анкилоза / перелом регенерата;
 - → 3.2 рецидив перипротезной инфекции;
 - ♦ 3.3 тяжёлые контрактуры, ограничивающие функцию;
 - ♦ 3.4 стойкие неврологические нарушения в конечности;
 - ♦ 3.5 переломы металлоконструкции или фиксирующих элементов.
- **Категория 4**. Системные осложнения:
 - ★ 4.1 тромбоэмболия лёгочной артерии;
 - ◆ 4.2 жировая эмболия;
 - ◆ 4.3 острое нарушение мозгового кровообращения;
 - ♦ 4.4 другие системные осложнения.
- **Категория 5**. Прочие осложнения:
 - ♦ 5.0 другие осложнения, не вошедшие в классификацию.

Важно отметить, что в ходе исследования данные клинических исходов двух пациентов группы 1 (ИС) не учитывали по причине летального исхода в раннем послеоперационном периоде и обозначали как NA (данные отсутствуют). Однако эти случаи включены в анализ послеоперационных осложнений, что позволило оценить общую частоту критических событий, связанных с методикой. Исключение функциональных показателей обусловлено невозможностью их оценки, однако учет летальных исходов в разделе осложнений обеспечивает полноту данных и прозрачность методологии.

Исследование одобрено локальным этическим комитетом Госпиталя ветеранов войн (Екатеринбург, протокол от 14.12.2023 № 12/2023) и проведено в соответствии с Хельсинкской декларацией 1975 г. (пересмотр 2008 г.). Все пациенты дали письменное информированное согласие на участие в исследовании и публикацию данных. Детализирующая информация, способствующая персонификации включённых в исследование пациентов, отсутствует.

Статистический анализ проводили с применением программного обеспечения Jamovi (версия 2.6.17, Австралия) и Microsoft Excel (версия 16.75.2, США). Для описания количественных данных с нормальным распределением использовали среднее значение и стандартное отклонение (M \pm SD), для отличных от нормального — медиану и межквартильный интервал (МКИ), соответствующий нижнему (Q1) и верхнему (Q3) квартилям (Ме [МКИ]). Проверку нормальности распределения данных проводили с помощью критерия Шапиро — Уилка. Категориальные данные описывали с указанием абсолютных значений и процентных долей (n, %). Сравнение групп по количественному показателю с нормальным распределением данных выполняли с помощью t-теста Стьюдента или U-критерия Манна — Уитни при распределении, отличном от нормального. Анализ качественных (номинальных) признаков выполняли с помощью χ^2 -критерия Пирсона (при ожидаемых значениях в каждой ячейке больше 5) или точного критерия Фишера (при ожидаемых значениях в каждой ячейке меньше 5). Статистическую значимость различий между группами принимали при p < 0,05.

РЕЗУЛЬТАТЫ

Функциональные показатели, укорочение конечности и сроки формирования костного блока

Функциональные показатели по шкале LEFS в группе 2 (АИ) составили (38,3 \pm 5,9) %, а в группе 1 (ИС) — (34,4 \pm 8,1) % (p = 0,075), что указывает на сопоставимую функциональную эффективность методов.

При анализе пациентов с типом дефектов III по AORI выявлены значимые различия в функциональных по-казателях: в группе 2 (АИ) среднее значение LEFS составило (31,56 \pm 2,14) %, тогда как в группе 1 (ИС) — (25,71 \pm 2,69) % (p = 0,018), что свидетельствует о лучших функциональных результатах при применении аппарата Илизарова в условиях значимых по протяженности костных дефектов (рис. 1).

Медиана укорочения конечности в группе 1 (ИС) составила 4,0 см (МКИ = 3,0–5,0), в группе 2 (АИ) — 3,0 см (МКИ = 3,0–4,0). Различия статистически не значимы (p = 0,338), что свидетельствует о сопоставимом влиянии методов на длину конечности.

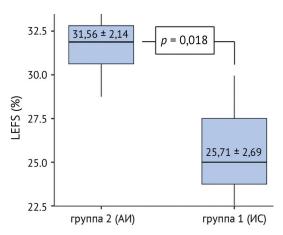


Рис. 1. Сравнение функциональных показателей (LEFS, %) между группами при костных дефектах III типа

Статистически значимые различия выявлены в сроках анкилозирования коленного сустава: в группе 2 (АИ) — медиана 7 мес. (МКИ = 6,0-8,0), в группе 1 (ИС) — медиана 4,5 мес. (МКИ = 3,5-7,5; p=0,027), что указывает на более быстрое формирование костного блока при использовании интрамедуллярных стержней.

Микробиологический профиль возбудителей и анализ рецидива инфекции

Рецидив инфекции был зафиксирован у трех (13 %) пациентов группы 1 (ИС) и у одного (4,8 %) пациента группы 2 (АИ). Статистического отличия между группами не выявлено (p=0,609), что указывает на отсутствие значимого влияния метода фиксации на вероятность повторного развития инфекции (рис. 2).

Микробиологический анализ выявил преимущественное распространение грамположительных микроорганизмов — 54,3% (n=25), тогда как грамотрицательные бактерии составляли 34,8% (n=16). В 8,7% (n=4) случаев были обнаружены микробные ассоциации, а грибковая флора встречалась в единичных наблюдениях — 2% (n=1). Наиболее частым возбудителем оказался $Staphylococcus\ aureus$, выявленный в 32,6% (n=15) случаев. Существенно реже определяли

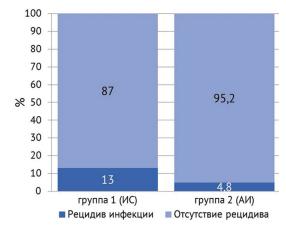


Рис. 2. Частота рецидива инфекции в группах сравнения

Таблица 2

 $Pseudomonas\ aeruginosa-10,9\ \%\ (n=5)$, а также $Enterococcus\ faecalis$, MRSA, $Enterobacter\ cloacae$ и другие микроорганизмы, суммарно встречавшиеся не более чем в 8,7 % случаев (рис. 3).

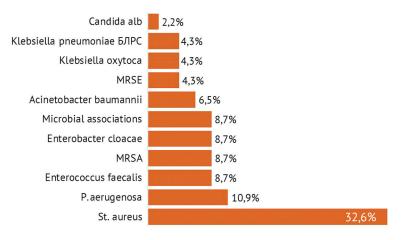


Рис. 3. Частота встречаемости возбудителей ППИ в исследуемой выборке

Анализ осложнений

Осложнения в сравниваемых группах согласно унифицированной классификации регистрации и анализа осложнений ББС представлены в табл. 2.

Распределение осложнений в сравниваемых группах

Категория / Подкатегория Категория 0. Отсутствие осложнений 15 32,6 Категория 1. Незначимые осложнения 1 2,2 1.1. Лёгкие контрактуры в смежных суставах NA 1.2. Незначительное воспаление мягких тканей (купировано консервативно) 0 0 1.3. Незначительные остаточные деформации, не нарушающие функцию NA 1 1.4. Тракционная невропатия (купировано консервативно) 1 2,2 Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.5	абс. 11 5 N. 5 N.	% 23,9 10,9 A 10,9	
0.0. Отсутствие каких-либо осложнений 15 32,6 Категория 1. Незначимые осложнения 1 2,2 1.1. Лёгкие контрактуры в смежных суставах NA 1.2. Незначительное воспаление мягких тканей (купировано консервативно) 0 0 1.3. Незначительные остаточные деформации, не нарушающие функцию NA 1.4. Тракционная невропатия (купировано консервативно) 1 2,2 Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов </td <td>5 N. 5 N.</td> <td>10,9 A</td>	5 N. 5 N.	10,9 A	
Категория 1. Незначимые осложнения 1 2,2 1.1. Лёгкие контрактуры в смежных суставах NA 1.2. Незначительное воспаление мягких тканей (купировано консервативно) 0 0 1.3. Незначительные остаточные деформации, не нарушающие функцию NA 1.4. Тракционная невропатия (купировано консервативно) 1 2,2 Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения	5 N. 5 N.	10,9 A	
1.1. Лёгкие контрактуры в смежных суставах NA 1.2. Незначительное воспаление мягких тканей (купировано консервативно) 0 1.3. Незначительные остаточные деформации, не нарушающие функцию NA 1.4. Тракционная невропатия (купировано консервативно) 1 2,2 Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2	5 N.	A	
1.2. Незначительное воспаление мягких тканей (купировано консервативно) 0 0 1.3. Незначительные остаточные деформации, не нарушающие функцию NA 1.4. Тракционная невропатия (купировано консервативно) 1 2,2 Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	5 N.		
1.3. Незначительные остаточные деформации, не нарушающие функцию NA 1.4. Тракционная невропатия (купировано консервативно) 1 2,2 Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	N.	10.9	
1.4. Тракционная невропатия (купировано консервативно) 1 2,2 Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3		10,7	
Категория 2. Осложнения, потребовавшие дополнительных мероприятий, без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	_	A	
без ухудшения исхода 1 2,2 2.1. Воспаление мягких тканей, потребовавшее повторных вмешательств 0 0 2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	0	0	
2.2. Переломы на уровне регенерата, устранённые консервативно или малоинвазивно NA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	2	4,3	
малоинвазивно INA 2.3. Подвывихи/контрактуры средней тяжести, потребовавшие вмешательства NA 2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	1	2,2	
2.4. Нестабильность фиксирующих элементов, потребовавшая вмешательства 1 2,2 Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	NA		
Категория 3. Значимые осложнения с негативным влиянием на результат 5 10,9 3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	NA		
3.1. Несостоятельность анкилоза / перелом регенерата 0 0 3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	1	2,2	
3.2. Рецидив перипротезной инфекции 3 6,5 3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	3	6,5	
3.3. Тяжёлые контрактуры, ограничивающие функцию NA 3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	2	4,3	
3.4. Стойкие неврологические нарушения в конечности NA 3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	1	2,2	
3.5. Переломы металлоконструкции или фиксирующих элементов 2 4,3 Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	N.	A	
Категория 4. Системные осложнения 3 6,5 4.1. Тромбоэмболия лёгочной артерии 2 4,3	NA		
4.1. Тромбоэмболия лёгочной артерии 2 4,3	0	0	
1 1	0	0	
	0	0	
4.2. Жировая эмболия NA	NA NA		
4.3. Острое нарушение мозгового кровообращения 1 2,2	0	0	
4.4. Другие системные осложнения NA	N.	A	
Категория 5. Прочие осложнения			
5.0. Другие осложнения, не вошедшие в классификацию 0 0	0	0	
<i>p</i> -value 0,02	0,022		

 Π римечание: NA — данные отсутствуют; различия считались статистически значимыми при p < 0.05 (точный тест Фишера).

Осложнения первой категории, не оказывавшие влияния на исход лечения, наблюдали преимущественно в группе 2 (АИ), -10.9% (n=5) по сравнению с 2,2 % (n=1) в группе 1 (ИС).

Осложнения, потребовавшие дополнительных вмешательств (категория 2), зафиксированы у 4,3% (n=2) пациентов группы 2 (АИ) и у 2,2% (n=1) группы 1 (ИС).

Значимые осложнения (категория 3), оказавшие отрицательное влияние на исход лечения, отмечены у 10.9% (n = 5) пациентов группы 1 (ИС) и у 6.5% (n = 3) пациентов группы 2 (АИ).

Системные осложнения (категория 4) зарегистрированы только в группе 1 (ИС), -6.5% (n=3), включая два летальных исхода, обусловленных тромбоэмболией легочной артерии (категория 4.1), и один случай острого нарушения мозгового кровообращения (категория 4.3). В группе 2 (АИ) системные осложнения не отмечены.

Статистический анализ выявил достоверные различия между группами (p = 0,022), что свидетельствует о влиянии выбранного метода на частоту и характер осложнений (рис. 4).

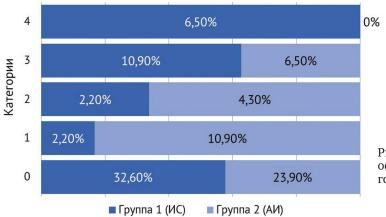


Рис. 4. Распределение осложнений по категориям

ОБСУЖДЕНИЕ

По мнению авторов данной работы, существуют определенная терминологическая неоднозначность в обозначении хирургического вмешательства, направленного на создание неподвижного коленного сустава путем сращения артикулирующих поверхностей. Традиционно такая операция именуется «артродезом сустава», а в англоязычных источниках можно встретить наименования «knee fusion» и «knee arthrodesis». С нашей точки зрения, используемый термин не в полной мере подходит для обозначения хирургической технологии и отражения анатомо-функциональной картины, наблюдаемой при неудачных исходах тотальной артропластики в условиях гнойной инфекции. Анатомо-функциональные изменения представлены дефектом тканей, сформированным после резекции суставных концов, секвестрированными участками эпиметафизарной зоны, нестабильным имплантатом и фактически отсутствием сустава [18]. Мы считаем, что более удачной формулировкой цели оперативного вмешательства является достижение сращения (синостоза) между двумя длинными трубчатыми костями, что более корректно характеризуется термином «бедренно-большеберцовое синостозирование» (ББС).

Оценивать функциональные результаты после артродеза коленного сустава следует, опираясь на функцию всей нижней конечности и ее опороспособность в целом. Не менее важно учитывать качество жизни пациента. Отдельная оценка функции коленного сустава нецелесообразна ввиду замыкания сустава в функционально-выгодном положении. Авторы других исследований используют различные варианты опросников, например: SF-12 [19], SF-36 [16], WOMAC [20], KSS [21, 22]. Некоторые авторы учитывают опороспособность конечности, хромоту и болевой синдром [23]. Однако такой подход не отражает качество жизни пациента после операции. Учет функциональных исходов должен также включать оценку уровня повседневной активности и качества жизни. По нашему мнению, опросник LEFS соответствует заявленным требованиям для оценки функциональных результатов после AKC. В литературе мы обнаружили лишь одно исследование, авторы которого использовали опросник LEFS для определения функциональных исходов АКС, — в работе D. Zajonz et al. при небольшой выборке из 25 пациентов, оперированных с использованием интрамедуллярного стержня, медиана LEFS составила 26 % (МКИ = 15–51) [24]. В нашем исследовании средний показатель LEFS в группе 1 (ИС) был (34,4 ± 8,1) %. Целевых исследований, оценивающих функцию конечности по LEFS (%) после АКС с применением аппарата Илизарова, мы не обнаружили. Анализ функциональных исходов по шкале LEFS показал сопоставимые результаты на уровне значительного ограничения функции при выполнении обеих методик (p = 0,075), однако при дефектах III типа по классификации AORI статистически значимые преимущества демонстрирует методика применения аппарата Илизарова. Полученные данные свидетельствуют, что именно при крупных костных дефектах использование АИ обеспечивает лучший функциональный исход, — $(31,56\pm2,14)$ балла в группе 2 (АИ) против $(25,71\pm2,69)$ баллов в группе 1 (ИС), p=0,018. На основании этих результатов мы рекомендуем аппарат Илизарова для пациентов с крупными костными дефектами (AORI III). Вероятно, необходимо проведение дальнейших исследований с использованием стандартизированных инструментов оценки функциональных результатов АКС, основанных на единых опросниках и шкалах. Такой подход обеспечит получение более объективных и сопоставимых данных, углубит понимание влияния различных методик на функциональное состояние и качество жизни пациентов, а также будет способствовать выработке более чётких и обоснованных рекомендаций для клинической практики.

Немаловажным фактором, влияющим на функциональные результаты пациента и качество его жизни после артродеза коленного сустава, является остаточное укорочение конечности. Специалисты, занимающиеся эндопротезированием суставов и реконструкцией длинных трубчатых костей, считают укорочение до 2 см допустимым, не оказывающим существенного влияния на качество жизни и не требующим использования дополнительных средств опоры [25]. Тем не менее, на практике даже такое укорочение может сказываться на ходьбе и повседневной жизни пациента. Следует также учитывать, что равная длина ног при замыкании коленного сустава не всегда обеспечивает комфорт и может создавать неудобства для пациента. Остаточное укорочение зависит от размеров и характера дефектов костей, образующих коленный сустав. Каждая санирующая операция, направленная на ликвидацию очага инфекции, связана с остеонекрэктомией и, как следствие, потерей костной ткани. При выполнении артродеза коленного сустава необходимо добиться максимальной площади контакта резецированных концов отломков посредством моделирующей резекции, что также может привести к уменьшению длины нижней конечности. Сроки формирования костного блока напрямую влияют на функциональные результаты и возможность скорейшей реабилитации пациента. Однако методы, обеспечивающие более быстрое анкилозирование, могут сопровождаться увеличенным укорочением конечности [12], что требует взвешенного подхода при выборе тактики лечения, учитывающего как сроки формирования костного блока, так и возможные последствия остаточного укорочения.

Анализируя результаты работы, мы выявили, что время достижения костного блока имело существенные различия в зависимости от применяемой хирургической технологии. В группе с интрамедуллярным стержнем костное сращение формировалось быстрее за счет периостального гиперпластического костеобразования (медиана 4,5 мес.) по сравнению с использованием аппарата Илизарова (медиана 7 мес.), p = 0.027. Эти данные демонстрируют преимущество метода ИС с позиции продолжительности формирования костного блока при дефектах I и II типа по классификации AORI. Кроме того, использование метода ИС снижает нагрузку на амбулаторную медицинскую службу, минимизирует необходимость регулярных перевязок и существенно облегчает уход и самообслуживание пациента, повышая качество его жизни. Полученные в нашем исследовании результаты коррелируют с выводами G. Balato et al., представленными в крупном мета-анализе, включающем 26 статей и 422 пациента [26]. Авторы отмечают, что время формирования анкилоза коленного сустава было статистически значимо меньше (p = 0.031) при использовании интрамедуллярного стержня, — 5,78 мес. (МКИ = 3,6-8,0) по сравнению с 7,19 мес. при применении аппарата Илизарова (МКИ = 6,3-10,3). Среднее укорочение конечности в группе ИС составило (2,4 \pm 1,5) см, тогда как в группе АИ — (4,0 \pm 0,7) см (p = 0,005), что свидетельствует о значимом влиянии выбранного метода на степень остаточного укорочения. Следует подчеркнуть, что в упомянутом мета-анализе в группу ИС включали модульные конструкции, способные компенсировать укорочение конечности в пределах 2-4 см, однако не предусматривающие формирование костного анкилоза. Это обстоятельство объясняет статистически меньшие показатели укорочения в группе с ИС. Подобная тенденция отражена и в других зарубежных публикациях, рассматривающих применение модульных интрамедуллярных конструкций при АКС [27, 28].

Вместе с тем, мы считаем, что методика ББС сама по себе не является определяющим фактором остаточного укорочения конечности. Данное утверждение подтверждается результатами нашего исследования, где медиана укорочения конечности в группе 1 (ИС) составила 4,0 см (МКИ = 3,0-5,0), а в группе 2 (АИ) — 3,0 см (МКИ = 3,0-4,0), при этом статистических различий между группами не выявлено (p = 0,338). Таким образом, влияние применяемых методик на длину конечности можно считать сопоставимым. По-прежнему остаётся актуальным вопрос устранения разницы в длине нижних конечностей для улучшения функциональных результатов и качества жизни пациентов. Безусловно, приоритетным при уравнивании длины конечностей является использование технологий чрескостного дистракционного остеосинтеза по Γ .А. Илизарову.

Рецидив инфекции представляет одну из ключевых проблем в реконструкции нижних конечностей. Одним из важнейших взаимных ожиданий врача и пациента при принятии решения об артродезе коленного сустава является полное подавление очага инфекции и ликвидация рисков рецидива процесса.

Из факторов, влияющих на успешность эрадикации инфекции, известны следующие: радикальность хирургической обработки, восстановление целостности костного остова конечности на фоне таргетной антимикробной терапии. Радикальность хирургической обработки очага инфекции является ключевым фактором не только в лечении пациентов с ППИ, но и в профилактике рецидива инфекции [29]. В литературе отсутствует однозначное мнение, какая из методик артродеза наиболее эффективна с позиции профилактики рецидива инфекционного процесса. В этом контексте особенно важен тщательный анализ микробного пейзажа. Известный рост полирезистентной микрофлоры и её широкое распространение во всем мире существенно влияют на выбор антибактериальных препаратов, затрудняя подбор эффективной терапии и увеличивая риск рецидива инфекции. При этом некоторые грамотрицательные возбудители, в частности *P. aeruginosa, K. pneumoniae и A. baumannii*, ассоциированы с риском летального исхода до 10 % [30].

Данные отечественных авторов отражают высокий уровень сложности лечения пациентов с ППИ, требующих артродеза коленного сустава. Так, В.М. Прохоренко с соавт. сообщили, что применение аппарата Илизарова у 34 пациентов позволило добиться стойкого купирования инфекции в 85.29 % случаев, соответственно рецидив инфекции наблюдали на уровне 14–15 % [31]. В другом исследовании Н.М. Клюшин с соавт. на выборке из 63 пациентов отмечали 27 % (п = 17) рецидивов инфекции при артродезировании с помощью аппарата Илизарова. Авторы также констатировали преобладание грамположительной микрофлоры (68 %, n = 43), где наиболее частым возбудителем был *Staphylococcus aureus* (п = 32/64) [32]. В нашем исследовании рецидив инфекции наблюдали у трех (13 %) пациентов группы 1 (ИС) и у одного (4,8 %) пациента группы 2 (АИ), однако эти различия статистически не были значимы (p = 0,609), что свидетельствовало о сопоставимой эффективности обоих методов в купировании инфекционного процесса. При этом в нашей выборке, как и в литературных данных, наиболее часто выявляемым возбудителем был золотистый стафилококк — в 32,6 % случаев (n=15). Эти выводы находят поддержку и в мета-анализе C.J. White et al., включающем 12 оригинальных исследований (суммарно 456 пациентов), в котором не выявлены статистически значимые различия в частоте рецидивов инфекции между интрамедуллярным стержнем и аппаратом Илизарова (OR = 0.91: 95 % ДИ: 0.38 – 2.15: р = 0,83) [33]. В случаях рецидива инфекции мы выполняли очередную санацию очага инфекции и реартродез. Для пациентов группы 1 (ИС) интрамедуллярный стержень извлекали и обрабатывали в ультразвуковой ванне, затем повторно устанавливали. В группе 2 (АИ) производили частичный перемонтаж аппарата с заменой чрескостных элементов. Необходимо отметить, что в клинических наблюдениях, принятых нами во внимание для анализа, мы не проводили конверсию методов остеосинтеза.

Наиболее популярной и практически применимой считается классификация осложнений, разработанная D. Paley, которая чётко разграничивает понятия «проблема», «препятствие» и «осложнение» и широко применяется в оценке исходов чрескостного остеосинтеза аппаратом Илизарова при реконструкции конечности [34]. Аналогичной стандартизированной системы для оценки осложнений после артродеза коленного сустава с использованием интрамедуллярной фиксации в настоящее время не существует. В имеющихся публикациях осложнения, возникающие при применении интрамедуллярного стержня и аппарата Илизарова, рассматривают раздельно [16], что затрудняет комплексный анализ различий в неблагоприятных событиях, связанных с формированием костного блока при ППИ. Опираясь на трактование вышесказанных понятий D. Paley, мы разработали унифицированную классификацию осложнений, которая охватывает все негативные исходы обеих методик. Для удобства анализа осложнения разделены на категории и детализированы в подкатегориях, что позволяет обеспечить более полное и структурированное рассмотрение возникающих проблем (табл. 2).

Наибольшее число осложнений, не влияющих на исход хирургической реабилитации (категории 1 и 2), зарегистрировано в группе 2 (АИ), — 15,2 %, n = 7, они связаны преимущественно с воспалением мягких тканей в области чрескостных элементов. Купирование воспалительного процесса обеспечивали местными инъекциями мягких тканей антибиотиками и перевязками с Левомеколем, а при стойкой параспицевой инфекции — перепроведением фиксирующих элементов. Также следует отметить случай послеоперационной нейропатии малоберцового нерва в группе 1 (ИС), который благополучно разрешился в течение 30 дней на фоне нейротропной терапии и снижения отёка мягких тканей. Аналогичные результаты приведены в работе 8. Leroux et al., где два случая (13,3 %) завершились полным восстановлением чувствительности в течение шести месяцев после операции [35].

Более значимые осложнения, оказывающие влияние на исход лечения (категории 3 и 4), чаще встречались в группе 1 (ИС), — 10.9% (n=5). Так, два случая (4.3%) перелома интрамедуллярного стержня потребовали повторного хирургического вмешательства, — удаления штифта с последующим реартродезом по той же методике, но стержнем большего диаметра. Для группы 2 (АИ) характерны случаи перелома на уровне бедренно-большеберцового синостоза (4.3%, n=2), при этом тест на состоятельность костного блока был положительным, а рефрактура происходила в течение двух-трех недель после демонтажа аппарата Илизарова. В обоих случаях потребовалась повторная госпитализация и реостеосинтез.

С подобной проблемой столкнулись A.A. Bruno et al., у которых два из 15 пациентов после демонтажа аппарата внешней фиксации имели перелом зоны синостозирования, авторы ограничились внешней иммобилизацией конечности до полного формирования костного блока [15]. Системные осложнения отмечены в трех случаях (6,5 %) выполнения ББС интрамедуллярным стержнем, два из которых завершились летальным исходом. События могут указывать на потенциально более высокий риск развития критических исходов при использовании данной методики.

Ограничения исследования

Данное исследование имеет ряд ограничений. Во-первых, отсутствовала рандомизация и ослепление как пациентов, так и врачей, принимающих решение о выборе методики ББС. Во-вторых, выборка пациентов была относительно небольшой. Стоит уточнить, что АКС при ППИ является исключительным и редко применяемым, а не рутинным, вмешательством. Наконец, исключение из анализа клинических исходов двух пациентов группы 1 (ИС) в связи с летальным исходом в раннем послеоперационном периоде ограничивает полноту оценки результатов данной группы, однако их учёт в анализе осложнений снижает риск систематической ошибки и позволяет более объективно оценить безопасность метода.

ЗАКЛЮЧЕНИЕ

Бедренно-большеберцовое синостозирование у пациентов в условиях ППИ остается единственно возможной операцией, обеспечивающей приемлемые анатомо-функциональные результаты хирургической реабилитации и стойкое купирование гнойной инфекции. При анализе результатов лечения пациентов с ППИ сроки формирования костного блока при использовании интрамедуллярного стержня были менее продолжительными. Лучшие анатомо-функциональные результаты зарегистрированы у пациентов с субтотальными и тотальными костными дефектами при использовании внешней фиксации. Анализ частоты рецидивов инфекции не выявил статистически значимой разницы между группами. Частота и характер осложнений значимо отличались между группами, при этом системные осложнения наблюдали только в группе интрамедуллярной фиксации.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с проведенным исследованием и публикацией настоящей статьи.

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования и подготовке публикации.

Этическая экспертиза. Исследование одобрено локальным этическим комитетом Госпиталя ветеранов войн (Екатеринбург, протокол от 14.12.2023 № 12/2023).

Информированное согласие. Все пациенты дали письменное информированное согласие на участие в исследовании и публикацию данных. Детализирующая информация, способствующая персонификации включённых в исследование пациентов, отсутствует.

СПИСОК ИСТОЧНИКОВ

- 1. Mercurio M, Gasparini G, Cofano E, et al. Knee infection: gusion rate, complications, and limb salvage-a systematic review. *Healthcare (Basel)*. 2024;12(7):804. doi: 10.3390/healthcare12070804.
- 2. Gathen M, Wimmer MD, Ploeger MM, et al. Comparison of two-stage revision arthroplasty and intramedullary arthrodesis in patients with failed infected knee arthroplasty. *Arch Orthop Trauma Surg.* 2018;138(10):1443-1452. doi: 10.1007/s00402-018-3007-9.
- 3. Chen AF. Management of orthopaedic infections: a practical guide. 1st ed. New York: Thieme Medical Publ.; 2021:190.
- 4. Insall JN, Scott WN. Surgery of the knee. N.Y.: Churchill Livingstone; 2001:2028.
- 5. Shen S, Zhang Y, Zhang Q, et al. Periprosthetic joint infection after total knee arthroplasty: a bibliometrics analysis. *Ann Palliat Med.* 2021;10(9):9927-9939. doi: 10.21037/apm-21-2278.
- 6. Vasso M, Schiavone Panni A, De Martino I, Gasparini G. Prosthetic knee infection by resistant bacteria: the worst-case scenario. *Knee Surg Sports Traumatol Arthrosc.* 2016;24(10):3140-3146. doi: 10.1007/s00167-016-4010-8.
- 7. Entezari B, Lex JR, Litowski ML, et al. Total knee arthroplasty periprosthetic joint infection with concomitant extensor mechanism disruption and soft-tissue defect: the knee arthroplasty terrible triad. *J Arthroplasty*. 2024;39(12):3062-3069. doi: 10.1016/j. arth.2024.05.084.
- 8. Gottfriedsen TB, Schrøder HM, Odgaard A. Knee arthrodesis after failure of knee arthroplasty: a nationwide register-based study. *J Bone Joint Surg Am*. 2016;98(16):1370-1377. doi: 10.2106/JBJS.15.01363.
- 9. Куляба Т.А., Корнилов Н.Н., Кроитору И.И. и др. Сколько ревизионных эндопротезирований выполнять до того, как принять решение об артродезе? (клиническое наблюдение пациентки с ревматоидным артритом коленных суставов). *Травматология и ортопедия России*. 2018;24(3):113-124. doi: 10.21823/2311-2905-2018-24-3-113-124.
- 10. Low J, Hoellwarth JS, Akhtar MA, et al. Transfemoral amputation versus knee arthrodesis for failed total knee replacement: A systematic review of outcomes. *Knee*. 2024;47:63-80. doi: 10.1016/j.knee.2023.12.012.
- 11. Волошин В.П., Шевырев К.В., Мартыненко Д.В. и др. Место артродезирования в лечении ортопедической патологии коленного сустава. Современные проблемы науки и образования. 2017;(6):36-36. doi: 10.17513/spno.27146.
- 12. Makhdom AM, Fragomen A, Rozbruch SR. Knee Arthrodesis After Failed Total Knee Arthroplasty. *J Bone Joint Surg Am*. 2019;101(7):650-660. doi: 10.2106/JBJS.18.00191.
- 13. Корячкин В.А., Левин Я.И., Заболотский Д.В. и др. Обновлённая классификация физического состояния пациентов Американского общества анестезиологов. *Регионарная анестезия и лечение острой боли*. 2021;15(2):101-106. doi: 10.17816/RA90041.
- 14. Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. *J Bone Joint Surg Am*. 1996;78(4):512-523. doi: 10.2106/00004623-199604000-00005.
- 15. Bruno AA, Kirienko A, Peccati A, et al. Knee arthrodesis by the Ilizarov method in the treatment of total knee arthroplasty failure. *Knee*. 2017;24(1):91-99. doi: 10.1016/j.knee.2016.11.002.

- 16. Соломин Л.Н., Щепкина Е.А., Корчагин К.Л., Сабиров Ф.К. Сравнительный анализ артродезирования коленного сустава длинными блокируемыми стержнями и аппаратом Илизарова при последствиях глубокой инфекции после эндопротезирования. *Травматология и ортопедия России*. 2020;26(3):109-118. doi: 10.21823/2311-2905-2020-26-3-109-118.
- 17. Dingemans SA, Kleipool SC, Mulders MAM, et al. Normative data for the lower extremity functional scale (LEFS). *Acta Orthop.* 2017;88(4):422-426. doi: 10.1080/17453674.2017.1309886.
- 18. Wiedel JD. Salvage of infected total knee fusion: the last option. *Clin Orthop Relat Res.* 2002;(404):139-142. doi: 10.1097/00003086-200211000-00024.
- 19. Klinger HM, Spahn G, Schultz W, Baums MH. Arthrodesis of the knee after failed infected total knee arthroplasty. *Knee Surg Sports Traumatol Arthrosc.* 2006;14(5):447-453. doi: 10.1007/s00167-005-0664-3.
- 20. Bierwagen U, Walter G, Hoffmann R. Knee arthrodesis--quality of life and comparison of methods. *Z Orthop Unfall*. 2010;148(5):566-572. (In German) doi: 10.1055/s-0030-1249852.
- 21. Robinson M, Piponov HI, Ormseth A, et al. Knee arthrodesis outcomes after infected total knee arthroplasty and failure of two-stage revision with an antibiotic cement spacer. J Am Acad Orthop Surg Glob Res Rev. 2018;2(1):e077. doi: 10.5435/JAAOSGlobal-D-17-00077.
- 22. Vivacqua T, Moraes R, Barretto J, et al. Functional outcome of patients undergoing knee arthrodesis after infected total arthroplasty. *Rev Bras Ortop (Sao Paulo)*. 2021;56(3):320-325. doi: 10.1055/s-0040-1709198.
- 23. Шавырин Д.А., Ошкуков С.А., Шевырев К.В. и др. Опыт артродезирования коленного сустава у пациентов с перипротезной инфекцией. *Вестник Ивановской медицинской академии*. 2023;28(1):24-30. doi: 10.52246/1606-8157_2023_28_1_24.
- 24. Zajonz D, Zimmerlich B, Möbius R et al. Knee arthrodesis as last resort for persistent knee joint infections: Comparison of extramedullary and intramedullary treatment. *Orthopade*. 2021;50(3):207-213. doi: 10.1007/s00132-020-03939-z.
- 25. Conway JD, Mont MA, Bezwada HP. Arthrodesis of the knee. *J Bone Joint Surg Am*. 2004;86(4):835-848. doi: 10.2106/00004623-200404000-00027.
- 26. Balato G, Rizzo M, Ascione T, et al. Re-infection rates and clinical outcomes following arthrodesis with intramedullary nail and external fixator for infected knee prosthesis: a systematic review and meta-analysis. *BMC Musculoskelet Disord*. 2018;19(1):361. doi: 10.1186/s12891-018-2283-4.
- 27. Stavrakis AI, Mayer EN, Devana SK, et al. Outcomes of Modular Knee Arthrodesis for Challenging Periprosthetic Joint Infections. *Arthroplast Today*. 2022;13:199-204. doi: 10.1016/j.artd.2021.10.015.
- 28. Coden G, Bartashevskyy M, Berliner Z, et al. Modular knee arthrodesis as definitive treatment for periprosthetic infection, bone loss, and failure of the extensor mechanism after total knee arthroplasty. *Arthroplast Today*. 2023;25:101261. doi: 10.1016/j. artd 2023 101261
- 29. Прокопьев Д.С., Левчик Е.Ю., Виноградский А.Е., Борзунов Д.Ю. Хирургическая обработка ран с применением локального отрицательного давления в лечении пациентов с перипротезной инфекцией тазобедренного сустава. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2024;31(4):507-516. doi: 10.17816/vto625672.
- 30. Туфанова О.С., Божкова С.А., Гордина Е.М., Артюх В.А. Особенности течения и среднесрочные исходы имплантат-ассоциированной инфекции, вызванной ведущими грамотрицательными возбудителями. *Гений ортопедии*. 2025;31(3):322-333. doi: 10.18019/1028-4427-2025-31-3-322-333.
- 31. Прохоренко В.М., Злобин А.В., Мамедов А.А., Баитов В.С. Лечение парапротезной инфекции коленного сустава. *Современные проблемы науки и образования*. 2015;(6). URL: https://science-education.ru/ru/article/view?id=23231 (дата обращения: 21.08.2025).
- 32. Клюшин Н.М., Ермаков А.М., Абабков Ю.В, Коюшков А.Н. Истинная эффективность методики артродезирования при лечении перипротезной инфекции коленного сустава. *Гений ортопедии*. 2019;25(2):156-161. doi.org 10.18019/1028-4427-2019-25-2-156-161.
- 33. White CJ, Palmer AJR, Rodriguez-Merchan EC. External Fixation vs Intramedullary Nailing for Knee Arthrodesis After Failed Infected Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. *J Arthroplasty*. 2018;33(4):1288-1295. doi: 10.1016/j. arth.2017.10.055.
- 34. Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. *Clin Orthop Relat Res.* 1990;(250):81-104.
- 35. Leroux B, Aparicio G, Fontanin N, et al. Arthrodesis in septic knees using a long intramedullary nail: 17 consecutive cases. *Orthop Traumatol Surg Res.* 2013;99(4):399-404. doi: 10.1016/j.otsr.2013.03.011.

Статья поступила 13.08.2025; одобрена после рецензирования 18.08.2025; принята к публикации 25.08.2025.

The article was submitted 13.08.2025; approved after reviewing 18.08.2025; accepted for publication 25.08.2025.

Информация об авторах:

Глеб Александрович Бугаев — врач — травматолог-ортопед, glebbugaev97@gmail.com, https://orcid.org/0000-0002-0176-0090;

Александр Евгеньевич Виноградский — кандидат медицинских наук, врач — травматолог-ортопед, ассистент кафедры, vinalexc@mail.ru, https://orcid.org/0000-0003-2912-6291;

Дмитрий Сергеевич Прокопьев — врач — травматолог-ортопед, ассистент кафедры,

d_prok@list.ru, https://orcid.org/0000-0002-6058-0647;

Дмитрий Юрьевич Борзунов — доктор медицинских наук, профессор, врач — травматолог-ортопед, профессор кафедры, borzunov@bk.ru, https://orcid.org/0000-0003-3720-5467.

Information about the authors:

Gleb A. Bugaev — orthopaedic surgeon, glebbugaev97@gmail.com, https://orcid.org/0000-0002-0176-0090;

 $A lexander\ E.\ Vinogradsky-Candidate\ of\ Medical\ Sciences,\ orthopaedic\ surgeon,\ Assistant\ Professor,\ vinalexc@mail.ru,\ https://orcid.org/0000-0003-2912-6291;$

Dmitriy S. Prokopyev — orthopaedic surgeon, Assistant Professor, d_prok@list.ru, https://orcid.org/0000-0002-6058-0647;

Dmitry Yu. Borzunov — Doctor of Medical Sciences, Professor, orthopaedic surgeon, Professor of the Department, borzunov@bk.ru, https://orcid.org/0000-0003-3720-5467.

Научная статья

УДК 616.71-089.843-06:616-022.1-035:615.33 https://doi.org/10.18019/1028-4427-2025-31-5-587-601

Особенности выбора антибиотиков для лечения пациентов с ортопедической инфекцией, вызванной грамотрицательными возбудителями: результаты 12-летнего наблюдения

О.С. Туфанова $^{1 \bowtie}$, С.А. Божкова 1 , А.Р. Касимова 1,2 , Е.М. Гордина 1 , А.Н. Гвоздецкий 3 , Р.М.Тихилов 1

- ¹ Национальный медицинский исследовательский центр травматологии и ортопедии им. Р.Р. Вредена, Санкт-Петербург, Россия
- ² Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, Санкт-Петербург, Россия
- ³ Северо-Западный государственный медицинский университет им. И.И. Мечникова, Санкт-Петербург, Россия

Автор, ответственный за переписку: Ольга Сергеевна Туфанова, katieva@mail.ru

Аннотация

Введение. Лечение пациентов с ортопедической инфекцией является сочетанием оптимального вида санирующего хирургического вмешательства и адекватной антибактериальной терапии. Доля Грам(–) возбудителей в структуре ортопедической инфекции относительно невелика (1–28 %), однако прогрессирование антибактериальной резистентности *A. baumannii, K. pneumoniae, P. aeruginosa* вызывает трудности в выборе антибиотиков, что ухудшает прогноз лечения таких пациентов.

Цель работы — обосновать выбор лекарственных средств для таргетной эмпирической и этиотропной антибактериальной терапии на основании анализа резистентности к антибактериальным препаратам ведущих грамотрицательных бактерий (*A. baumannii, K. pneumoniae, P. aeruginosa*), изолированных от пациентов с ортопедической инфекцией. **Материалы и методы**. Выполнено ретроспективное исследование данных о чувствительности к антибактериальным препаратам ведущих Грам(−) микроорганизмов, изолированных от пациентов с ортопедической инфекцией с 01.01.2011 по 31.12.2022. Исследована средняя частота выделения устойчивых штаммов и определены тренды резистентности ведущих Грам(−) возбудителей к различным антибактериальным препаратам (фторхинолоны, котримоксазол, цефалоспорины, карбапенемы, монобактамы, аминогликозиды, фосфомицин, колистин).

Обсуждение. Перечень антибактериальных препаратов, активных в отношении штаммов *A. baumannii, K. pneumoniae, P. aeruginosa*, достаточно внушительный и в основном содержит лекарства для парентерального введения. Для резистентных штаммов перечень ограничен одной или двумя группами, при этом препаратов, существующих в пероральной форме, в нем нет. Это обуславливает трудности в лечении и высокую долю рецидивов. Отрицательная динамика нарастания антибиотикорезистентности ведущих Грам(–) возбудителей к фторхинолонам, цефалоспоринам и карбапенемам является общемировой проблемой, вынуждающей прибегать к применению антибиотиков резерва.

Заключение. Применение для таргетной эмпирической стартовой антибактериальной терапии защищенного цефалоспорина представляется более рациональным в виду меньшего риска селекции устойчивых к нему штаммов. Фторхинолоны и карбапенемы целесообразно применять только при доказанной к ним чувствительности. Полимиксин В и фосфомицин необходимо рассматривать как препараты резерва для лечения инфекции, вызванной устойчивыми к другим АБ штаммами, и назначать только в составе комбинированной терапии. Аминогликозиды и незащищенные цефалоспорины в связи с особенностями фармакокинетики и высоким уровнем устойчивости являются альтернативой только при невозможности назначения более активных препаратов.

Ключевые слова: имплантат-ассоциированная инфекция, ортопедическая инфекция, перипротезная инфекция, *Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii*, антибактериальная терапия, антибиотикорезистентность, эмпирическая терапия, этиотропная терапия

Для цитирования: Туфанова О.С., Божкова С.А., Касимова А.Р., Гордина Е.М., Гвоздецкий А.Н., Тихилов Р.М. Особенности выбора антибиотиков для лечения пациентов с ортопедической инфекцией, вызванной грамотрицательными возбудителями: результаты 12-летнего наблюдения. *Гений ортопедии*. 2025;31(5):587-601. doi: 10.18019/1028-4427-2025-31-5-587-601.

[©] Туфанова О.С., Божкова С.А., Касимова А.Р., Гордина Е.М., Гвоздецкий А.Н., Тихилов Р.М., 2025

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-587-601

Antibiotic therapy for orthopedic infections caused by gram-negative pathogens over a 12-year observation period

O.S. Tufanova^{1,2}, S.A. Bozhkova¹, A.R. Kasimova^{1,2}, E.M. Gordina¹, A.N. Gvozdetsky³, R.M. Tikhilov¹

- 1 Vreden National Medical Research Center of Traumatology and Orthopedics, Saint Petersburg, Russian Federation
- 2 Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russian Federation
- 3 Mechnikov North-Western State Medical University, Saint Petersburg, Russian Federation

Corresponding author: Olga S. Tufanova, katieva@mail.ru

Abstract

Introduction Treatment of patients with orthopedic infection includes a combination of the optimal surgical debridement and adequate antibacterial therapy. Gram-negative bacteria are encountered in 13-28 % of orthopedic infections, and A. baumannii, K. pneumoniae, P. aeruginosa are significant bacteria notorious for its high and intrinsic antibiotic resistance and can be associated with worse outcomes.

The **objective** was to substantiate the choice of drug for targeted empirical and etiotropic antibacterial therapy based on the analysis of antibiotic resistance in leading gram-negative bacteria (A. baumannii, K. pneumoniae, P. aeruginosa) isolated from patients with orthopedic infection.

Material and methods Antibiotic sensitivity of leading Gram(-) microorganisms isolated from patients with orthopedic infection was retrospectively examined between 01.01.2011 and 31.12.2022. The average frequency of isolated resistant strains was examined and resistance trends of leading Gram(-) pathogens to various antimicrobialbacterial drugs (fluoroquinolones, co-trimoxazole, cephalosporins, carbapenems, monobactams, aminoglycosides, fosfomycin, colistin) determined.

Results Over a 12-year period, statistically significant trends were revealed towards an increase in the proportion of A. baumannii strains resistant to ciprofloxacin (p = 0.024) and levofloxacin (p = 0.012), and P. aeruginosa (p = 0.018) and K. pneumoniae (p = 0.018) strains resistant to ciprofloxacin. The predicted proportion of A. baumannii strains resistant to fluoroquinolones tends to 100 %. There was a significant increase in A. baumannii and P. aeruginosa strains resistant to cefoperazone+[sulbactam] (p = 0.027 and p = 0.010, respectively), K. pneumoniae strains resistant to meropenem and imipenem (p = 0.037 and p = 0.003, respectively), and P. aeruginosa strains resistant to imipenem (p = 0.001). No statistically significant trends were found for the remaining antibiotics; drug resistance of the pathogens remained stable or had a wave-like course over the 12-year period. Cefoperazone + [sulbactam] was the optimal drug active against Gram(-) bacteria.

Discussion There is an authoritative list of antimicrobiall drugs active against A. baumannii, K. pneumoniae, P. aeruginosa strains, mainly containing drugs for parenteral administration. The list is limited to one or two groups for resistant strains, and there are no drugs available in oral form. This causes difficulties in the infection control and a high rate of relapses. The negative dynamics in increasing antibiotic resistance of leading Gram(-) pathogens to fluoroquinolones, cephalosporins and carbapenems is a global problem necessitating the use of reserve antibiotics.

Conclusion Protected cephalosporin is more practical for targeted empirical initial antimicrobial therapy due to the lower risk of selected resistant strains. Fluoroquinolones and carbapenems can be used with the sensitivity known, Polymyxin B and fosfomycin should be considered as reserve drugs for the treatment of infections caused by strains resistant to other AB, and prescribed as part of combination therapy. Aminoglycosides and unprotected cephalosporins can be an alternative due to the pharmacokinetic characteristics and high level of resistance when more active drugs cannot be administered.

Keywords: implant-associated infection, orthopedic infection, periprosthetic joint infection, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, antibacterial therapy, antibiotic resistance, empirical therapy, etiotropic therapy

For citation: Tufanova OS, Bozhkova SA, Kasimova AR, Gordina EM, Gvozdetsky AN, Tikhilov RM. Antibiotic therapy for orthopedic infections caused by gram-negative pathogens over a 12-year observation period. Genij Ortopedii. 2025;31(5):587-601. doi: 10.18019/1028-4427-2025-31-5-587-601.

[©] Tufanova O.S., Bozhkova S.A., Kasimova A.R., Gordina E.M., Gvozdetsky A.N., Tikhilov R.M., 2025

[©] Translator Irina A. Saranskikh, 2025

ВВЕДЕНИЕ

Периимплантные инфекции в настоящее время относят к наиболее тяжелым осложнениям операций на костно-мышечной системе [1]. В структуре возбудителей ортопедической инфекции (ОИ) традиционно преобладают Грам(+) бактерии *S. aureus* и *S. epidermidis*, а доля Грам(–) микроорганизмов составляет 13–28 % [2, 3]. Существуют локальные особенности распространенности данных возбудителей, в отдельных странах показатель доходит до 61 % [4]. Среди Грам(–) бактерий ведущая роль принадлежит представителям семейства *Enterobacteriaceae* (*K. pneumoniae* и *E. coli*) и неферментирующим бактериям (*P. aeruginosa* и *A. baumannii*).

Грам(–) бактерии *К. pneumoniae, P. aeruginosa* и *А. baumannii* входят в группу часто встречающихся патогенов с регистрируемыми критическим и высоким уровнями устойчивости к антибиотикам, обозначенную Американским обществом инфекционных заболеваний как ESKAPE-патогены. Стремительный рост устойчивости к антибиотикам из групп фторхинолонов (ФХ), цефалоспоринов (ЦС), карбапенемов (КП), которые традиционно считали препаратами выбора, вызывает большую настороженность среди клиницистов.

Участие Грам(–) бактерий в этиологии имплантат-ассоциированной инфекции (ИАИ) на сегодняшний день считают неблагоприятным прогностическим признаком. Рецидивы инфекционного процесса Грам(–) этиологии в течение первых двух лет после проведения санирующей операции пациенту с ИАИ регистрируют в 50–60 % случаев [5, 6]. При этом исследователи указывают на прямую корреляцию между антибиотикорезистентностью изолированных от пациентов бактерий и частотой неблагоприятных исходов [7]. Данные обосновывают необходимость постоянного локального мониторинга чувствительности этих микроорганизмов к антибактериальным препаратам, что дает возможность своевременно пересматривать варианты стартовой эмпирической и этиотропной АБТ в стационаре и на амбулаторном этапе.

Основными препаратами, в спектр действия которых входят Грам(–) бактерии, являются ФХ, незащищенные и защищенные ЦС III–IV поколений, КП, монобактамы, аминогликозиды, фосфомицин, колистин и ко-тримоксазол. Практическое применение лекарственных препаратов этих групп имеет свои преимущества и недостатки, которые будут рассмотрены в данной работе.

Цель работы — обосновать выбор лекарственных средств для таргетной эмпирической и этиотропной антибактериальной терапии на основании анализа резистентности к антибактериальным препаратам ведущих грамотрицательных бактерий (*A. baumannii, K. pneumoniae, P. aeruginosa*), изолированных от пациентов с ортопедической инфекцией.

МАТЕРИАЛЫ И МЕТОЛЫ

Выполнено ретроспективное исследование данных о резистентности к антибактериальным препаратам ведущих Грам(–) возбудителей, изолированных от пациентов с ОИ, с 1 января 2011 года по 31 декабря 2022 года. К ведущим возбудителям относили микроорганизмы, доля которых, по данным опубликованного ранее центрового мониторинга [8], в общем спектре возбудителей ОИ превышала 3,5 %.

Данные об антибиотикорезистентности получали из программы «Система микробиологического мониторинга «Микроб-2»» (МедПроект-3, 2002–2020), а также из лабораторной информационной системы «Акросс-Инжиниринг» (2021–2022). Бактериологический анализ полученных от пациентов биоматериалов выполняли в соответствии с принятыми международными стандартами микробиологических исследований (UK SMI). Видовую идентификацию выросших культур до 2021 года проводили биохимическим методом на панелях Microlatest (Erba Lachema) с помощью iEMS Reader MF (Labsistems, Финляндия), а с 2021 года — методом MALDI-TOF масс-спектрометрии.

Чувствительность выделенных штаммов Грам(–) бактерий определяли к включенным в формулярный перечень центра антимикробным препаратам:

- А. baumannii к ципрофлоксацину, левофлоксацину, ко-тримоксазолу, цефоперазону+[сульбактаму] (определение происходило по цефоперазону), имипенему, меропенему, амикацину, гентамицину, колистину;
- *К. pneumoniae* к ципрофлоксацину, ко-тримоксазолу, цефтриаксону, цефоперазону+[сульбактаму] (определение происходило по цефоперазону), цефепиму, имипенему, меропенему, азтреонаму, колистину, фосфомицину (с 2017 года);
- *P. aeruginosa* к ципрофлоксацину, левофлоксацину, цефтазидиму, цефтазидиму+[авибактаму], цефоперазону+[сульбактаму] (определение происходило по цефоперазону), цефепиму, имипенему, меропенему, азтреонаму, амикацину, гентамицину, колистину.

В течение всего 12-летнего периода чувствительность штаммов определяли согласно контрольным точкам в актуальной версии EUCAST на момент выполнения первичного микробиологического исследования.

Для описания категориальных переменных использовали абсолютные значения и доли от целого (n, %). Переменные, имеющие непрерывный характер распределения, описывали средним и стандартным отклонениями $(M \pm \sigma)$, дискретные переменные и упорядоченные данные — медианой, 1-3 квартилями $(Md \ [Q1; Q3])$. Также вычисляли минимальное и максимальное значения (|min; max|). Основные тренды антибиотикорезистентности представляли для анализируемых возбудителей по группам антибиотиков: ΦX , ко-тримоксазол, ΠC , ΠC , монобактамы, аминогликозиды, фосфомицин, полимиксин ΠC

Моделирование кривой «резистентность—время» проводили при помощи библиотеки `mgcv`. В качестве зависимой переменной выступала доля резистентных штаммов в году, в качестве независимых — время и вид бактерий. Моделирование нелинейной зависимости проводили методом кубической сплайн-трансформации от времени с эффектом взаимодействия с групповой принадлежностью. Так как зависимая переменная принадлежит диапазону (0,1), применяли модель бета-распределения. Для исключения экстремальных значений (0 и 1) выполняли следующую трансформацию зависимой переменной $(y \times (n-1) + 0,5) / n$, где y — зависимая переменная, n — количество наблюдений. Синтаксис модели был следующим:

$$gam (y \sim s(time, bs = 'cr', k = 5) + name + s(time, by = name, bs = 'cr', k = 5), family = betar()).$$

Модель характеризовали коэффициентом псевдодетерминации R², нормализованным корнем из среднеквадратичной ошибки (nRMSE), степенями свободы. Для уточнения данных на полученных моделях тестировали гипотезы линейного тренда. Для коррекции множественного тестирования гипотез использовали среднюю долю ложных отклонений (FDR). Все расчёты выполняли на языке программирования R v4.4.0.

РЕЗУЛЬТАТЫ

Фторхинолоны (ципрофлоксацин, левофлоксацин)

Средняя доля штаммов A. baumannii, K. pneumoniae и P. aeruginosa, резистентных к ципрофлоксацину, составила 83,7% [62,5-98,7], к левофлоксацину — 87,6% [50-98,6]. Весь анализируемый период наблюдали статистически значимое нарастание доли резистентных к ципрофлоксацину штаммов ведущих Грам(–) бактерий (p=0,024). При этом доля резистентных штаммов с 2011 г. до 2022 г. увеличилась на 36,2%, 25,0% и 33,4% соответственно для A. baumannii (p=0,024) (рис. 1,A), K. pneumoniae (p=0,018) (рис. 1,B) и P. aeruginosa (p=0,018) (рис. 1,C), и достигла к концу срока наблюдения 98,7%, 98,2% и 66,7%.

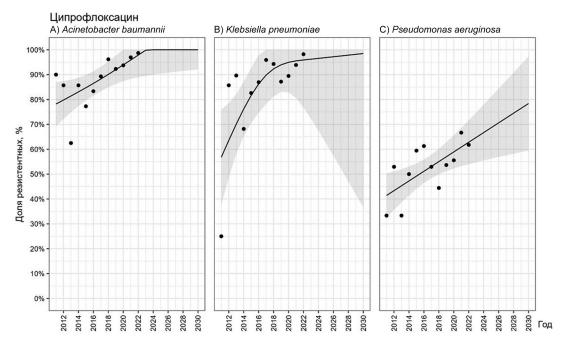


Рис. 1. Прогнозирование резистентности A. baumannii (A), K. pneumoniae (B) и P. aeruginosa (C) к ципрофлоксацину

Схожую картину наблюдали в отношении левофлоксацина. Общий тренд характеризовался статистически значимым нарастанием доли резистентных к нему штаммов A. baumannii (p = 0,012). Однако выделение резистентных к левофлоксацину штаммов P. aeruginosa имело волнообразный характер, несмотря на прогнозируемое увеличение доли устойчивых изолятов, однозначного тренда не выявлено (p = 0,461).

Прогнозируемая частота выделения резистентных к фторхинолонам *A. baumannii* в ближайшие годы достигнет 100 %. Для *K. pneumoniae* и *P. aeruginosa*, несмотря на очевидный рост резистентности к ФХ, уровень 100 % достигнут не будет.

Сульфаметоксазол-триметоприм (ко-тримоксазол)

В среднем 74,8 % [47,1–92,6] штаммов A. baumannii были резистентны к ко-тримоксазолу. Динамика выделения резистентных штаммов имела два основных тренда: с 2011 г. по 2016 г. доля устойчивых изолятов снизилась на 38,9 %, а с 2017 г. по 2022 г. наблюдали обратную динамику в виде нарастания доли резистентных штаммов на 45,5 % (рис. 2, A). Несмотря на прогнозируемое увеличение частоты выделения резистентных штаммов, говорить об однозначном тренде не представляется возможным (p = 0.978).

Среди K. pneumoniae в среднем 81,9% [52,4-97,1] штаммов демонстрировали устойчивость данному антибиотику. Частота выделения устойчивых к ко-тримоксазолу штаммов K. pneumoniae характеризовалась постоянными колебаниями. Несмотря на снижение данного показателя в последние три года наблюдения, общий тренд демонстрирует статистически незначимое увеличение доли резистентных штаммов (p = 0,195), которая, вероятно, к 2030 году достигнет 100% (рис. 2, B).

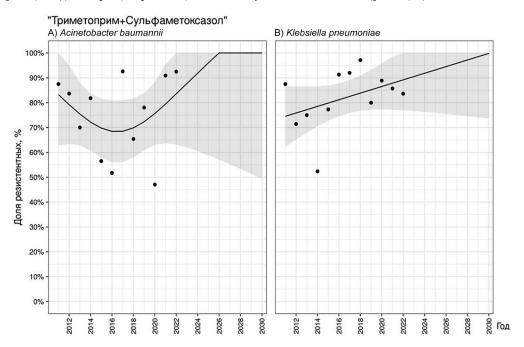


Рис. 2. Прогнозирование резистентности А. baumannii (А) и К. pneumoniae (В) к ко-тримоксазолу

Защищенные и незащищенные цефалоспорины

Средняя доля резистентных к цефоперазону+[сульбактаму] штаммов $A.\,baumannii$ составила 53,3 % [18,8–83,3]. Динамика показателя имела нелинейный характер на всем протяжении наблюдения (рис. 3, A), однако общий тренд за 12 лет характеризовался устойчивым нарастанием доли резистентных штаммов (p=0,027), которая по прогнозу достигнет 100 % к 2026 году. Частота выделения резистентных к цефепиму и цефтриаксону штаммов $K.\,pneumoniae$ практически не менялась за 12 лет наблюдения и в среднем составляла 86,3 % [76,2–97,4] и 85,0 % [76,9–96,4] соответственно. В связи с этим прогнозируемая частота выделения резистентных штаммов близка к средней.

Динамика выделения резистентных к цефоперазону+[сульбактаму] штаммов K. pneumoniae имела волнообразный характер, в период с 2015 г. до 2017 г. регистрировали снижение данного показателя (рис. 3, В). Однако общий тренд демонстрирует статистически незначимое увеличение устойчивости (p = 0.225). В отношении P. aeruginosa наиболее эффективен был цефоперазон+[сульбактам], к которому были устойчивы только 32.8% [7.8-60.3] штаммов, включенных в исследование.

Для сравнения средняя доля штаммов, резистентных к цефтазидиму + [авибактаму], составила 41,2% [25,4-50,0], к цефтазидиму — 45,9% [17,3-75,0], а к цефепиму — 49,1% [19,2-75,0]. При этом именно для цефоперазона+[сульбактама] выявлен негативный тренд увеличения доли устойчивых штаммов P. aeruginosa (p=0,010) (рис. 3, C). Для цефтазидима прогнозируется незначимое увеличение доли, а для цефепима — отсутствие роста доли резистентных штаммов P. aeruginosa.

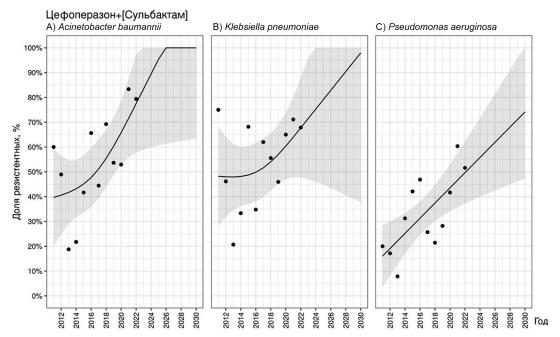


Рис. 3. Прогнозирование резистентности *A. baumannii* (A), *K. pneumoniae* (B) и *P. aeruginosa* (C) к цефоперазону+[сульбактаму]

Карбапенемы

Средняя частота выделения резистентных к имипенему A. baumannii составила 56,7% [33,3-75,0] с волнообразной динамикой и отсутствием какого-либо тренда (p=0,877). Прогнозируемая частота выделения резистентных штаммов в ближайшие годы останется близка к среднему значению. Несмотря на большую по сравнению с имипенемом среднюю долю резистентных к меропенему штаммов A. baumannii (68,0% [48,7-90,0]), показатель снизился за время наблюдения на 41,3% (рис. 4,A). Установлен статистически значимый тренд к снижению частоты выделения резистентных к меропенему штаммов (p=0,010), которая по прогнозам снизится до 35% к 2030 году.

Средний уровень резистентности штаммов K. pneumoniae к имипенему и меропенему схож и составил 23,0 % [3,6–42,9] и 22,9 % [1,8–42,9] соответственно. Сопоставимы также и тренды, характеризующиеся, несмотря на волнообразное течение, устойчивым, статистически значимым увеличением распространенности резистентных к имипенему (p = 0,003) и меропенему (p = 0,037) штаммов K. pneumoniae. Согласно прогнозу к 2030 г. более 50 % штаммов данного вида будут резистентными к КП (рис. 4, B).

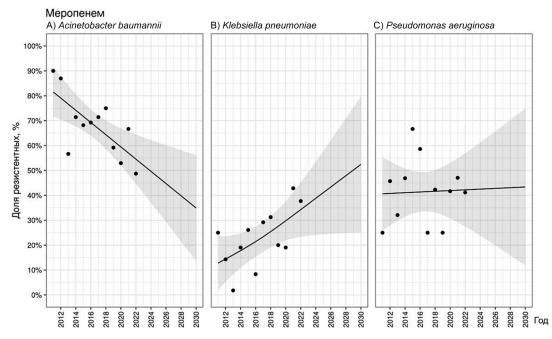


Рис. 4. Прогнозирование резистентности A. baumannii (A), K. pneumoniae (B) и P. aeruginosa (C) к меропенему

Доля чувствительных к имипенему штаммов P. aeruginosa сокращалась на протяжении 12 лет наблюдения. Несмотря на отсутствие линейного характера динамики, средняя доля устойчивых штаммов составила 34,3% [9,6–56,1]. Общий тренд можно охарактеризовать как значимое нарастание частоты выделения резистентных штаммов (p = 0,001), которая к 2022 г. составила 50%. Согласно прогнозу около 75% штаммов P. aeruginosa будут резистентными к имипенему к 2030 году. В отношении меропенема средняя доля устойчивых штаммов составила 41,4% [25,0-66,7], а прогнозируемая частота выделения к 2030 г. будет сопоставима с ней и составит чуть менее 45% (рис. 4, 6).

Монобактамы

Установлено отсутствие динамики уровня резистентности к азтреонаму штаммов *P. aeruginosa* и *K. pneumoniae*. Средняя частота выделения резистентных к азтреонаму штаммов *P. aeruginosa* составляет 48 % [29,4–62,5], *K. pneumoniae* — 85,7 % [75–96,9]. Статистически значимых трендов изменения чувствительности данных возбудителей к азтреонаму не установлено.

Аминогликозиды (гентамицин, амикацин, тобрамицин)

Средняя частота выделения резистентных штаммов A. baumannii к амикацину и гентамицину была схожа и составила соответственно 78,1 % [40,0–97,4] и 78,2 % [50,0–98,1]. При этом общие тренды характеризовались нарастанием доли резистентных штаммов статистически значимым в отношении амикацина (p = 0,091) и незначимым в отношении гентамицина (p = 0,869). Прогнозируемая частота выделения резистентных штаммов A. baumannii к аминогликозидам достигнет 100 % уже к 2025-2026 гг. (рис. 5, A).

В среднем 52,5 % [13,0-87,5] штаммов K. pneumoniae были резистентными к амикацину. При этом отмечали два тренда: с 2011 г. по 2016 г. наблюдали стойкое снижение доли устойчивых штаммов на 74,5 %, однако с 2017 г. по 2021 г. определяли обратную динамику (рис. 5, B). Несмотря на незначительное снижение доли резистентных штаммов в 2022 г. по сравнению с 2021 г., общий тренд можно охарактеризовать как увеличение доли резистентных штаммов (p = 0,481).

Динамика выделения резистентных к амикацину P. aeruginosa подвержена меньшей вариабильности (рис. 5, C), чем для A. baumannii и K. pneumoniae. В среднем только в 35 % [19,1–58,3] случаев штаммы P. aeruginosa были к нему устойчивы. Общий тренд демонстрирует уменьшение частоты выделения резистентных штаммов, но статистическая значимость прогноза низкая (p = 0,762). При этом в отношении гентамицина с 2011 г. по 2017 г. выявлено стойкое увеличение доли резистентных штаммов P. aeruginosa с 25 % до 83 %, при этом средняя доля составила 41,0 % [25,0–83,0]. С 2019 г. чувствительность P. aeruginosa к гентамицину не определяют.

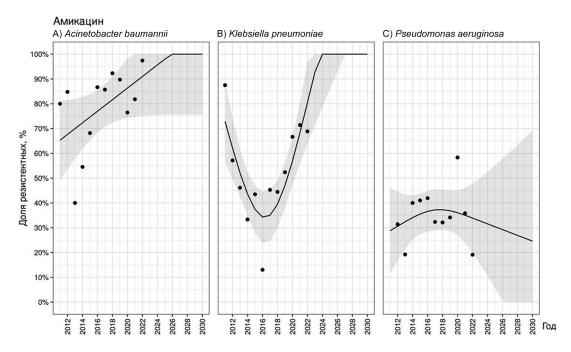


Рис. 5. Прогнозирование резистентности A. baumannii (A), K. pneumoniae (B) и P. aeruginosa (C) к амикацину

Полимиксин Е (колистин)

Средняя частота выделения резистентных к колистину штаммов A. baumannii составила 11,4% [1,6–25], K. pneumoniae - 13,2% [6,7–30,8], P. aeruginosa - 15,3% [1,2–50].

Частота выделения резистентных штаммов A. baumannii была нелинейной: c 2012 r. по 2015 r. отмечали увеличение доли, в последующие четыре года тенденция была обратной (рис. 6, A). Общий тренд можно охарактеризовать как отсутствие выраженной динамики, при этом ожидаемая частота выделения резистентных c колистину c 2017 c 4. c 4. c 4. c 7. Частота выделения резистентных штаммов за эти шесть лет наблюдения имела нелинейный характер (рис. 6, c 8) c 7. c 4. c 7. c 7. Частота выделения резистентности (c 8. c 7. c 7. c 8. c 7. c 8. c 7. c 8. c 7. c 8. c 9. c 9

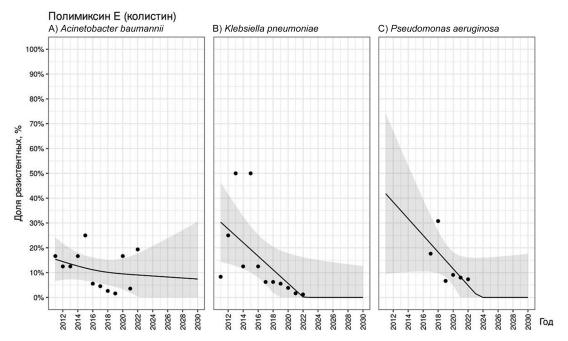


Рис. 6. Прогнозирование резистентности A. baumannii (A), K. pneumoniae (B) и P. aeruginosa (C) к полимиксину E (колистину)

Фосфомицин

Чувствительность к фосфомицину определяли только для K. pneumoniae, начиная с 2017 г. Средний уровень резистентности к фосфомицину штаммов K. pneumoniae за шесть лет составил 22,4 % [3,6–48,7]. С 2017 г. по 2020 г. наблюдали снижение частоты выделения резистентных к фосфомицину штаммов с 30 % до 5 % с последующим увеличением до 10 % к 2022 г. Тренд установить не удалось ввиду малого количества наблюдений.

ОБСУЖДЕНИЕ

Ассоциированная с ортопедическими имплантатами инфекция требует комплексного подхода, сочетающего радикальную хирургическую обработку гнойного очага с удалением инфицированной металлоконструкции, и проведение этиотропной АБТ. Особенностью АБТ при ИАИ является пролонгированный характер, включающий курс парентерального введения препаратов (7–14 дней) и курс перорального приема (4–8 недель). Однако при лечении пациентов с ИАИ, вызванной Грам(–) бактериями с фенотипами MDR (англ.: multidrug-resistant) и XDR (англ.: extensively drug resistant) чувствительности, главной сложностью является ограничение выбора активных в отношении возбудителей препаратов. И если перечень антибиотиков для парентерального применения представлен достаточно широко (ЦС, КП, монобактамы, аминогликозиды, тигециклин, фосфомицин, полимиксин В, диоксидин), то количество препаратов в пероральной форме для проведения ступенчатой АБТ на амбулаторном этапе ограничено (ФХ, ко-тримоксазол, миноциклин и цефиксим).

Частота встречаемости Грам(–) микроорганизмов с MDR и XDR фенотипами чувствительности к антибиотикам, описанная в исследовании N. Benito et al. [9], подтверждена в нашей работе. Ранее по результатам нашего исследования за 12-летний период 2011–2022 гг. к ведущим Грам(–) возбудителям были отнесены *К. pneumoniae* (4,78 %), *P. aeruginosa* (3,88 %) и *А. baumannii* (3,65 %) [8]. Наши данные в целом сопоставимы с результатами отечественных [2] и зарубежных [10] коллег.

Фторхинолоны (ципрофлоксацин, левофлоксацин)

На сегодняшний день ФХ, в частности ципро- и левофлоксацин, являются препаратами, которые широ-ко применяют при лечении пациентов с ОИ. Ципрофлоксацин является препаратом выбора при лечении пациентов с ИАИ, вызванной Грам(–) бактериями, в особенности *P. aeruginosa*. Он создает высокие концентрации в костной ткани, обладает антибиопленочной активностью (табл. 1), пероральные формы характеризуются высокой биодоступностью [12]. Еще одним положительным моментом является возможность проведения ступенчатой терапии. Несмотря на то, что левофлоксацин немного уступает ципрофлоксацину по степени пенетрации в костную ткань [16], концентрация левофлоксацина в синовиальной жидкости превышает сывороточную, а, по данным научных публикаций, ципрофлоксацин и левофлоксацин характеризуются схожим уровнем активности. Такие фармакокинетические особенности являются причиной широкого применения ФХ при лечении пациентов с ИАИ, вызванной Грам(–) возбудителями. С учетом необходимости назначения АБ-терапии на длительный срок, важно помнить о кардио- и нейротоксичности [13] ФХ, а также повышенном риске разрыва сухожилий, тендинита, аневризмы аорты и различных психических нарушений [12].

Таблица 1 Особенности фармакокинетических параметров основных групп антибиотиков, применяемых при лечении пациентов с ИАИ

МНН	Остаточная/средняя концентрация в крови (мкг/мл) ¹	Концентрация в губчатом/кортикальном слое (мкг/мл)	Концентрация в синовиальной жидкости (мкг/мл)	Влияние на биопленки			Источники
Фторхинолоны	ципро — 0,2; лево — 0,6	ципро — 13,8/13,8; лево — 10/4,6	ципро — хорошо проникает¹; лево — 8,9	да	да	+	[11–14]
Триметоприм / сульфаметоксазол	1,3-2,8/32-63	Соотношение С в сыворог для триметоприма 1,2; для сульфаметоксазола—	гке крови к костной ткани · 0,36	нет	да	++	[15–17]
ЦС III поколения	цефтриаксон— 10,5; цефтазидим— 3	цефтриаксон — НД/10,7; цефтазидим — 32,1/32,1	цефтриаксон 60–100 % от С в плазме; цефтазидим — 25,6	нет	нет	+	[11, 16, 18]
Цефоперазон+ [сульбактам]	69,23/6,49	хорошо проникает ¹	хорошо проникает ¹	нет	нет	+	[19, 20]
Цефепим	0,7	67,6/99,8	плохо проникает	нет	нет	+	[16, 21]
Карбапенемы	меропенем — 8,0; имипенем — 1,0	меропенем — 10,6/10,6; имипенем — 2,6/2,6	меропенем — 12,5; имипенем — 13,8	да/нет	нет	+	[16, 22, 23]
Азтреонам	не существует; С max — 90	16 (20 % от С в сыворотке)	83 (95 % от С в сыворотке)	да	нет	+	[16, 24]
Аминогликозиды	гентамицин — 2,0; амикацин — 10	низкие С¹	25-50 % от C в сыворотке	на незрелые	нет	+++	[16, 25, 26]
Полимиксин В	2,0	НД	плохо проникает ¹	да (in vitro)	нет	+++	[27-31]
Фосфомицин	11,4	проникает хорошо, соотношение С в костях и плазме 0,43	хорошо проникает¹	да	нет	++	[16, 32–37]

Примечание: ¹ — Реестр ОХЛП и ЛВ ЕАЭС, Государственный реестр лекарственных средств. Обозначения: С — концентрация, НД — нет данных, С тах — максимальная сывороточная концентрация.

По данным платформы AMRmap, в России к ципрофлоксацину устойчивы 93 % штаммов P. aeruginosa, изолированных от пациентов с инфекцией костей и суставов за период 2012-2022 гг., что на 37 % выше, чем за период 2002-2012 гг. Для A. baumannii и K. pneumoniae также отмечают рост доли резистентных к ципрофлоксацину штаммов, — с 76 % до 93 % и с 66 % до 84 % соответственно [38]. В нашем исследовании для всех указанных возбудителей также получен статистически значимый тренд на рост резистентности к ципрофлоксацину (p = 0,025 для A. baumannii и p = 0,018 для K. pneumoniae и P. aeruginosa). Рост резистентности к левофлоксацину выявлен только для A. baumannii (p = 0,012). При этом в последние годы доля резистентных к ципрофлоксацину штаммов A. baumannii и K. pneumoniae стремится к 100 %, а резистентность P. aeruginosa к концу периода исследования составила 63 %. Катастрофический рост резистентности к Φ X основных Γ pam(-) бактерий отмечают и зарубежные исследователи [39].

Помимо высочайшего уровня резистентности еще одним сложным вопросом, на который мы не нашли однозначного ответа, является целесообразность применения ФХ в монотерапии в случае, когда инфекция вызвана резистентным к антибиотикам штаммом Грам(–) бактерии. Попытки комбинировать ФХ при наличии к ним резистентности с представителями других групп антибиотиков не выглядят убедительно. О. Grossi et al. показали, что дополнительное назначение пероральных ФХ к продленной инфузии бета-лактамных антибиотиков, активных в отношении бактерий, весь период лечения (медиана — 90 суток) не оказало значимого влияния на исход лечения пациентов с ИАИ, вызванной резистентными к ФХ штаммами [40].

Сульфаметоксазол-триметоприм (ко-тримоксазол)

Одной из альтернатив ФХ с позиции возможности проведения ступенчатой АБТ ОИ, вызванной Грам(–) бактериями (за исключением природно резистентной *P. aeruginosa*), является ко-тримоксазол. Благодаря синергизму его компонентов (триметоприм и сульфаметоксазол) ко-тримоксазол оказывает бактерицидное действие в относительно невысоких концентрациях [41]. К тому же препарат хорошо проникает в костную ткань (см. табл. 1), в перечень показаний к его применению внесен острый и хронический остеомиелит, его можно назначать в виде ступенчатой терапии. Однако в отличие от ФХ у котримоксазола отсутствует антибиопленочная активность [16].

Применение ко-тримоксазола для лечения пациентов с ОИ, вызванной Грам(-) возбудителями, крайне мало освещено в литературе. Самое крупное исследование его эффективности включало 51 пациента с инфекцией костей и суставов. Однако во всех случаях препарат назначали в составе комбинированной АБТ, поэтому оценить его персональный вклад не представляется возможным [42]. Ранее нами показано, что назначение ко-тримоксазола на амбулаторном этапе при лечении пациентов с ИАИ, вызванной K. pneumoniae, значимо улучшало вероятность благоприятного исхода (p = 0.038) [43]. Есть публикации, посвященные опыту применения ко-тримоксазола для лечения пациентов с инфекциями костей и суставов, вызванных E. cloacae, $Burkholderia\ spp$. u $Stenotrophomonas\ maltophilia$. На фоне длительной терапии ко-тримоксазолом возможно развитие различных побочных реакций разной степени выраженности, прежде всего со стороны системы кроветворения и кожных покровов [15].

По данным отечественных ученых, более 70 % штаммов *К. рпеитопіа* и *А. baumannii*, изолированных от пациентов с ОИ, устойчивы к ко-тримоксазолу [2, 44]. По данным платформы AMRmap, в России в периоды 2002–2012 гг. и 2012–2022 гг. к данному препарату были резистентны соответственно 50 % и 54 % штаммов *А. baumannii* и 61 % и 69 % представителей семейства *Entrobacteriaceae*, изолированных от пациентов с инфекцией костей и суставов [38]. В нашем исследовании картина более негативна: резистентность *А. baumannii* к ко-тримоксазолу составила 74,8 %, *К. pneumoniae* — 81,9 %.

Бета-лактамные антибиотики

Данные препараты характеризуются в целом хорошей пенетрацией в костную ткань (см. табл. 1), при этом они обладают различной активностью в отношении Грам(–) бактерий.

Цефалоспорины

Потенциальную активность в отношении Грам(–) бактерий оказывают ЦС III и IV поколений, включая ингибиторозащищенные формы. При этом они официально зарегистрированы для лечения пациентов с инфекциями костей и суставов, за исключением цефиксима, единственного препарата в форме для перорального приема среди ЦС III поколения. Применение цефиксима для проведения ступенчатой АБТ в травматологии-ортопедии значительно ограничивает плохая пенетрация в костную ткань, а также природная устойчивость к нему *P. aeruginosa* и некоторых представителей семейства *Enterobacteriaceae*. Поэтому эффективность данного препарата для амбулаторного лечения пациентов с инфекциями костей и суставов остается неизученной. В нашем исследовании мы также не проводили оценку доли резистентных к препарату штаммов Грам(–) бактерий.

Несмотря на заявленную активность цефтриаксона в отношении некоторых Грам(-) бактерий, в том числе представителей семейства *Enterobactiaceae* и *A. baumannii*, публикаций, посвященных его применению при ИАИ Грам(-) этиологии, мы не нашли. Вероятно, это связано с высоким уровнем резистентности к нему (до 90 % штаммов) *A. baumannii* и *K. pneumoniae*, а также природной устойчивостью *P. aeruginosa*. В нашем исследовании к 2020-2022 гг. 85 % штаммов *K. pneumoniae* были устойчивы к данному препарату [76,9-96,4].

В течение длительного времени основным показанием для назначения цефтазидима была инфекция, вызванная *P. aeruginosa*. По данным платформы ARMmap, доля резистентных к цефтазидиму штаммов *P. aeruginosa*, изолированных от пациентов с инфекцией костей и суставов, за 2002–2022 гг. составляет 33–39 %. Чувствительность *К. pneumoniae* и *А. baumannii* не определяют [38]. По нашим данным, устойчивость к цефтазидиму штаммов *P. aeruginosa* составляла в среднем 45,9 % без определенного тренда в течение всего периода наблюдения, что может быть связано с ограничением применения этого препарата для лечения пациентов с ОИ.

Спектр действия цефоперазона — это преимущественно Грам(–) бактерии, включая *P. aeruginosa*, что выгодно отличает его от цефтриаксона, при этом он хорошо проникает в костную ткань и синовиальную жидкость (см. табл. 1). Однако клинически более значимой является комбинация цефоперазона с ингибитором бета-лактамаз сульбактамом. Такая комбинация повышает антимикробную активность препарата, включая даже некоторые КП-резистентные штаммы *A. baumannii*, что позволяет рассматривать его в качестве препарата для таргетной эмпирической АБТ. По данным C. Rou-Zhen et al. эффек-

тивность применения цефоперазона+[сульбактама] при лечении пациентов с инфекцией, вызванной Грам(–) бактериями, в ряде случаев превосходит успех применения не только незащищенных ЦС III поколения, но и даже карбапенемов. Возможно, это связано с более медленным развитием устойчивости на фоне снижения риска селекции резистентных штаммов [17].

По нашим данным, наибольшую активность антибиотик сохраняет в отношении P. aeruginosa, несколько меньшую в отношении A. baumannii и K. pneumoniae. Беспокойство вызывает выявленный статистически значимый тренд роста доли резистентных к цефоперазону+[сульбактаму] штаммов A. baumannii (p = 0,027) и P. aeruginosa (p = 0,010), при этом чувствительность к нему выше, чем для остальных ЦС и сопоставима с КП. Одной из серьезных побочных реакций, развивающихся на фоне применения цефоперазона+[сульбактама], является гипокоагуляция, что необходимо учитывать при назначении препарата, особенно пациентам пожилого возраста и длительным курсом [20].

Цефепим активен в отношении большинства Грам(–) микроорганизмов, за исключением *Stenotrophomonas maltophilia*. По данным платформы ARMmap, доля устойчивых к данному антибиотику штаммов представителей семейства *Enterobacteriaceae*, изолированных от пациентов с инфекцией костей и суставов, за 20 лет увеличилась с 43 % до 58 % [38]. По нашим данным, для *K. pneumoniae* резистентность к цефепиму была выше и составила 86,3 %, для *P. aeruginosa* — 49,1 %, не изменяясь существенно в течение всего периода наблюдения. Учитывая плохое проникновение в синовиальную жидкость (см. табл. 1) и относительно высокий уровень резистентности к нему Грам(–) бактерий, цефепим не имеет зарегистрированных показаний, его практически не применяют для лечения пациентов с ОИ.

Карбапенемы

КП обладают самым широким спектром действия среди β-лактамных антибиотиков и в течение длительного времени являются антибиотиками выбора для лечения пациентов с инфекцией, вызванной Грам(–) бактериями — продуцентами β-лактамаз расширенного спектра (БЛРС). В перечне показаний к имипенему+[циластатину] фигурирует инфекция костей и суставов, вызванная только *P. aeruginosa*, а у меропенема такое показание отсутствует. Оба карбапенема широко применяют при лечении пациентов с ОИ, вызванной резистентными к ФХ и ЦС Грам(–) бактериями. Это обусловлено тем, что КП достигают достаточно высоких концентраций в костной ткани и синовиальной жидкости (см. табл. 1), позволяющих превысить МИК для большинства Грам(–) бактерий.

В последние годы крайне настораживающей выглядит тенденция к росту доли Грам(–) бактерий, демонстрирующих устойчивость к этим препаратам. По результатам мультицентрового исследования (2000–2015 гг.), у 91 пациента (72 %) с ИАИ были изолированы бактерии-продуценты БЛРС, а резистентность к КП зарегистрирована в 12 случаях (9 %) [7]. По данным платформы AMRmap, к меропенему резистентны 70 % штаммов A. baumannii, 25 % K. pneumoniae и 40 % P. aeruginosa, изолированных от пациентов с инфекцией костей и суставов за период 2012–2022 гг., причем для всех трех патогенов наблюдали выраженный рост резистентности по сравнению с периодом 2002–2012 гг. Аналогичная тенденция отмечена и для имипенема [38]. В нашем исследовании мы также наблюдали аналогичный статистически значимый рост доли резистентных штаммов K. pneumoniae (p = 0,003) и P. aeruginosa (p = 0,001) к имипенему, который отсутствовал для A. baumannii. При этом выявлен весьма интересный тренд на статистически значимое снижение доли резистентных штаммов A. baumannii к меропенему (p = 0,037), который расходится с результатами зарубежных и отечественных авторов и, вероятно, является локальной находкой, не имеющей научной ценности.

Монобактамы

Единственный на сегодняшний день представитель группы, азтреонам, природно активен в отношении большинства существующих Грам(–) бактерий, в том числе продуцентов БЛРС, за исключением *A. baumannii*. Чувствительность к препарату, по данным платформы ARMmap, сохраняют 66,5 % штаммов *Pseudomonas spp*. и 38,5 % штаммов представителей семейства *Enterobacteriaceae*, изолированных от пациентов с инфекцией костей и суставов за период 2003–2022 гг., без какой-либо определенной динамики [38]. По результатам нашего исследования, чувствительными к азтреонаму были 52 % штаммов *P. aeruginosa* и 14,3 % *К. pneumoniae*. При этом уровень резистентности был стабильным в течение всего периода наблюдения.

Азтреонам создает в синовиальной жидкости концентрацию, сопоставимую с сывороточной, однако в костную ткань пенетрирует в пять раз меньше препарата (см. табл. 1). Систематический обзор A.K. Thabit et al. показал, что после болюсного введения нагрузочной дозы препарата его концентрация в губчатой ткани кости и синовиальной жидкости превышала концентрацию меропенема в 1,5 и 6,6 раза соответственно [16]. Однако у препарата отсутствует зарегистрированное показание для лечения пациентов с инфекцией костей и суставов, и его не применяют в рутинной клинической практике для лечения пациентов с ИАИ и остеомиелитом. Имеющиеся публикации посвящены оценке комбинированного применения азтреонама с цефтазидимом+[авибактамом] в случае, когда ОИ вызвана XDR штаммами Грам(–) бактерий. Исследователи рекомендуют одновременное проведение синхронных инфузий через разные порты катетера или через различные венозные доступы. Применение данной комбинации способствует охвату максимального перечня Грам(–) бактерий с экстремальной резистентностью и панрезистентностью даже при наличии устойчивости к каждому из них [24].

Прочие антибактериальные препараты резерва: аминогликозиды, фосфомицин, полимиксин В

Данные препараты не относят к препаратам выбора при лечении пациентов с ОИ, а применяют при наличии резистентности возбудителей к ФХ, β-лактамам и ко-тримоксазолу в качестве этиотропной АБТ.

Аминогликозиды — антибактериальные препараты, к которым природно чувствительны подавляющее большинство Грам(–) бактерий. На территории РФ для системной АБТ чаще всего применяют гентамицин и амикацин. Аминогликозиды хорошо накапливаются в тканях с активным кровоснабжением и гораздо хуже в костной ткани [16], поэтому для создания терапевтических концентраций кости и суставной жидкости необходимо применение высоких доз этих препаратов, что повышает риск развития нежелательных реакций (см. табл. 1), в первую очередь нефро- [25] и ототоксичности [26]. Поэтому аминогликозиды не нашли широкого применения для лечения пациентов с ОИ. По данным платформы ARMmap, к гентамицину были устойчивыми 76 % штаммов Acinetobacter spp. и 60 % штаммов К. рпеимопіае, изолированных от пациентов с инфекцией костей и суставов за период 2012–2022 гг. [38]. В нашем исследовании получены идентичные результаты: 78,2 % штаммов А. baumannii были резистентны к гентамицину, при этом отмечен тренд на рост доли резистентных штаммов без статистической значимости.

Амикацин в сравнении с гентамицином демонстрирует несколько большую активность в отношении изученных штаммов. По данным платформы ARMmap, к амикацину были устойчивыми 33 % штаммов *Pseudomonas spp.*, 30 % *K. pneumoniae* и 84 % *Acinetobacter spp.*, изолированных от профильных пациентов за период 2012-2022 гг. с отрицательной динамикой по сравнению с периодом 2002-2012 гг. [38]. По нашим данным, уровень резистентности к амикацину для *A. baumannii* составил 78,1 %, *P. aeruginosa* — 35 % и *К. pneumoniae* — 52,5 %, что в целом сопоставимо с общероссийскими данными, однако конкретного тренда не выявлено.

Фосфомицин обладает активностью в отношении большого количества Грам(–) бактерий, в том числе представителей семейства *Enterobacteriaceae*, и некоторых штаммов *P. aeruginosa*, однако природно неактивен в отношении *А. baumannii*. Препарат характеризуется наличием выраженного синергидного действия при сочетании с бета-лактамами, ФХ или аминогликозидами в отношении широкого спектра Грам(–) аэробных бактерий. Фосфомицин хорошо проникает в костную ткань и имеет зарегистрированное показание, — лечение пациентов с инфекцией костей и суставов (см. табл. 1) [34].

В нашем центре средняя частота выделения резистентных к фосфомицину штаммов *К. рпеитопіае* за 12 лет составила 22,4 %. Однако наличие какого-либо тренда установить не удалось ввиду малого числа наблюдений: чувствительность к данному антибиотику определяли по запросу врачей только для штаммов с экстремальной резистентностью. По данным платформы AMRmap, только 14 % штаммов представителей семейства *Enterobacteriaceae*, изолированных от пациентов с инфекцией костей и суставов, были устойчивы к фосфомицину, а для 35 % штаммов *Pseudomonas spp*. МПК фосфомицина составляла 64 мг/л [38] .

Фосфомицин для лечения пациентов с ОИ широко применяют во всем мире, однако его использование в монотерапии не рекомендуется из-за быстрого формирования резистентности и снижения эффективности при наличии большого количества бактериального инокулята, что характерно для инфекций костей и суставов [35]. Наличие выраженного синергизма комбинаций фосфомицина с колистином Е в экспериментах *in vitro* в отношении *K. pneumoniae* и *P. aeruginosa* в составе биопленок, а также с КП при лечении пациентов с инфекцией, вызванной трудной для эрадикации *P. aeruginosa*, является серьезным обоснованием применения фосфомицина в составе комбинированной терапии [35].

Полимиксин В активен в отношении исключительно Грам(–) микроорганизмов. Устойчивость является перекрестной с колистином (полимиксином Е), поэтому оценку чувствительности к полимиксину В традиционно оценивают по колистину. Резистентность к этому препарату Грам(–) бактерий в отдельных странах Южно-Восточной Азии и Средиземноморья достигает 10 %, однако в большинстве стран, в том числе и в РФ, полимиксин В сохраняет свою активность в отношении наиболее проблемных

Грам(-) бактерий, в том числе продуцентов различных карбапенемаз [29]. В нашем исследовании частота выделения резистентных к колистину штаммов выше и составляет для A. baumannii в среднем 11,4 %, для K. pneumoniae - 13,2 % и для P. Aeruginosa - 15,3 %, что обусловлено определением чувствительности к нему только для полирезистентных и панрезистентных штаммов. Значимой динамики уровня резистентности для A. baumannii и K. pneumoniae не установлено ввиду малого числа наблюдений.

Особенностью применения полимиксина В является высокая частота нежелательных реакций: почечная и мочевая дисфункция, острая почечная недостаточность и нейротоксичность. Препарат плохо проникает в костную ткань и синовиальную жидкость (см. табл. 1), но при этом обладает выраженной антибиопленочной активностью за счет воздействия на метаболически неактивные клетки в составе внутренних слоев биопленки. Однако такой эффект проявляется при местном применении полимиксина, при системном введении он существенно ниже, а повышенные дозы антибиотика ведут к увеличению частоты нежелательных реакций. Поэтому J. Lora-Tamayo et al. рекомендуют применять комбинацию колистина с другими активными в отношении Грам(–) бактерий антибиотиками: ЦС, КП и др. [30].

Клиническая эффективность применения колистина подтверждена результатами многоцентровых исследований. В многоцентровом исследовании А. Papadopoulos et al. (2000–2015 гг.) на фоне комбинированной терапии с колистином частота благоприятных исходов среди пациентов с ИАИ, вызванной XRD-штаммами, в сравнении с MDR-штаммами бактерий составила соответственно 66,7 % и 39,1 % (p = 0,018). Поэтому авторы рекомендовали применять колистин при отсутствии альтернативы [7]. В другом исследовании показано убедительное преимущество применения комбинации внутривенных инфузий бета-лактамов и полимиксина при лечении 44 пациентов с ИАИ, вызванной полирезистентными Грам(–) микроорганизмами, при этом нежелательные реакции развились лишь в 10 % случаев и были полностью обратимыми [31].

К ограничениям исследования можно отнести его ретроспективный дизайн и локальный характер данных. Прогнозы резистентности микроорганизмов к антибактериальным препаратам требуют подтверждения в дальнейших исследованиях.

ЗАКЛЮЧЕНИЕ

Несмотря на негативную динамику увеличения доли резистентных к цефоперазону+[сульбактаму], меропенену и имипенему+циластатину штаммов ведущих Грам(–) бактерий, применение для таргетной эмпирической стартовой терапии защищенного цефалоспорина представляется более рациональным в виду меньшего риска селекции устойчивых к нему штаммов. Фторхинолоны, карбапенемы целесообразно применять только при доказанной к ним чувствительности. Полимиксин В и фосфомицин необходимо рассматривать как препараты резерва для лечения инфекции, вызванной устойчивыми к другим антибиотикам штаммами, и назначать только в составе комбинированной терапии. Аминогликозиды и незащищенные цефалоспорины в связи с особенностями фармакокинетики и высоким уровнем устойчивости являются альтернативой только при невозможности назначения более активных препаратов. Остается ограниченным перечень препаратов для перорального приема на амбулаторном этапе (фторхинолоны, ко-тримоксазол), необходимы дополнительные исследования оценки эффективности их применения при лечении пациентов с ИАИ, вызванной резистентными Грам(–) бактериями.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

Этическая экспертиза не применима.

Информированное согласие на публикацию не требуется.

СПИСОК ИСТОЧНИКОВ

- 1. Божкова С.А., Тихилов Р.М., Артюх В.А. Перипротезная инфекция суставов как социально-экономическая проблема современной ортопедии. *Вестник Российской академии медицинских наук*. 2023;78(6):601-608. doi:10.15690/vramn8370.
- 2. Цискарашвили А.В., Меликова Р.Э., Новожилова Е.А. Анализ шестилетнего мониторинга основных возбудителей перипротезной инфекции крупных суставов и их тенденция к резистентности. *Гений Ортопедии*. 2022;28(2):179-188. doi: 10.18019/1028-4427-2022-28-2-179-188.
- 3. Fisher C, Patel R. Rifampin, Rifapentine, and Rifabutin Are Active against Intracellular Periprosthetic Joint Infection-Associated Staphylococcus epidermidis. *Antimicrob Agents Chemother*. 2021;65(2):e01275-20. doi: 10.1128/AAC.01275-20.
- 4. Sebastian S, Malhotra R, Sreenivas V, et al. A Clinico-Microbiological Study of Prosthetic Joint Infections in an Indian Tertiary Care Hospital: Role of Universal 16S rRNA Gene Polymerase Chain Reaction and Sequencing in Diagnosis. *Indian J Orthop.* 2019;53(5):646-654. doi: 10.4103/ortho.IJOrtho 551 18.

- 5. Bozhkova S, Tikhilov R, Labutin D, et al. Failure of the first step of two-stage revision due to polymicrobial prosthetic joint infection of the hip. J Orthop Traumatol. 2016;17(4):369-376. doi: 10.1007/s10195-016-0417-8.
- $Pfang BG, García-\ref{Canete}\ J, García-Lasheras\ J, et al.\ Orthopedic\ Implant-Associated\ Infection\ by\ Multidrug\ Resistant\ Enterobacteria ceae.$ J Clin Med. 2019;8(2):220. doi: 10.3390/jcm8020220.
- Papadopoulos A, Ribera A, Mavrogenis AF, et al. Multidrug-resistant and extensively drug-resistant Gram-negative prosthetic joint infections: Role of surgery and impact of colistin administration. Int J Antimicrob Agents. 2019 Mar;53(3):294-301. doi: 10.1016/j. ijantimicag.2018.10.018.
- 8. Ќасимова А.Р., Туфанова О.С., Гордина Е.М. и др. Двенадцатилетняя динамика спектра ведущих возбудителей ортопедической инфекции: ретроспективное исследование. Травматология и ортопедия России. 2024;30(1):66-75. doi: 10.17816/2311-2905-16720.
- 9. Benito N, Franco M, Ribera A, et al. Time trends in the aetiology of prosthetic joint infections: a multicentre cohort study. Clin Microbiol Infect. 2016;22(8):732.e1-8. doi: 10.1016/j.cmi.2016.05.004.
- 10. Drago L, De Vecchi E, Bortolin M, et al. Epidemiology and Antibiotic Resistance of Late Prosthetic Knee and Hip Infections. J Arthroplasty. 2017;32(8):2496-2500. doi: 10.1016/j.arth.2017.03.005.
- 11. Morgan JR, Paull A, O'Sullivan M, Williams BD. The penetration of ceftriaxone into synovial fluid of the inflamed joint. *J Antimicrob Chemother*. 1985;16(3):367-371. doi: 10.1093/jac/16.3.367.
- 12. Azamgarhi T, Scarborough M, Peter-Akhigbe V, et al. Fluoroquinolones in orthopaedic infection: balancing risks and rewards. J Antimicrob Chemother. 2024;79(10):2413-2416. doi: 10.1093/jac/dkae286.
- 13. Hussen NHA, Qadir SH, Rahman HS, et al. Long-term toxicity of fluoroquinolones: a comprehensive review. Drug Chem Toxicol. 2024;47(5):795-806. doi: 10.1080/01480545.2023.2240036.
- 14. Белов БС. Ципрофлоксацин в ревматологии: вопросы эффективности и безопасности. Научно-практическая ревматология. 2004;42(1):43-47. doi: 10.14412/1995-4484-2004-1382.
- 15. Sukasem C, Pratoomwun J, Satapornpong P, et al. Genetic Association of Co-Trimoxazole-Induced Severe Cutaneous Adverse Reactions Is Phenotype-Specific: HLA Class I Genotypes and Haplotypes. *Clin Pharmacol Ther*. 2020;108(5):1078-1089. doi: 10.1002/cpt.1915.

 16. Thabit AK, Fatani DF, Bamakhrama MS, et al. Antibiotic penetration into bone and joints: An updated review. *Int J Infect Dis*.
- 2019;81:128-136. doi: 10.1016/j.ijid.2019.02.005.
- 17. Chen RZ, Lu PL, Yang TY, et al. Efficacy of cefoperazone/sulbactam for ESBL-producing Escherichia coli and Klebsiella pneumoniae bacteraemia and the factors associated with poor outcomes. J Antimicrob Chemother. 2024;79(3):648-655. doi: 10.1093/jac/dkae022.
- 18. Gergs U, Clauss T, Ihlefeld D, et al. Pharmacokinetics of ceftriaxone in plasma and bone of patients undergoing hip or knee surgery. *J Pharm Pharmacol*. 2014;66(11):1552-1558. doi: 10.1111/jphp.12282.
- 19. Wang Q, Wu Y, Chen B, Zhou J. Drug concentrations in the serum and cerebrospinal fluid of patients treated with cefoperazone/ sulbactam after craniotomy. BMC Anesthesiol. 2015;15:33. doi: 10.1186/s12871-015-0012-1.
- 20. Miao W, Guo J, Cheng H, Zhao Q. Risk Factors for Cefoperazone/Sulbactam-Induced Coagulation Disorder. Infect Drug Resist. 2023;16:6277-6284. doi: 10.2147/IDR.S429706.
- 21. Tamma PD, Heil EL, Justo JA, et al. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin Infect Dis. 2024:ciae403. doi: 10.1093/cid/ciae403.
- 22. Бондарева Б.И., Зырянов С.К., Ченкуров М.С. Фармакокинетический анализ данных терапевтического лекарственного мониторинга меропенема в крови у взрослых пациентов, находящихся в критическом состоянии. Антибиотики и химиотерапия. 2021;66(11-12):31-38. doi: 10.37489/0235-2990-2021-66-11-12-31-38.
- 23. Сидоренко С.В., Партина И.В., Агеевец В.А. Имипенем: 30 лет терапии. Антибиотики и химиотерапия. 2013;58(5-6):55-61.
- 24. Попов Д.А., Зубарева Н.А., Паршаков А.А. Азтреонам: клинико-фармакологическая характеристика на современном этапе. Клиническая микробиология и антимикробная химиотерапия. 2023;25(1):19-25. doi:10.36488/cmac.2023.1.19-25.
- 25. Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin-induced nephrotoxicity: Do we have a promising therapeutic approach to blunt it? *Pharmacol Res.* 2010;62(3):179-186. doi: 10.1016/j.phrs.2010.04.004.
- 26. Rutka J. Aminoglycoside Vestibulotoxicity. Adv Otorhinolaryngol. 2019;82:101-110. doi: 10.1159/000490277.
- 27. Елисеева Е.В., Азизов И.С., Зубарева Н.А. Обзор международных согласительных рекомендаций по оптимальному использованию полимиксинов. Клиническая микробиология и антимикробная химиотерапия. 2019;21(4):282-309. doi:10.36488/ cmac.2019.4.282-309.
- 28. Zhao Y, Chen H, Yu Z. Trough concentration may not be a good target for polymyxin B therapeutic drug monitoring. Crit Care. 2023;27(1):41. doi: 10.1186/s13054-023-04326-8.
- 29. Silva KED, Rossato L, Leite AF, Simionatto S. Overview of polymyxin resistance in Enterobacteriaceae. Rev Soc Bras Med Trop. 2022;55:e0349. doi: 10.1590/0037-8682-0349-2021.
- 30. Lora-Tamayo J, Murillo O, Ariza J. Clinical Use of Colistin in Biofilm-Associated Infections. Adv Exp Med Biol. 2019;1145:181-195. doi: $10.1007/97\dot{8}\text{-}3\text{-}030\text{-}16373\text{-}0_13.$
- 31. Mancheño-Losa M, Murillo O, Benavent E, et al. Efficacy and safety of colistin plus beta-lactams for bone and joint infection caused by fluoroquinolone-resistant gram-negative bacilli: a prospective multicenter study. Infection. 2025;53(1):359-372. doi: 10.1007/ s15010-024-02379-7.
- 32. Леонова М.В. Фосфомицин: старый антибиотик и новые перспективы. Обзор литературы. Consilium Medicum. 2023;25(7):433-438. doi: 10.26442/20751753.2023.7.202284.
- 33. Schintler MV, Traunmüller F, Metzler J, et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother. 2009;64(3):574-578. doi: 10.1093/jac/dkp230.
- 34. Hashemian SMR, Farhadi Z, Farhadi T. Fosfomycin: the characteristics, activity, and use in critical care. Ther Clin Risk Manag. 2019;15:525-530. doi: 10.2147/TCRM.S199119.
- 35. Morata L, Soriano A. The role of fosfomycin in osteoarticular infection. Rev Espanola Quimioter Publicacion Of Soc Espanola Quimioter. 2019;32 Suppl 1(Suppl 1):30-36.
- 36. Kowalska-Krochmal B, Mączyńska B, Rurańska-Smutnicka D, et al. Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens. 2022;11(12):1441. doi: 10.3390/pathogens11121441.
- 37. Конев В.А., Божкова С.А., Нетылько Г.И. et al. Результаты применения фосфомицина для импрегнации остеозамещающих материалов при лечении хронического остеомиелита. Травматология и ортопедия России. 2016;22(2):43-56. https://doi. org/10.21823/2311-2905-2016-0-2-43-56
- 38. Кузьменков А.Ю., Виноградова А.Г., Трушин И.В. и др. AMRmap система мониторинга антибиотикорезистентности в России. Клиническая микробиология и антимикробная химиотерапия. 2021;23(2):198-204. doi:10.36488/cmac.2021.2.198-204.
- 39. Sulayyim HJA, Ismail R, Hamid AA, Ghafar NA. Antibiotic Resistance during COVID-19: A Systematic Review. Int J Environ Res Public Health. 2022;19(19):11931. doi: 10.3390/ijerph191911931.
- 40. Grossi O, Asseray N, Bourigault C, et al. Gram-negative prosthetic joint infections managed according to a multidisciplinary standardized approach: risk factors for failure and outcome with and without fluoroquinolones. J Antimicrob Chemother. 2016;71(9):2593-2597. doi: 10.1093/jac/dkw202.

- 41. Eyler RF, Shvets K. Clinical Pharmacology of Antibiotics. Clin J Am Soc Nephrol. 2019;14(7):1080-1090. doi: 10.2215/CJN.08140718.
- 42. Deconinck L, Dinh A, Nich C, et al. Efficacy of cotrimoxazole (Sulfamethoxazole-Trimethoprim) as a salvage therapy for the treatment of bone and joint infections (BJIs). *PLoS One*. 2019;14(10):e0224106. doi: 10.1371/journal.pone.0224106.
- 43. Туфанова О.С., Касимова А.Р., Астахов Д.И. и др. Факторы, влияющие на течение и прогноз имплантат-ассоциированной инфекции, вызванной Klebsiella spp. *Травматология и ортопедия России*. 2024;30(2):40-53. doi: 10.17816/2311-2905-16719.
- 44. Божкова С.А., Касимова А.Р., Тихилов Р.М. и др. Неблагоприятные тенденции в этиологии ортопедической инфекции: результаты 6-летнего мониторинга структуры и резистентности ведущих возбудителей. *Травматология и ортопедия России*. 2018;24(4):20-31. doi:10.21823/2311-2905-2018-24-4-20-31.

Статья поступила 11.08.2025; одобрена после рецензирования 19.08.2025; принята к публикации 25.08.2025.

The article was submitted 11.08.2025; approved after reviewing 19.08.2025; accepted for publication 25.08.2025.

Информация об авторах:

Ольга Сергеевна Туфанова — врач-клинический фармаколог, katieva@mail.ru, https://orcid.org/0000-0003-4891-4963, SPIN-код: 8704-9195;

Светлана Анатольевна Божкова — доктор медицинских наук, заведующая научным отделением, профессор кафедры, clinpharm-rniito@yandex.ru, https://orcid.org/0000-0002-2083-2424, SPIN-код: 3086-3694;

Алина Рашидовна Касимова — кандидат медицинских наук, врач-клинический фармаколог, доцент кафедры, kasi-alina@yandex.ru, https://orcid.org/0000-0001-6284-7133, SPIN-код: 3131-4385;

Екатерина Михайловна Гордина — кандидат медицинских наук, старший научный сотрудник, emgordina@win.rniito.ru, https://orcid.org/0000-0003-2326-7413, SPIN-код: 9647-8565;

Антон Николаевич Гвоздецкий — кандидат медицинских наук, ассистент кафедры, Gvozdetskiy_AN@hotmail.com, https://orcid.org/0000-0001-8045-1220, SPIN-код: 4430-6841;

Рашид Муртузалиевич Тихилов — доктор медицинских наук, профессор, член-корреспондент РАН, директор, rtikhilov@gmail.com, https://orcid.org/0000-0003-0733-2414, SPIN-код: 3602-4912.

Information about the authors:

Olga S. Tufanova — Clinical Pharmacologist, katieva@mail.ru, https://orcid.org/0000-0003-4891-4963, SPIN-code: 8704-9195;

Svetlana A. Bozhkova — Doctor of Medical Sciences, Head of the Scientific Department, Professor of Department, clinpharm-rniito@yandex.ru, https://orcid.org/0000-0002-2083-2424, SPIN-code: 3086-3694;

Alina R. Kasimova — Candidate of Medical Sciences, Clinical Pharmacologist, Associate Professor of the Department, kasi-alina@yandex.ru, https://orcid.org/0000-0001-6284-7133, SPIN-code: 3131-4385;

Ekaterina M. Gordina — Candidate of Medical Sciences, senior researcher,

emgordina@win.rniito.ru, https://orcid.org/0000-0003-2326-7413, SPIN-code: 9647-8565;

Anton N. Gvozdetsky — Candidate of Medical Sciences, Assistant Professor at the Department, Gvozdetskiy AN@hotmail.com, https://orcid.org/0000-0001-8045-1220, SPIN-code: 4430-6841;

Rashid M. Tikhilov — Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Director, rtikhilov@gmail.com, https://orcid.org/0000-0003-0733-2414, SPIN-code: 3602-4912.

Вклад авторов:

Все авторы сделали эквивалентный вклад в подготовку публикации. Все авторы прочли и одобрили финальную версию рукописи статьи. Все авторы согласны нести ответственность за все аспекты работы, чтобы обеспечить надлежащее рассмотрение и решение всех возможных вопросов, связанных с корректностью и надежностью любой части работы.

Научная статья

УДК 616.831-009.12-06:617.3-092-053.2:612.766:004 https://doi.org/10.18019/1028-4427-2025-31-5-602-613

Эволюция походки после многоуровневых ортопедических операций, выполненных для коррекции ортопедических осложнений у детей дошкольного и младшего школьного возраста со спастической диплегией

О.И. Гатамов $^{1\square}$, Т.И. Долганова 1 , А.Д. Томов 2 , Д.А. Попков 1,2

- ¹ Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова, Курган, Россия
- ² Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова, Москва, Россия

Автор, ответственный за переписку: Орхан Ильхам оглы Гатамов, or-gatamov@mail.ru

Аннотация

Введение. Оптимальным возрастом выполнения многоуровневых вмешательств у пациентов с ДЦП является период с 10 до 16 лет, но показания к устранению контрактур, торсионных костных деформаций, деформаций стоп у детей с ДЦП уровня GMFCS I–III могут возникать и в более раннем возрасте.

Цель работы — оценить изменения кинематических и кинетических параметров походки у детей со спастической диплегией, которым выполняли многоуровневые двусторонние хирургические вмешательства по поводу ортопедических осложнений ДЦП, возникших до начала пубертатного ускорения роста.

Материал и методы. В исследование включено 63 ребенка с ДЦП, I–III GMFCS. Группа 1 (n = 50): средний возраст — 7,1 года, ортопедические вмешательства ранее не проводили. Группа 2 (n = 13): средний возраст — 7,4 года, в возрасте до четырех лет выполняли изолированные вмешательства.

Результаты. В группе 1 через два года после операции зарегистрировано увеличение силы всех мышц разгибателей с достоверным отличием по сравнению с предоперационным уровнем; через четырепять лет — стабилизация достигнутых улучшений кинематики. В группе 2 через два года после операции наблюдали снижение значений суммарной мощности работы мышц нижних конечностей, через четыре года происходила декомпенсация двигательных возможностей, мощность работы мышц тазобедренного и голеностопного суставов не превышала исходных значений, а для коленного сустава снижение мощности работы носило постоянный характер.

Обсуждение. Положительный эффект от оперативного вмешательства в обеих группах схож и заключается улучшении синергетического взаимодействия мышц.

Заключение. Ортопедические многоуровневые операции, выполненные у детей по поводу ортопедических осложнений до препубертатного ускорения роста, приводят к развитию функциональных возможностей только у детей, которым не проводили ранние вмешательства удлинения ахиллова сухожилия или чрескожные фибромиотомии. Результат остается стабильным на протяжении четырех–пяти лет после операции. Изолированное удлинение ахилловых сухожилий или чрескожные фибротомии препятствуют развитию мышечного аппарата нижних конечностей в отдаленном периоде наблюдения.

Ключевые слова: церебральный паралич, ранние многоуровневые вмешательства, компьютерный анализ походки, отдаленные результаты, дети

Для цитирования: Гатамов О.И., Долганова Т.И., Томов А.Д., Попков Д.А. Эволюция походки после многоуровневых ортопедических операций, выполненных для коррекции ортопедических осложнений у детей дошкольного и младшего школьного возраста со спастической диплегией. *Гений ортопедии*. 2025;31(5):602-613. doi: 10.18019/1028-4427-2025-31-5-602-613.

-

[©] Гатамов О.И., Долганова Т.И., Томов А.Д., Попков Д.А., 2025

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-602-613

Evolution of gait in preschool and primary school children after multilevel orthopedic surgeries performed to correct orthopedic complications of spastic diplegia

O.I.Gatamov^{1⊠}, T.I. Dolganova¹, A.D. Tomov², D.A. Popkov^{1,2}

- ¹ Ilizarov National Medical Research Centre for Traumatology and Orthopedics, Kurgan, Russian Federation
- ² Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russian Federation

Corresponding author: Orkhan I. Gatamov, or-gatamov@mail.ru

Abstract

Introduction The optimal age for performing multilevel interventions in patients with cerebral palsy is the period from 10 to 16 years, but indications for eliminating contractures, torsional bone deformities, and foot deformities in children with cerebral palsy of GMFCS level I–III may also occur at an earlier age.

The **aim** of the work is to evaluate changes in the kinematic and kinetic parameters of gait in children with spastic diplegia who underwent multilevel bilateral surgical interventions for orthopedic complications of cerebral palsy that arose before the onset of pubertal growth acceleration.

Material and Methods 63 children with cerebral palsy, I–III GMFCS. Group 1 (n = 50): average age 7.1 years, no orthopedic interventions had been performed previously. Group 2 (n = 513): average age 7.4 years, isolated interventions were performed at the age of up to 4 years.

Results In group 1: after the operation for two years — an increase in the strength of all extensor muscles with a reliable difference compared to the preoperative level; after 4–5 years — stabilization of the achieved improvements in kinematics. In group 2: after the operation for two years — a decrease in the values of the total working power of the lower limb muscles; after 4 years — decompensation of motor capabilities occurred, the working power of the muscles of the hip and ankle joints did not exceed the initial values, and for the knee joint, the decrease in working power was permanent.

Discussion The positive effect of surgical intervention in both groups is similar and consists of improving the synergistic interaction of muscles.

Conclusion Orthopedic multilevel surgeries performed in children for orthopedic complications before prepubertal growth spurt are associated with functional development only in children who did not undergo early Achilles tendon lengthening or percutaneous fibromyotomies. The result remains stable for 4–5 years after surgery. Isolated Achilles tendon lengthening or percutaneous fibrotomies prevent lower limb muscular development in the long-term follow-up period.

Keywords: cerebral palsy, early-age multilevel surgery, instrumented gait analysis, long-term outcomes, children

For citation: Gatamov OI, Dolganova TI, Tomov AD, Popkov DA. Evolution of gait in preschool and primary school children after multilevel orthopedic surgeries performed to correct orthopedic complications of spastic diplegia. *Genij Ortopedii*. 2025;31(5):602-613. doi: 10.18019/1028-4427-2025-31-5-602-613.

[©] Gatamov O.I., Dolganova T.I., Tomov A.D., Popkov D.A., 2025

[©] Translator Tatyana A. Malkova, 2025

ВВЕДЕНИЕ

Детский церебральный паралич (ДЦП) представляет собой наиболее частую причину двигательных нарушений у детей (1,5–3 на 1 000 детского населения) [1, 2]. Консервативное лечение (физическая терапия, контроль спастичности, ортезирование) у детей с уровнем нарушения глобальных двигательных функций I-III по классификации GMFCS (англ.: Gross Motor Function Classification System) остается методом выбора до шестилетнего возраста, когда развитие мышечных ретракций (фиксированных контрактур), костных деформаций, подвывихов, как правило, еще не происходит [3, 4]. Констатировано и многократно доказано, что развитие вторичных ортопедических осложнений ведет как к снижению двигательной активности, так и к потере ранее приобретенных навыков и существенному ухудшению качества жизни, несмотря на стабильный характер энцефалопатии [5-10]. Для хирургической ортопедической коррекции контрактур, вывихов и костных деформаций методом выбора считаются одновременные двусторонние (или последовательные двусторонние с небольшим временным интервалом) многоуровневые ортопедические вмешательства, сопровождающиеся единым реабилитационным периодом [11-13]. Компьютерный 3D-анализ походки является универсальным инструментом оценки двигательных нарушений, измерения ортопедических деформаций и контрактур, являющихся одним из факторов ухудшения двигательной активности, количественного планирования элементов ортопедического вмешательства и результата лечения в последующие годы наблюдения за ребенком [7, 14].

Оптимальным возрастом выполнения многоуровневых вмешательств является период от 10 до 16 лет, особенно вторая половина пубертатного ускорения роста [15–17], когда риск рецидивов ортопедических проблем снижается [18]. Но показания к устранению контрактур, торсионных костных деформаций, деформаций стоп у детей с ДЦП I–III уровней GMFCS могут возникать и в более раннем возрасте [5, 6, 9, 10, 19] при неуспешной консервативной терапии [20, 21]. Отдельно необходимо указать на развитие ятрогенных ортопедических проблем при изолированном и/или неадекватном удлинении трицепса голени [22–26]. Чрескожные, так называемые малоинвазивные фибромиотомии, селективные мышечные удлинения, особенно выполненные без коррекции деформаций стоп [27, 28], неизбежно приводят в среднесрочном и особенно отдаленном периодах к проявлению мышечной слабости и развитию сгоисh gait паттерна походки [29–31]. При ослаблении подошвенного сгибания на фоне неустраненных деформаций стоп и контрактур вышележащих суставов может быть показана ортопедическая операция.

Цель работы — оценить изменения кинематических и кинетических параметров походки у детей со спастической диплегией, которым выполняли многоуровневые двусторонние хирургические вмешательства по поводу ортопедических осложнений ДЦП, возникших до начала пубертатного ускорения роста.

МАТЕРИАЛЫ И МЕТОДЫ

В данное ретроспективное исследование включено 63 пациента со спастической формой церебрального паралича, которым проводили двустороннее многоуровневое вмешательство с целью коррекции ортопедических осложнений основного заболевания.

Критерии включения: возраст до 10 лет, возможность проведения и выполнение компьютерного анализа походки в установленные сроки обследования (до операции, в интервалах 1–2 года, 2–3 года, 4–5 лет после операции), уровни поражения глобальных моторных функций — I, II, III GMFCS.

Критерии невключения: более тяжелые уровни нарушения глобальных моторных функций, неполноценное (по срокам) проведение инструментального анализа походки, возраст на момент выполнения многоуровневого вмешательства 10 и более лет, выполнение ортопедической операции на одной анатомической области.

После анализа 511 случаев для исследования отобраны 63 пациента, которые полностью удовлетворяли критериям включения.

Учитывая хирургический анамнез, пациенты разделены на две группы (табл. 1):

- группа 1 (n = 50) пациенты, которым ранее не проводили хирургические вмешательства на мышечном аппарате нижних конечностей;
- группа 2 (*n* = 13) пациенты, которым выполняли изолированные вмешательства на трицепсах голеней (удлинение ахиллова сухожилия, так называемые «малоинвазивные» фибромиотомии).

Непосредственно перед операцией и на этапах отдаленного послеоперационного периода пациентам проводили клинико-лучевое обследование и компьютерный анализ походки. Пациенты ходили босиком на семиметровой дорожке с привычной для них скоростью самостоятельно или придерживались за одну руку родителя.

Таблица 1

Таблица 2

Характе	ристики	групп
21apant c	priciriti	I P y I I I I

		Группа Количество пациентов		Пол				GMFCS					
	Группа		BOSDACT JIET	Ж		M		I		II		I]	I
				абс.	%	абс.	%	абс.	%	абс.	%	абс.	%
	1	50	7,1 ± 1,57	19	38	31	62	4	8	25	50	21	42
	2	13	7,4 ± 0,85	5	38	8	62	3	23	6	46	4	31

Кинематические данные регистрировали оптическими камерами Qualisys 7+ с технологией видеозахвата пассивных маркеров; синхронизированными с шестью динамометрическими платформами KISTLER (Швейцария). При установке маркеров использовали модель IOR. Анализ кинематики и кинетики проводили в программах QTM (Qualisys) и Visual3D (C-Motion) с автоматизированным расчетом значений [32], рассчитывался коэффициент функциональной асимметрия симметричных показателей кинетики нижних конечностей по формуле: $Kac = (D-S)/(D+S) \times 100 \%$, где D и S — соответственно значения для правой и левой нижней конечности.

Для статистической обработки данных применяли программу AtteStat 12.0.5. Гипотезу о нормальности распределения проверяли с помощью критерия Шапиро – Уилка. Учитывая количество наблюдений в группах и отсутствие подтверждения гипотезы нормальности распределения, для обработки результатов использована непараметрическая статистика. Количественные характеристики выборочных совокупностей представлены в таблице в виде медианы с уровнем распределения процентилей (Ме 25 % \div 75 %) и числа наблюдений (n). Статистическую значимость различий определяли с использованием непарного критерия Вилкоксона с принятием уровня значимости p \leqslant 0,05. Взаимосвязь между параметрами оценивали с помощью коэффициента корреляции Спирмена.

На проведение исследований получено разрешение комитета по этике НМИЦ ТО имени академика Г.А. Илизарова. Исследования проводили в соответствии с этическими стандартами Хельсинской декларации Всемирной медицинской ассоциации «Этические принципы проведения научных медицинских исследований с участием человека» с поправками 2000 г., «Правилами клинической практики в Российской Федерации», утвержденными Приказом Минздрава РФ от 19.06.2003 № 266. Родители участвовавших в исследовании детей присутствовали при его проведении, подтверждали информированное согласие на публикацию результатов исследований без идентификации личности.

РЕЗУЛЬТАТЫ

Принципиальным различием между группами служило лишь выполнение попытки восстановления активной подошвенной флексии и улучшения условий функционирования разгибательного аппарата коленного сустава (табл. 2).

Распределение элементов операций в группах пациентов

Элемент двусторонней операции		1 (n = 50)	Группа 2	2 (n = 13)
элемент двусторонней операции	абс.	%	абс.	%
Апоневротомия поясничной мышцы	7	14	2	15
Удлинение длинной приводящей мышцы	41	82	13	100
Удлинение тонкой (изящной) мышцы	35	70	13	100
Удлинение медиальных сгибателей коленного сустава	42	84	4	31
Низведение надколенника	_		3	23
Апоневротомия икроножной мышцы (Strayer) в сочетании или без апоневротомии камбаловидной мышцы	50	100	2	15
Чрескожная ахиллопластика по Hoke	9	18	2	15
Подтаранный артроэрез по Grice	32	64	11	85
Удлинение латеральной колонны стопы по Evans	8	16	2	15
Тенодез задней большеберцовой мышцы	46	92	13	100
Коррекция торсионной деформации бедра	10	20	4	31
Деротационно-варизирующая остеотомия	3	6	2	15
Укорачивание ахиллова сухожилия	_		3	23

Обобщающие пространственно-временные характеристики и интегральный индекс походки представлены в табл. 3, данные которой позволяют определить тенденцию улучшения глобальной оценки кинематических параметров походки в обеих группах после оперативного лечения на протяжении

периода не менее трех лет. В первые один-два года отмечается снижение скорости ходьбы и циклов шага в минуту. После очевидного периода адаптации движений к новым анатомическим параметрам можно отметить улучшение количественных характеристик походки в обеих группах в период дватри года после операции: увеличение скорости ходьбы и длины периода шага, снижение длительности двойного двуопорного периода. Однако в группе 2 (проводили удлинение трицепса в раннем периоде) происходит декомпенсация двигательных возможностей в период от четырех лет после операции, что проявляется достоверным увеличением GPS (англ.: gait profile score), снижением скорости ходьбы и увеличением длительности двойного двуопорного периода шага в сравнении с группой 1. Кроме того, в группе 2 значения ИМТ значимо увеличиваются, превосходя возрастную норму.

Интересно, что отмечается положительная значимая корреляция между показателями ИМТ и GPS (r = 0.769) в период от четырех лет после операции в группе 2 (табл. 4).

 Таблица 3

 Пространственно-временные характеристика походки, индекс массы тела

Параметр		По оторочии	После операции				
Параметр	Группа	До операции	1–2 года	2–3 года	4-5 лет		
Изупака массы попа	1	15,9 (13,9÷17,3)	16,0 (14,4÷17,5)	16,8 (15,8÷18,4)	16,7 (15,3÷17,6)		
Индекс массы тела	2	16,7 (13,5÷21,5)	16,3 (13,7÷17,3)	19,1 (16,2÷23,8)	21,5 (18,1÷24,3)*1		
Marroya novonya (CDC) °	1	17,0 (12,9÷21,2)	14,4 (11,6÷16,1)	13,7 (11,3÷14,6)	11,9 (10,4÷12,6)		
Индекс походки (GPS), °	2	17,6 (14,2÷20,5)	15,6 (12,9÷17,8)	13,2 (11,5÷14,3)	14,1 (13,4÷15,2)*		
Chopochi M/con	1	0,56 (0,39-0,78)	0,53 (0,34-0,68)	0,65 (0,49-0,87)	0,83 (0,68-1,01)1		
Скорость, м/сек	2	0,71 (0,58÷0,86)	0,61 (0,36÷0,83)	0,71 (0,46÷0,95)	0,59 (0,52÷0,66)*		
Пимир пормоно моно м	1	0,64 (0,51÷0,79)	0,64 (0,52÷0,71)	0,83 (0,72÷0,95)	0,94 (0,89÷1,07)		
Длина периода шага, м	2	0,78 (0,68÷0,88)	0,7 (0,56÷0,78)	0,83 (0,73÷0,96)	0,84 (0,77÷0,98)		
IIIventario viono M	1	0,14 (0,11÷0,16)	0,15 (0,12÷0,19)	0,15 (0,13÷0,19)	0,16 (0,13÷0,2)		
Ширина шага, м	2	0,14 (0,11÷0,15)	0,15 (0,1÷0,18)	0,15 (0,12÷0,17)	0,16 (0,13÷0,18)		
Harrion more/war	1	51,3 (42,9÷61,6)	47,7 (37,1÷56,8)	46,3 (42,0÷55,9)	51,0 (45,7÷55,4)		
Циклов шага/мин	2	60,6 (52,9÷63,8)	50,7 (42,9÷55,4)	51,1 (38,8÷65,9)	42,2 (39,0÷43,9)		
Длительность периода опоры	1	67,0 (62,7÷71,2)	69,9 (65,2÷74,2)	66,5 (62,2÷70,3)	67 (62,5÷71,1)		
от цикла шага, %	2	64 (60,8÷67,7)	69,2 (63,4÷74,8)	67,5 (63,4÷68,9)	67, 0 (65,7÷70,2)		
Длительность периода переноса	1	33,0 (29,4÷37,3)	29,4 (25,9÷34,9)	33,5 (29,8÷37,9)	33,0 (28,9÷37,6)		
от цикла шага, %	2	36,9 (32,6÷39,8)	30,9 (25,2÷36,6)	32,5 (31,1÷36,7)	30,9 (29,8÷34,2)		
Длительность двойного двуопорного	1	33,5 (25,1÷38,5)	39,2 (28,0÷45,3)	31,6 (22,5÷39,6)	30,4 (25,2÷30,5)		
периода от цикла шага, %	2	28,3 (21,7÷37,8)	39,3 (26,6÷52,6)	36,1 (26,5÷39,5)	40,0 (31,9÷40,8)*		

Примечание: * — достоверные отличия по критерию между группами 1 и 2 на данном сроке сравнения после операции; 1 — достоверные отличия внутри данной группы с предыдущим сроком исследования.

Таблица 4 Линамика отдельных кинематических параметров

динамика отдельных кинематических параметров								
Пороможр	Голина	По опорожини	После операции					
Параметр	Группа	До операции	1–2 года	2-3 года	4-5 лет			
Позиция стопы при первичном	1	-9,8 (-20,0÷0,6)	$0,78 (-3,5\div5,0)^{1}$	2,5 (-1,6÷6,8)	3,0 (1,3÷4,8)			
контакте (Г0), °	2	3,0 (-4,0÷10,3)*	$0,9(-3,8\div7,1)$	$1,49 (-0,2 \div 3,1)$	$-0,1$ $(-2,8\div2,2)$			
Максимальная тыльная флексия	1	-0,21 (-1,1÷0,0)	12,0 (7,7÷16,1) ¹	17,4 (10,9÷21,3)	12,8 (10,3÷17,2)			
в опорную фазу (Г2), °	2	17,4 (12,4÷24,1)*	11,9 (7,2÷16,8)	15,8 (8,2÷23,9)	13,1 (3,4÷24,3)			
Позиция стопы в фазу переноса	1	-4,5 (-13,3÷-6,9)	9,8 (5,6÷15,5) ¹	10,5 (4,8÷15,6)	10,0 (9,8÷13,2)			
(Γ4), °	2	11,5 (5,2÷17,8)*	9,8 (5,7÷14,4)	14,2 (7,4÷19,7)	11,2 (6,5÷14,2)			
Variabone (nocon emotive) em	1	4,6 (3,2÷5,5)	$5,1(3,9\div5,7)$	5,7 (4,5÷5,6)	6,1 (5,5÷6,9)			
Клиренс (носок стопы), см	2	6,3 (4,8÷5,9)	4,8 (3,6÷6,0)	6,2 (4,3÷8,1)	6,2 (4,8÷8,1)			
Позиция колена при первичном	1	27,0 (19,5÷35,5)	17,5 (10,9÷23,8)	20,9 (15,3÷28,9)	17,8 (11,9÷20,3)			
контакте (К0),°	2	36,5 (20,8÷48,5)	17,9 (4,4÷28,8)	17,5 (1,3÷31,5)	18,9 (6,7÷32,8)			
Амплитуда разгибания	1	26,6 (14,7÷28,8)	18,4 (12,2÷24,8)	18,1 (10,3÷22,1)	15 (11,6÷18,9)			
в опорную фазу (К1–К2), °	2	18,3 (16,3÷24,7)	16,2 (7,5÷28,9)	14,5 (5,8÷21,1)	20,2 (17,0÷24,1)			
Максимальное разгибание	1	8,5 (0,9÷19,5)	0,52 (-9,4÷9,6)	5,3 (-3,9÷12,7)	3,2 (2,6÷8,0)			
коленного сустава в опорную фазу (K2), °	2	16,2 (8,9÷36,6)	2,1 (-5,6÷9,2)	6,6 (-5,5÷14,0)	5,2 (-6,6÷13,3)			
Максимальное сгибание коленного	1	61,5 (54,5÷69,7)	52,7 (44,2÷62,6)	51,2 (44,1÷56,1)	52,6 (47,8÷61,5)			
сустава в фазу переноса (K3), °	2	71,5 (59,6÷86,1)	50,8 (44,1÷60,3)	55,9 (47,5÷61,5)	57,9 (46,5÷72,1)			

Таблица 4 (продолжение)

Динамика отдельных кинематических параметров

Парамотр	Гоултто	По опорожии	После операции			
Параметр	Группа	До операции	1-2 года	2-3 года	4-5 лет	
Позиция тазобедренного сустава	1	35,4 (28,3÷42,8)	36,6 (28,0÷44,9)	38,1 (33,5÷41,2)	36,1 (31,2÷40,1)	
при первичном контакте (Ť0), °	2	42,4 (38,7÷48,9)	35,2 (29,8÷37,2)	38,0 (23,2÷49,3)	34,9 (28,4÷43,7)	
Максимальное разгибание бедра	1	1,8 (-6,5÷6,8)	1,3 (-7,8÷10,3)	$-2,0 (-5,4\div0,08)$	$-3,1 (-7,5 \div -0,85)$	
(T2), °	2	9,1 (3,9÷11,5)	0,13 (-4,2÷7,9)	3,6 (-8,7÷12,2)	9,8 (5,2÷16,1)*	
Амплитуда движений таза в	1	9,2 (7,4÷11)	9,1 (7,05÷11,2)	10,1 (7,3÷11,2)	12,8 (8,6÷13,8)	
сагиттальной плоскости, °	2	10,6 (10,1÷11,3)	11,2 (10,1÷12,9)	9,5 (7,9÷10,8)	9,3 (7,1÷10,1)	
A MATHEMATICA PORTOLINA RODO O	1	24,3 (19,7÷29)	25,0 (18,9÷32,4)	27,4 (18,8÷33,7)	29,5 (19,1÷38,6)	
Амплитуда ротации таза, °	2	33,2 (18,9÷49,3)	28,2 (23,5÷35,5)	27,4 (21,2÷32,5)	27,4 (24,7÷29,3)	
ANTHUMEN POMOVICE GOTOD O	1	19,5 (14,9÷22,7)	20,9 (15,6÷26,0)	22,5 (16,5÷29,2)	22,5 (17,7÷24,4)	
Амплитуда ротации бедер, °	2	25,7 (16,5÷32,5)	28,0 (24,8÷32,5)	18,8 (14,5÷23,2)	21,4 (14,2÷24,7)	
AMERICAN EDICAMENTAL POPULA O	1	54,0 (45,7÷64,0)	53,4 (47,9÷59,1)	49,9 (37,5÷52,4)	50,5 (43,3÷59,5)	
Амплитуда движений колена, °	2	53,8 (28,8÷70,2)	50,6 (37,6÷59,3)	51,1 (44,9÷59,0)	53,0 (45,3÷56,0)	
Амплитуда движений стопы в	1	25,9 (16,7÷34,2)	23,0 (19,1÷27,7)	27,4 (22,6÷31,8)	25,2 (19,5÷29,4)	
сагиттальной плоскости, °	2	30,5 (24,3÷37,4)	26,5 (22,4÷30,9)	25,4 (18,2÷31,3)	25,4 (18,1÷25,7)	

Примечание: * — достоверные отличия по критерию между группами 1 и 2 на данном сроке сравнения после операции;
1 — достоверные отличия внутри данной группы с предыдущим сроком исследования.

Принципиальные различия по кинематическим параметрам между группами до многоуровневых операций заключались в амплитуде движений и установке стопы: очевидно, что в группе 1 пассивная тыльная флексия вследствие контрактуры трицепса была значимо ограничена. При этом увеличение амплитуды разгибания коленного сустава в опорную фазу в группе 1 закономерно отражает паттерн походки jump knee gait, характерный для данного возраста. После операций достоверных различий между группами не обнаружено, хотя к концу периода наблюдения в группе 2 отмечена тенденция увеличения амплитуды сгибания коленного сустава в опорную фазу, которая сопровождалась полноценным разгибанием к середине опорной фазы цикла шага. Эта тенденция в сочетании с явным, достоверно отличающимся от группы 1, ограничением максимального разгибания бедра, которое на данном этапе носит адаптационный характер, отражает начало развития паттерна crouch gait. Данное наблюдение логично сочетается со снижением значений Gait Profile Score. Отметим, что не обнаружено отличий между группами в конце периода наблюдения по параметру максимального наклона таза в сагиттальной плоскости: 14,8° (10,2÷18,8) в группе 1 и 17,5° (13,8÷21,4) в группе 2.

Динамика отдельных кинетических параметров

Таблица 5

Парамотр	Группа	По опорации	После операции			
Параметр	Группа	До операции	1–2 года	2–3 года	4-5 лет	
Сила разгибания тазобедренного	1	0,62 (0,45÷0,72)	0,64 (0,48÷0,74)	0,72 (0,59÷0,84)	0,89 (0,77÷1,0) ¹	
сустава, Nm/kg	2	1,08 (0,79÷1,43)*	0,89 (0,63÷0,94)	0,89 (0,73÷1,08)	0,87 (0,76÷0,96)	
Сила разгибания коленного	1	0,4 (0,25÷0,53)	0,33 (0,17÷0,43)	0,6 (0,36÷0,82)	$0,62 (0,54 \div 0,64)^{1}$	
сустава, Nm/kg	2	0,53 (0,28÷0,75)	0,39 (0,12÷0,59)	0,51 (0,17÷0,64)	0,41 (0,16÷0,62)	
Сила подошвенного сгибания,	1	0,66 (0,5÷0,86)	0,65 (0,39÷0,79)	0,79 (0,66÷0,95)	1,12 (0,94÷1,19)1	
Nm/kg	2	0,62 (0,56÷0,81)	0,68 (0,49÷0,89)	0,78 (0,61÷0,97)	0,95 (0,81÷1,09)	
Суммарная мощность,	1	1,51 (0,96÷1,75)	1,43 (1,0÷1,67)	1,61 (1,14÷1,63)	1,75 (1,29÷2,03)	
генерируемая на уровне тазобедренного сустава, W/kg	2	2,93 (1,82÷4,11)*	0,98 (0,3÷1,31)	1,95 (1,39÷2,18)	2,03 (1,39÷2,37)	
Эффективность мышечных	1	70,6 (63,4÷78,6)	72,2 (64,0÷80,2)	73,1 (64,2÷76,1)	70,3 (64,6÷73,7)	
сокращений на уровне тазобедренного сустава, %	2	68,8 (62,8÷72,4)	70,2 (64,5÷78,8)	69,1 (63,2÷75,7)	66,4 (56,3÷74,6)	
Суммарная мощность,	1	1,7 (0,96÷2,18)	1,56 (0,99÷2,14)	2,1 (1,11÷3,04)	2,15 (1,43÷2,46)	
генерируемая на уровне коленного сустава, W/kg	2	2,5 (1,46÷3,13)	2,1 (0,97÷2,57)	1,89 (1,29÷2,34)	1,69 (1,26÷2,1)	
Эффективность мышечных	1	39,0 (26,5÷52,5)	39,1 (31,2÷46,1)	40,3 (31,9÷50,0)	41,9 (35,8÷48,9)	
сокращений на уровне коленного сустава, %	2	38,3 (32,3÷37,0)	39,0 (31,1÷47,1)	33,2 (23,6÷41,2)	30,7 (21,9÷35,3)*	
Суммарная мощность,	1	1,46 (0,66÷2,01)	1,17 (0,58÷1,39)	1,66 (0,98÷2,05)	2,39 (1,51÷2,75)	
генерируемая на уровне голеностопного сустава, W/kg	2	1,64 (1,05÷2,13)	1,28 (0,71÷1,83)	1,39 (0,99÷1,63)	1,5 (0,93÷1,66)*	

Таблица 5 (продолжение)

TT				
Динамика	отдельных	кинетиче	ских п	араметров

Пополкото	Голина	По опорожии	После операции				
Параметр	Группа	До операции	1–2 года	2-3 года	4-5 лет		
Эффективность мышечных	1	53,7 (44,1÷63,7)	48,4 (35,0÷61,5)	56,9 (48,9÷64,9)	61,1 (52,2÷68,0)		
сокращений на уровне голеностопного сустава, %	2	52,2 (47,4÷55,2)	48,5 (41,2÷57,7)	50,9 (42,4÷59,8)	53,9 (49,2÷63,2)		
Суммарная мощность работы	1	4,64 (2,81÷6,42)	4,15 (2,77÷5,28)	5,39 (3,59÷7,36)	6,26 (4,78÷7,14)		
Суммарная мощность работы мышц нижней конечности, W/kg	2	6,08 (4,98÷7,02)	4,36 (3,11÷6,31)	5,22 (4,1÷5,91)	5,23 (3,93÷7,1)		
Эффективность суммарной	1	55,1 (51,1÷61,5)	54,4 (50,5÷58,3)	53,5 (50,3÷59,1)	58,9 (57,7÷60,2)		
мощности работы мышц нижней конечности, %	2	54,9 (47,2÷60,7)	54,0 (49,7÷58,2)	52,9 (46,3÷58,7)	51,6 (46,3÷57,2)		
Функциональная асимметрия	1	19,7 (12,9÷25,7)	14,6 (5,2÷22,1)	21,1 (10,9÷27,0)	20,4 (11,6÷28,9)		
суммарной мощности работы мышц нижней конечности, %	2	18,3 (11,6÷24,9)	19,8 (8,6÷24,2)	12,2 (6,85÷17,4)	5,8 (4,67÷7,85)*		
Функциональная асимметрия	1	6,8 (2,2÷9,7)	6,6 (4,5÷8,7)	8,6 (6,3÷10,7)	4,0 (2,3÷3,9)		
суммарной эффективности работы мышц нижней конечности, %	2	10,9 (4,6÷15,8)	7,3 (3,4÷4,1)	7,95 (5,0÷7,7)	4,4 (2,5÷6,28)		

Примечание: * — достоверные отличия по критерию между группами 1 и 2 на данном сроке сравнения после операции; 1 — достоверные отличия внутри данной группы с предоперационным сроком исследования.

Можно выделить несколько существенных констатаций. Значимое превышение показателей силовых характеристик движений на уровне тазобедренного сустава в группе 2 до многоуровневых вмешательств отражают доминирование именно этих локомоций в генерации ходьбы, в том время как роль подошвенной флексии остается сниженной. В группе 1 в период от двух лет после операции отмечен рост силы сокращений выпрямления на всех уровнях биомеханической цепи нижней конечностей, с появлением достоверных отличий по сравнению с предоперационным уровнем в период после четырех лет. В группе 2 на уровне разгибания тазобедренного и коленного суставов нормализованная сила мышечных сокращений не достигала предоперационного уровня ни на одном сроке лечения. Однако на уровне голеностопного сустава в обеих группах наблюдали рост значений момента подошвенной флексии.

Более демонстративные отличия касаются суммарной генерируемой мощности сокращений. И если в период один–два года после операции можно констатировать снижение значений данного показателя в обеих группах по всем трем суставам, то в отдаленном периоде отмечен рост, превышающий исходные значения, только в группе 1. В группе 2 рост суммарной мощности не превышает исходных значений для тазобедренного и голеностопного суставов, а для коленного сустава снижение мощности разгибания носит постоянный характер на всем периоде наблюдения, становясь достоверно ниже значений группы 1 в период более четырех лет.

Отметим отсутствие снижение эффективности мощности сокращений в обеих группах в период наблюдения и уменьшение значений асимметрии эффективности мощности по сравнению с асимметрией показателей суммарной мощности в каждый период исследования для обеих групп, что отражает синергетическое взаимодействие мышц (соблюдение правила «оптимума походки») в условиях сохранения компенсации двигательных нарушений [34].

Результаты изучения динамики суммарной мощности движений на уровне коленных и голеностопных суставов представлены на рис. 1 и 2.

Рис. 1. Средние значения суммарной мощности движений на уровне коленного сустава (W/kg) в процессе наблюдения

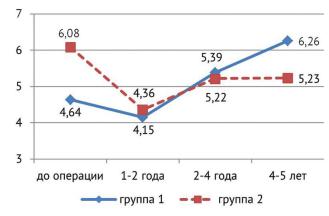


Рис. 2. Средние значения суммарной мощности движений на уровне голеностопного сустава (W/kg) в процессе наблюдения

Наконец, отдельно отметим высокую позитивную корреляцию в группе 1 между показателями «амплитуда разгибания колена в опорную фазу» и «сила разгибания коленного сустава» в периоды два-три года и четыре-пять лет: коэффициент Спирмена — 0,600 и 0,691 соответственно. Для пары «амплитуда разгибания колена в опорную фазу» и «эффективность генерации мощности разгибания коленного сустава», — r = 0,501 и r = 0,483 соответственно. Это соответствует достаточным функциональным возможностям разгибательной функции конечности. В группе 2 коэффициенты корреляции данных пар показателей в период два-три года после операции превращаются с положительных значений (r = 0,115 и r = 0,430) в отрицательные (r = -0,592 и r = -0,370), что отражает снижение усилий и их эффективности для разгибания коленного сустава в опорную фазу при увеличении амплитуды сгибания коленного сустава. Именно в этот момент увеличение сгибания в тазобедренном суставе становится компенсаторным механизмом при начале декомпенсации взаимосвязанной парной функции «разгибание колена» и «подошвенная флексия».

Среди дополнительных операций, выполненных на протяжении периода наблюдения, отметим девять (18%) случаев в группе 1, где производили в различных сочетаниях следующие элементы:

- повторные удлинения трицепса голени (n = 2);
- тенодезы задней большеберцовой мышцы (n = 3);
- реконструкция стопы по Evans (n = 2);
- удлинения приводящих мышцы (n = 4);
- низведение надколенников (n = 1);
- коррекция торсионных деформаций бедер (n = 3).

В группе 2 у четырех пациентов выполняли следующие элементы операций:

- таранно-ладьевидные артродезы (n = 3);
- тенодезы задних большеберцовых мышц (n = 3);
- коррекция торсионных деформаций бедер (n = 1).

В большинстве случаев выше упомянутые дополнительные вмешательства сочетались с плановым удалением материалов остеосинтеза.

ОБСУЖДЕНИЕ

Многоуровневые ортопедические двусторонние вмешательства у детей со спастической диплегией, способных к самостоятельной ходьбе (со вспомогательными средствами или без них), обоснованы системным характером поражения, близкими по времени возникновения истинными ортопедическими осложнениями (контрактурами, костными деформациями, вывихами/подвывихи) и единым реабилитационным периодом [17, 33–35]. G. Baird et al. показали высокую зависимость между потерей достигнутых характеристик походки и развитием ортопедических деформаций [5].

H.К. Graham et al. [6] выделяют два периода, совпадающих по возрасту (4–12 лет), когда ортопедическая хирургия становится правомерной: период контрактур и период костных деформаций. В эти периоды хирургия носит реконструктивный характер, возможно восстановление анатомических параметров опорно—двигательного аппарата без выполнения элементов паллиативного вмешательства (артродезов).

Отдельно обратим внимание, что до возникновения ортопедических осложнений усилия в лечении пациентов с ДЦП направлены на развитие собственных двигательных возможностей путем комбинированного применения физической терапии [3], контроля спастичности, включая ботулинотерапию и селективную дорсальную ризотомию [36, 37], консервативных методов предотвращения контрактур [38]. Необоснованное преждевременное ортопедическое вмешательство на неретрагированных мышцах, даже увеличивая пассивную амплитуду движений в суставах, ведет к их чрезмерному ослаблению, что проявляется ранней функциональной декомпенсацией и развитием ятрогенного crouch gait. Особенностью ятрогенного crouch gait является его раннее в возрастном аспекте возникновение, даже при отсутствии торсионных деформаций [24, 31].

Многоуровневые вмешательства обычно для достижения стабильного результата операции проводят в возрасте 11–15 лет (после пубертатного ускорения роста) [8, 17, 39, 40]. Однако авторы отмечают, что у детей старше 12 лет часто уже невозможно достичь полноценного анатомического восстановления структур и взаимоотношений между сегментами конечностей, пропорциями мышц, и нередко единственным решением остается паллиативная ортопедическая хирургия при crouch gait [6]. В настоящее время существуют противоречивые рекомендации относительно оптимального возраста пациентов для выполнения реконструктивных ортопедических вмешательств [3, 41, 42]. М. Svehlík et al. рассматривают пубертатное ускорение роста нижних конечностей как фактор декомпенсации двигательных возможностей и развития паттерна crouch gait [18].

Выполнение ортопедических операций в раннем возрасте до препубертатного ускорения роста у детей с ДЦП I–III уровней GMFCS находит свои показания при раннем развитии ортопедических осложнений ДЦП (контрактуры голеностопного сустава, коленного сустава, деформации стоп, торсионные деформации), негативно влияющих на проведение реабилитационных мероприятий, ортезирования, снижающих двигательные возможности ребенка. Средний возраст выполнения ранних вмешательств в различных сериях был: шесть лет [40], 6,4 [43], 8,6 [6], 9,7 [44]. Именно в период от четырех до 12 лет происходит постепенное уменьшение объема движений в суставах и возрастает роль ретракции мышц по сравнению со спастичностью, уровень которой постепенно снижается [6]. G. Hägglund и Р. Wagner выявили, что 47 % детей в возрасте четырех лет имели II–IV уровень спастичности икроножной мышцы по Modified Ashworth Scale [45]. Однако только 23 % детей в возрасте 12 лет имели прежний уровень спастичности.

В нашем исследовании показания к многоуровневым вмешательствам обусловлены как ранним развитием истинных ортопедических осложнений ДЦП, так и негативным влиянием изолированных удлинений ахилловых сухожилий или так называемых «малоинвазивных» ранних вмешательств, обозначаемых как фибромиотомии, негативный эффект которых объясняется значимым ослаблением силы подошвенных сгибателей стопы при увеличении амплитуды пассивной тыльной флексии [24, 31].

Положительное влияние многоуровневых вмешательств на кинематические и кинетические параметры походки описано многими авторами. Ключевыми эффектами в ближайшем и среднесрочном послеоперационных периодах являются увеличения длины шага, скорости ходьбы и разгибания коленного сустава в опорную фазу, а также уменьшение наклона таза, нормализация и/или улучшение кинематики стопы в каждом моменте цикла шага. Е. Rutz et al. отмечают изменение GPS с 20,7° до 11,1° (на 47%) в сторону нормализации походки в период от одного до трех лет после операции [17]. Т. Dreher et al. констатируют сохранение в отдаленном периоде у 77% пациентов (177 пациентов из 231) значимо улучшенного интегрального показателя GPS и одновременно снижение значений GPS в ближайший год после многоуровневых вмешательств [7].

Многие исследователи сходятся во мнении, что период сохранения положительного эффекта многоуровневых вмешательств достаточно продолжителен. Е.М. Godwin et al. [40], Р. Thomason et al. [44] и Т. Тегјеsen [8] описывают сохранение положительного эффекта на параметры походки и в целом на функциональный результат у детей II–III уровней GMFCS через пять лет после двустороннего вмешательства. В мультицентровом ретроспективном исследовании Т. Dreher et al. показали сохранение достигнутых улучшенных кинематических параметров через девять лет после многоуровневых вмешательств, когда возраст пациентов при проведении последнего инструментального исследования походки был 19 лет 8 мес. [7].

Наши результаты сходны с результатами выше представленных исследований. Ортопедические хирургические вмешательства позволили в обеих группах улучшить значения амплитуд движений во всех плоскостях на протяжении всего периода наблюдения. Важно отметить, что временное ухудшение кинематических параметров после операции в период одного—двух лет сопровождалось в последующем прогрессивным улучшением в сторону нормализации. Различия между группами выявлены через четыре—пять лет после операции, когда в группе 2 ранее компрометированная подошвенная флексия проявляется в значимом увеличении GPS, сочетающимся со снижением скорости походки и увеличением ИМТ. В нашем исследовании мы лишь заметили корреляцию между данными параметрами без установления причинно—следственных связей: затруднение движений ведет к снижению скорости ходьбы и увеличению массы тела или наоборот. Отметим и значимое ограничение максимального разгибания бедра в группе 2, интерпретация этого наблюдения представлена в части обсуждения кинетических параметров.

Авторы публикаций отмечают необходимость выполнения отдельных дополнительных операций (нередко в сочетании с удалением материала остеосинтеза) для сохранения результата первичного вмешательства: Т. Dreher et al [7] — в 39 % случаев, Т. Tejersen et al. [8] — в 48,3 %, Е. Rutz et al. — в 64,3 % [17]. При этом не выявлено статистически значимой связи между частотой дополнительных вмешательств и параметрами пола, уровнем GMFCS, предыдущими оперативными вмешательствами, возрастом выполнения операции. В нашей серии частота выполнения незапланированных операций, направленных на сохранения результатов первичного вмешательства, сопоставима с данными литературы.

Стратегия комплексного лечения пациентов с ДЦП построена как на развитии двигательных навыков, функций, улучшения параметров походки, так и на предотвращении вторичных ортопедических осложнений, включая ходьбу с согнутыми коленными суставами (flexed–knee gait), что является предвестником паттерна crouch knee gait, при котором реконструктивное лечение невозможно [3, 6, 10]. Более того, именно развитие или неразвитие данного паттерна считается критерием эффективности проводимого лечения [7, 8].

Поэтому мы и рассматриваем результаты именно с точки зрения выявления ранних признаков декомпенсации разгибательной функции в отдаленном периоде после оперативного лечения, вынужденно проведенного в раннем возрасте у детей с ДЦП І–ІІІ уровней GMFCS. Важно подчеркнуть принципиальное положение о том, что улучшение двигательных возможностей и параметров походки не влияет на уровень GMFCS, обусловленный статической энцефалопатией [46].

Согласимся с мнением W. Hua et al. о недостатке исследований, столь же полно отражающих динамику кинетических параметров походки после оперативного вмешательства, как и динамику кинематических данных [47], при том, что эффективность энергетических расходов для генерации движений у детей с ДЦП ниже на 28 %, чем у здоровых сверстников. Исследование S. Van Rossom et al. подтверждает, что многоуровневые вмешательства улучшают кинематические параметры, нормализуют моменты силы на уровне вовлеченных суставов и улучшают параметры генерируемой мощности движений [48]. Учитывая естественную эволюцию двигательных нарушений в направлении паттерна crouch gait [6, 9, 10], сопровождающегося крайней неэффективностью энергообеспечения походки, при выполнении ортопедических вмешательств и проведении последующего реабилитационного лечения необходимо выбирать методы, препятствующие такому развитию двигательных нарушений. Очевидным предиктором данной неблагоприятной эволюции, как очевидно доказали G. Pilloni et al, является хирургическое ослабление подошвенных сгибателей, при этом первым признаком является увеличение минимального сгибания коленного сустава в опорную фазу [24].

Наши результаты подтверждают положение об улучшении кинетических параметров походки после многоуровневых вмешательств у пациентов, которым ранее не проводили оперативные вмешательства: увеличиваются нормализованные показатели моментов разгибания тазобедренных, коленных, голеностопных суставов, что сопровождается увеличением суммарной мощности, генерируемой на уровне данных суставов. В итоге в отдаленном периоде суммарная мощность превышает исходный уровень, не теряя своей эффективности. В то же время у пациентов после ранних удлинений трицепса голени мы отмечали прогрессивное снижение силы разгибательных движений на уровне коленного и тазобедренного суставов, даже при прогрессирующем увеличении силы подошвенной флексии. В результате суммарная генерируемая мощность на уровне коленного и голеностопного суставов в группе 1 достоверно выше, чем в группе 2. Как и для значений GPS в период наблюдения один-два года после операции у пациентов обеих групп происходит снижение кинематических параметров. Важным отличием является и то, что если в группе 1 через четыре-пять лет после операции суммарная мощность выше предоперационной, то в группе 2 она так и не достигает предоперационных значений. Отметим и предиктор развития недостаточности разгибательного аппарата (дефицит разгибания бедра в сочетании избыточным наклоном таза в сагиттальной плоскости), выявленный в нашем исследовании и интерпретируемый как компенсаторный механизм смещения центра масс кпереди от оси движений коленного сустава. Тем не менее, положительный эффект от оперативного вмешательства в обеих группах схож и заключается в уменьшении асимметрии суммарной эффективности относительно асимметрии суммарной мощности. Однако этого недостаточно для сохранения стабильности результатов лечения при предрасположенности пациентов к развитию ятрогенного паттерна crouch gait (группа 2).

Ограничения нашего исследования заключаются в ретроспективном характере анализа и сравнительно небольшом количеством пациентов в группе 2. Для получения исчерпывающего заключения об эффекте многоуровневых вмешательств, выполненных у детей в возрасте до препубертатного ускорения роста, необходимо проследить динамику кинематических и кинетических данных до завершения естественного роста.

ЗАКЛЮЧЕНИЕ

Ортопедические многоуровневые операции, выполненные у детей по поводу ортопедических осложнений в возрасте до препубертатного ускорения роста, являются эффективными с точки зрения улучшения кинематических параметров, сопровождающихся развитием функциональных возможностей и увеличением силовых характеристик движений только у детей, которым ранние вмешательства удлинения ахиллова сухожилия или чрескожные фибромиотомии не проводили. Результат остается стабильным на протяжении четырех—пяти лет после операции.

Изолированное удлинение ахилловых сухожилий, или чрескожные фибротомии, выполненные в раннем возрасте, препятствуют улучшению и развитию мышечного аппарата нижних конечностей, увеличению моментов сил и мощности сокращений мышц в отдаленном периоде наблюдения, даже если многоуровневыми вмешательствами устранены костные деформации и контрактуры коленного и тазобедренного суставов. В группе фибротомий и ранних изолированных удлинений ахилловых сухожилий через четыре—пять лет после многоуровневых операций ухудшаются показатели GPS, скорости походки и увеличивается ИМТ.

Ограничение разгибания бедра с увеличенным наклоном таза в сагиттальной плоскости в опорную фазу является компенсаторным механизмом дефицита силы разгибания коленного сустава и может служить предиктором развития паттерна crouch gait.

Конфликт интересов не заявлен.

Источник финансирования не заявлен.

Этическая экспертиза. На проведение исследований получено разрешение комитета по этике НМИЦ ТО имени академика Г.А. Илизарова.

Информированное согласие. Родители участвовавших в исследовании детей присутствовали при его проведении, подтверждали информированное согласие на публикацию результатов исследований без идентификации личности.

СПИСОК ИСТОЧНИКОВ

- Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14.
- 2. Томов А.Д., Бабайцев А.В., Кадырова М.А. и др. Паттерны роста у детей с церебральным параличом и спектр проводимого лечения: кросс-секционное исследование данных пяти реабилитационных центров. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2025;32(1):35-43. doi: 10.17816/vto626900.
- 3. Novak I, Morgan C, Fahey M, et all. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi: 10.1007/s11910-020-1022-z.
- 4. Hägglund G, Andersson S, Düppe H, et all. Prevention of severe contractures might replace multilevel surgery in cerebral palsy: results of a population-based health care programme and new techniques to reduce spasticity. J Pediatr Orthop B. 2005;14(4):269-273. doi: 10.1097/01202412-200507000-00007.
- 5. Baird G, Chandler S, Shortland A, et all. Acquisition and loss of best walking skills in children and young people with bilateral cerebral palsy. Dev Med Child Neurol. 2022;64(2):235-242. doi: 10.1111/dmcn.15015.
- Graham HK, Thomason P., Willoughby K, et all. Musculoskeletal Pathology in Cerebral Palsy: A Classification System and Reliability Study. Children (Basel). 2021;8(3):252. doi: 10.3390/children8030252.
- Dreher T., Thomason P., Švehlík M., et all. Long-term development of gait after multilevel surgery in children with cerebral palsy: a multicentre cohort study. Dev Med Child Neurol. 2018;60(1):88-93. doi: 10.1111/dmcn.13618.
- Terjesen T, Lofterød B, Skaaret I. Gait improvement surgery in ambulatory children with diplegic cerebral palsy. Acta Orthop. 2015;86(4):511-517. doi: 10.3109/17453674.2015.1011927.
- 9. Kanashvili B, Miller F, Church C, et all. The change in sagittal plane gait patterns from childhood to maturity in bilateral cerebral palsy. Gait Posture. 2021;90:154-160. doi: 10.1016/j.gaitpost.2021.08.022.
- 10. Klenø AN, Stisen MB, Cubel CH, et all. Prevalence of knee contractures is high in children with cerebral palsy in Denmark. Physiother Theory Pract. 2023;39(1):200-207. doi: 10.1080/09593985.2021.2007558.
- 11. Lamberts RP, Burger M, du Toit J, et all. A Systematic Review of the Effects of Single-Event Multilevel Surgery on Gait Parameters in Children with Spastic Cerebral Palsy. PLoS One. 2016;11(10):e0164686. doi: 10.1371/journal.pone.0164686.
- 12. Ma N, Gould D, Camathias C, Graham K, Rutz E. Single-Event Multi-Level Surgery in Cerebral Palsy: A Bibliometric Analysis. *Medicina* (*Kaunas*). 2023;59(11):1922. doi: 10.3390/medicina59111922.
- 13. Попков Д.А., Змановская В.А., Губина Е.Б. и др. Результаты многоуровневых одномоментных ортопедических операций и ранней реабилитации в комплексе с ботулинотерапией у пациентов со спастическими формами церебрального паралича. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015;115(4):41-48. doi: 10.17116/jnevro20151154141-48.
- 14. Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. *EFORT Open Rev.* 2016;1(12):448-460. doi: 10.1302/2058-5241.1.000052.
- 15. Edwards TA, Theologis T, Wright J. Predictors affecting outcome after single-event multilevel surgery in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2018;60(12):1201-1208. doi: 10.1111/dmcn.13981.
- 16. Rodda JM, Graham HK, Nattrass GR, et all. Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. J Bone Joint Surg Am. 2006;88(12):2653-2664. doi: 10.2106/JBJS.E.00993.
- 17. Rutz E, Baker R, Tirosh O, Brunner R. Are results after single-event multilevel surgery in cerebral palsy durable? *Clin Orthop Relat Res.* 2013;471(3):1028-1038. doi: 10.1007/s11999-012-2766-9.
- 18. Svehlík M, Steinwender G, Kraus T, et all. The influence of age at single-event multilevel surgery on outcome in children with cerebral palsy who walk with flexed knee gait. Dev Med Child Neurol. 2011;53(8):730-735. doi: 10.1111/j.1469-8749.2011.03995.x.
- 19. Leonchuk SS, Dyachkov KA, Neretin AS., et all. Subtalar arthroereisis for treatment of children with flexible planovalgus foot deformity and analysis of CT data in long-term period. J Orthop. 2020;22:478-484. doi: 10.1016/j.jor.2020.10.005.
- 20. Graham HK, Aoki KR, Autti-Rämö I, et all. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture. 2000;11(1):67-79. doi: 10.1016/s0966-6362(99)00054-5.
- 21. Gage JR. The treatment of gait problems in cerebral palsy. Arch Dis Child. 2005;90:655-656. doi: 10.1136/adc.2004.060491.
- 22. de Morais Filho MC, Kawamura CM, Lopes JA, e all. Most frequent gait patterns in diplegic spastic cerebral palsy. Acta Ortop Bras. 2014;22(4):197-201. doi: 10.1590/1413-78522014220400942.
- 23. Ong CF, Geijtenbeek T, Hicks JL, Delp SL. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Comput Biol. 2019;15(10):e1006993. doi: 10.1371/journal.pcbi.1006993.
- 24. Pilloni G, Pau M, Costici PF, et all. Use of 3D gait analysis as predictor of Achilles tendon lengthening surgery outcomes in children with cerebral palsy. *Eur J Phys Rehabil Med*. 2019;55(2):250-257. doi: 10.23736/S1973-9087.18.05326-1.

 25. Kedem P, Scher DM. Evaluation and management of crouch gait. *Curr Opin Pediatr*. 2016;28(1):55-59. doi: 10.1097/
- MOP.00000000000000316.
- 26. Фатхулисламов Р.Р., Гатамов О.И., Мамедов У.Ф., Попков Д.А. Оценка состояния пациентов со спастическими формами церебрального паралича при переходе во взрослую сеть лечебно-профилактических учреждений: кросс-секционное исследование. Гений opmoneдuu. 2023;29(4):376-381. doi: 10.18019/1028-4427-2023-29-4-376-381.
- 27. Gómez-Andrés D, Pulido-Valdeolivas I, Martín-Gonzalo JA, et all. External evaluation of gait and functional changes after a singlesession multiple myofibrotenotomy in school-aged children with spastic diplegia. Rev Neurol. 2014;58(6):247-254.
- 28. Skoutelis VC, Kanellopoulos AD, Vrettos S, et all. Effect of selective percutaneous myofascial lengthening and functional physiotherapy on walking in children with cerebral palsy: Three-dimensional gait analysis assessment. J Orthop Sci. 2024;29(3):885-890. doi: 10.1016/j.jos.2023.03.010.
- 29. Dietz FR, Albright JC, Dolan L. Medium-term follow-up of Achilles tendon lengthening in the treatment of ankle equinus in cerebral palsy. Iowa Orthop J. 2006;26:27-32.

- 30. Vuillermin C, Rodda J, Rutz E, et all. Severe crouch gait in spastic diplegia can be prevented: a population-based study. *J Bone Joint Surg Br.* 2011;93(12):1670-675. doi: 10.1302/0301-620X.93B12.27332.
- 31. Долганова Т.И., Долганов Д.В., Чибиров Г.М., и др. Количественные параметры кинетики и кинематики ятрогенного crouch паттерна. *Гений ортопедии*. 2022;28(5):675-683. doi: 10.18019/1028-4427-2022-28-5-675-683.
- 32. Аксенов А.Ю., Клишковская Т.А. *Программа формирования отчета биомеханики ходьбы человека*. Патент РФ № 2020665238. 24.11.2020. Бюл. № 12. Доступно по: https://www.fips.ru/registers-doc-view/fips_servlet?DB=EVM&DocNumber=2020665238&Ty peFile=html. Ссылка активна на 28.08.2025.
- 33. Millor N, Cadore EL, Gómez M, et al. High density muscle size and muscle power are associated with both gait and sit-to-stand kinematic parameters in frail nonagenarians. *J Biomech*. 2020 22;105:109766. doi: 10.1016/j.jbiomech.2020.109766.
- 34. Norlin R, Tkaczuk H. One session surgery on the lower limb in children with cerebral palsy. A five year follow-up. *Int Orthop*. 1992;16(3):291-293. doi: 10.1007/BF00182714.
- 35. Rodda JM, Graham HK, Carson L, et all. Sagittal gait patterns in spastic diplegia. *J Bone Joint Surg Br*. 2004;86(2):251-258. doi: 10.13 02/0301-620x.86b2.13878.
- 36. Bohn E, Goren K, Switzer L, et all. Pharmacological and neurosurgical interventions for individuals with cerebral palsy and dystonia: a systematic review update and meta-analysis. *Dev Med Child Neurol*. 2021;63(9):1038-1050. doi: 10.1111/dmcn.14874.
- 37. Grunt S, Fieggen AG, Vermeulen RJ, et all. Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: a systematic review of the literature. *Dev Med Child Neurol*. 2014;56(4):302-312. doi: 10.1111/dmcn.12277.
- 38. Kumar D, Kumar R, Mudgal SK, et all. The Effects of Botulinum Toxin and Casting in Spastic Children With Cerebral Palsy: A Systematic Review and Meta-Analysis. *Cureus*. 2023;15(3):e36851. doi: 10.7759/cureus.36851.
- 39. Khan MA. Outcome of single-event multilevel surgery in untreated cerebral palsy in a developing country. *J Bone Joint Surg Br.* 2007;89(8):1088-1091. doi: 10.1302/0301-620X.89B8.18475.
- 40. Godwin EM, Spero CR, Nof L, et all. The gross motor function classification system for cerebral palsy and single-event multilevel surgery: is there a relationship between level of function and intervention over time? *J Pediatr Orthop*. 2009;29(8):910-915. doi: 10.1097/BPO.0b013e3181c0494f.
- 41. Davids JR, Ounpuu S, DeLuca PA, Davis RB 3rd. Optimization of walking ability of children with cerebral palsy. *Instr Course Lect.* 2004;53:511-22.
- 42. Kerr Graham H, Selber P. Musculoskeletal aspects of cerebral palsy. *J Bone Joint Surg Br.* 2003;85(2):157-166. doi: 10.1302/0301-620x .85b2.14066.
- 43. Gough M, Schneider P, Shortland AP. The outcome of surgical intervention for early deformity in young ambulant children with bilateral spastic cerebral palsy. JJ Bone Joint Surg Br. 2008;90(7):946-951. doi: 10.1302/0301-620X.90B7.20577.
- 44. Thomason P, Selber P, Graham HK. Single Event Multilevel Surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study. *Gait Posture*. 2013;37(1):23-28. doi: 10.1016/j.gaitpost.2012.05.022.
- 45. Hägglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. *BMC Musculoskelet Disord*. 2008;9:150. doi: 10.1186/1471-2474-9-150.
- Rutz E, Tirosh O, Thomason P, et all. Stability of the Gross Motor Function Classification System after single-event multilevel surgery in children with cerebral palsy. Dev Med Child Neurol. 2012;54(12):1109-1113. doi: 10.1111/dmcn.12011.
- 47. Hua W, Nasir S, Arnold G, Wang W. Analysis of mechanical energy in thigh, calf and foot during gait in children with cerebral palsy. *Med Eng Phys.* 2022;105:103817. doi: 10.1016/j.medengphy.2022.103817.
- 48. Van Rossom S, Kainz H, Wesseling M, et all. Single-event multilevel surgery, but not botulinum toxin injections normalize joint loading in cerebral palsy patients. *Clin Biomech (Bristol)*. 2020;76:105025. doi: 10.1016/j.clinbiomech.2020.105025.

Статья поступила 21.04.2025; одобрена после рецензирования 21.05.2025; принята к публикации 25.08.2025.

The article was submitted 21.04.2025; approved after reviewing 21.05.2025; accepted for publication 25.08.2025.

Информация об авторах:

Орхан Ильхам оглы Гатамов — кандидат медицинских наук, врач — травматолог-ортопед, заведующий отделением, or-gatamov@mail.ru, https://orcid.org/0009-0005-4244-5774;

Тамара Игоревна Долганова — доктор медицинских наук, ведущий научный сотрудник, rjik532007@rambler.ru, https://orcid.org/0000-0002-0117-3451;

Ахмед Даутович Томов — кандидат медицинских наук, врач — травматолог-ортопед, заведующий отделением, doc0645@mail.ru, https://orcid.org/0009-0001-2981-7722;

Дмитрий Арнольдович Попков — доктор медицинских наук, профессор РАН, член-корреспондент Французской академии медицинских наук, руководитель клиники, dpopkov@mail.ru, https://orcid.org/0000-0002-8996-867X.

Information about the authors:

Orhan I. Gatamov — Candidate of Medical Sciences, orthopaedic surgeon, Head of the Department, or-gatamov@mail.ru, https://orcid.org/0009-0005-4244-5774;

Tamara I. Dolganova — Doctor of Medical Sciences, leading researcher, rjik532007@rambler.ru, https://orcid.org/0000-0002-0117-3451; Akhmed D. Tomov — Candidate of Medical Sciences, orthopaedic surgeon, doc0645@mail.ru, https://orcid.org/0009-0001-2981-7722;

Dmitry A. Popkov — Doctor of Medical Sciences, Professor of the Russian Academy of Sciences, Corresponding Member of the French Academy of Medical Sciences, Head of the Clinic, dpopkov@mail.ru, https://orcid.org/0000-0002-8996-867X.

Вклад авторов:

Гатамов О.И.— анализ данных, написание первоначального варианта манускрипта.

Долганова Т.И. — анализ видеоматериала, статистическая обработка и редактирование.

Томов А.Д. — контроль и формирование клинического материала.

Попков Д.А. — методология, концептуализация, управление проектом, завершение написания статьи.

Научная статья

УДК 616.728.2-007.248:612.766:159.944.4:004 https://doi.org/10.18019/1028-4427-2025-31-5-614-624

Методология оценки ходьбы для выявления усталостных и декомпенсаторных механизмов работы опорно-двигательной системы у больных коксартрозом

С.В. Королева 1 , А.С. Мулык $^{2 \bowtie}$, В.В. Кравченко 2 , А.А. Акулаев 2 , А.В. Губин 2

- 1 Ивановский государственный медицинский университет, Иваново, Россия
- ² Клиника высоких медицинских технологий им. Н.И. Пирогова Санкт-Петербургского государственного университета, Санкт-Петербург, Россия

Автор, ответственный за переписку: Анжела Сергеевна Мулык, md.amulyk@mail.ru

Аннотация

Введение. Анализ походки является объективным инструментом оценки результатов лечения и функции костно-мышечной системы у пациентов с ортопедической патологией. Важным вопросом является запас прочности компенсаторных механизмов и появление усталостного компонента при повторных измерениях, который зависит от клинической ситуации.

Цель работы — разработать методологию оценки ходьбы для выявления усталостных и декомпенсаторных механизмов опорно-двигательной системы у больных коксартрозом, в том числе при наличии эндопротеза тазобедренного сустава на контралатеральной конечности.

Материалы и методы. В исследование включен 41 пациент с коксартрозом III–IV стадии по Kellgren – Lawrence. Параметры ходьбы оценивали с помощью тренажера «Стэдис-Стэп» и пяти инерциальных сенсоров «Нейросенс» (ООО «Нейрософт», Иваново, Россия), фиксирующих пространственно-временные и кинематические характеристики движений в пояснично-крестцовом отделе, тазобедренных и коленных суставах, синхронизированных с циклом шага. Пациенты разделены на две группы по протоколу оценки параметров ходьбы: группа 1 (n = 26) — три серии по две минуты с перерывом не менее 20 минут; группа 2 (n = 15) — три серии по две минуты без перерыва, всего — шесть минут.

Результаты. Наличие отдыха не менее 20 минут достаточно для воспроизведения исходных параметров ходьбы. Параметры ходьбы (фаза максимального сгибания, период опоры и амплитуда движений) могут служить маркерами ранней диагностики усталостных и декомпенсаторных механизмов. Наличие эндопротеза тазобедренного сустава (ТБС) на контралатеральной стороне существенно влияет на параметры ходьбы.

Обсуждение. Новые методы оценки ходьбы без перерывов позволяют выявлять особенности декомпенсации и усталостных процессов у пациентов с коксартрозом. Уменьшение амплитуды движений при кратковременной нагрузке свидетельствует о росте усталостных процессов даже за короткое время (шесть минут).

Заключение. Разработанная методология позволяет выявлять усталостные и декомпенсаторные механизмы опорно-двигательной системы у пациентов с коксартрозом, в том числе при наличии эндопротеза ТБС, что способствует ранней диагностике и повышению эффективности мониторинга и реабилитации.

Ключевые слова: анализ походки, декомпенсаторные реакции, усталость, коксартроз, методология, Стэдис

Для цитирования: Королева С.В., Мулык А.С., Кравченко В.В., Акулаев А.А., Губин А.В. Методология оценки ходьбы для выявления усталостных и декомпенсаторных механизмов работы опорно-двигательной системы у больных коксартрозом. *Гений ортопедии*. 2025;31(5):614-624. doi: 10.18019/1028-4427-2025-31-5-614-624.

[©] Королева С.В., Мулык А.С., Кравченко В.В., Акулаев А.А., Губин А.В., 2025

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-614-624

Methodology of gait assessment for identifying mechanisms of decompensatory musculoskeletal fatigue in patients with hip arthritis

S.V. Koroleva¹, A.S. Mulyk^{2™}, V.V. Kravchenko², A.A. Akulaev², A.V. Gubin²

- ¹ Ivanovo State Medical University, Ivanovo, Russian Federation
- ² Saint Petersburg State University Hospital, Saint Petersburg, Russian Federation

Corresponding author: Anzhela S. Mulyk, md.amulyk@mail.ru

Abstract

Introduction Gait analysis is an objective tool for assessing treatment results and musculoskeletal function in patients with orthopedic pathology. Safety of compensatory mechanisms and the fatigue component seen with repeated measurements and being dependent on the clinical situation are essential for the patients.

The **objective** was to develop a methodology of gait assessment for identifying mechanisms of decompensatory musculoskeletal fatigue in patients with hip arthritis including those with THA of the contralateral limb.

Material and methods The study included 41 patients with Kellgren – Lawrence grade III and IV hips. Gait analysis was performed using the Stedis-Step treadmill and five Neurosens inertial sensors (Neurosoft LLC, Ivanovo, Russia), recording the spatiotemporal and kinematic characteristics of movements in the lumbosacral spine, hip and knee joints being synchronized with the step cycle. Patients were divided into two groups according to gait assessment protocol including Group 1 (n = 26) with three series of two-minute tests with a break of at least 20 minutes; Group 2 (n = 15) with three series of two-minute walks without a break with the total length of six minutes.

Results A 20-minute rest was enough to reproduce baseline gait parameters. Walking parameters including maximum flexion phase, stance period and range of motion could serve as markers for early detection of mechanisms of decompensatory muscle fatigue. The total hip arthroplasty on the contralateral side significantly affected the gait parameters.

Discussion New methods of no-break gait assessment facilitated decompensation and fatigue mechanisms identified in patients with hip arthritis. Reduced movement amplitude during short-term load indicated increasing fatigue even over a brief period (6 minutes).

Conclusion The methodology allowed for the identification of mechanisms of decompensatory musculoskeletal fatigue in patients with hip arthritis including those with THA of the contralateral limb, early diagnosis, improved monitoring and rehabilitation.

Keywords: gait analysis, decompensatory reaction, fatigue, hip arthritis, methodology, Stedis

For citation: Koroleva SV, Mulyk AS, Kravchenko VV, Akulaev AA, Gubin AV. Methodology of gait assessment for identifying mechanisms of decompensatory musculoskeletal fatigue in patients with hip arthritis. *Genij Ortopedii*. 2025;31(5):614-624. doi: 10.18019/1028-4427-2025-31-5-614-624.

[©] Koroleva S.V., Mulyk A.S., Kravchenko V.V., Akulaev A.A., Gubin A.V., 2025

[©] Translator Irina A. Saranskikh, 2025

ВВЕДЕНИЕ

Коксартроз представляет собой серьезную медико-социальную проблему, приводящую к стойким нарушениям ходьбы и значительному снижению качества жизни пациентов [1, 2]. В последние десятилетия отмечается устойчивый рост заболеваемости коксартрозом, что связано как с увеличением продолжительности жизни, так и с малоподвижным образом жизни [3]. Значительно расширяются показания к хирургическим методам лечения, количество которых неуклонно растет, что связано как с улучшением их безопасности, так и со спектром технических возможностей, влияющих на качество жизни и нейропсихологический статус пациентов [4, 5]. Прогрессивно возрастает число пациентов, нуждающихся в ревизионном эндопротезировании, прошедших первичное эндопротезирование 10–15 лет назад. При этом существующие подходы к диагностике, выбору оптимального момента для оперативного лечения и объективизации эффективности реабилитации данной категории больных остаются нестандартизированными. Анализ походки на сегодняшний день является одним из наиболее корректных и объективных инструментов для оценки результатов лечения и интегральной характеристикой функции и активности для больных ортопедического профиля [6, 7, 8].

Современные исследования убедительно демонстрируют, что мультидисциплинарный подход к ведению пациентов с коксартрозом обеспечивает наиболее значимые клинические результаты [9, 10]. Однако его эффективность напрямую зависит от точности оценки индивидуальных компенсаторных возможностей опорно-двигательного аппарата и их воспроизводимости при многоцентровом мультидисциплинарном ведении каждого пациента. Особую сложность и в то же время востребованность представляет анализ биомеханических нарушений у больных коксартрозом с сочетанной патологией, особенно при наличии эндопротеза (ЭП) ТБС на контралатеральной конечности. Несмотря на имеющиеся публикации по анализу походки, клинические рекомендации (Объективная оценка функции ходьбы: клинические рекомендации. https://rehabrus.ru/Docs/2017/02/Hodba_met_rek_pr_fin.pdf) и теоретические наработки основных биомеханических феноменов [11, 12], на сегодняшний день существует несколько краеугольных проблем:

- отсутствие единых стандартов проведения нагрузочных тестов;
- существенное влияние фактора усталости на результаты повторных измерений биомеханики ходьбы;
- недостаточный учет роли смежных сегментов (таза, позвоночника, коленных суставов) в компенсации двигательного дефицита ТБС.

Особого внимания заслуживает вопрос о запасе прочности компенсаторных механизмов и возникновении усталостного компонента при повторных измерениях, который может существенно варьировать в зависимости от клинической ситуации. Традиционные методы оценки зачастую не позволяют количественно определить этот важнейший параметр, значимо влияющий на эффективность и объем медицинских вмешательств, на весь процесс восстановления пациента, его персонализированный биомеханический портрет и прогноз на восстановление [13].

Восстановление функции ходьбы, как ключевая цель ортопедических вмешательств, требует объективных критериев эффективности. Особую актуальность приобретает разработка технологий, обеспечивающих структурно-функциональное восстановление без формирования патологических двигательных компенсаций. Одним из возможных способов объективной оценки походки является внедрение в клиническую практику технологии инерциальных сенсоров. Эта методика учитывает не только статические параметры, но и динамику изменения двигательных стереотипов под воздействием нагрузки, лечения и коррекции в режиме реального времени, что особенно важно для прогнозирования эффективности, своевременности и оптимальности объема лечебных и реабилитационных мероприятий. В этом случае использование инерциальных датчиков играет ключевую роль, позволяя выявлять особенности паттернов движения у пациентов с остеоартрозом ТБС и обеспечивая более точную оценку их функционального состояния [14, 15, 16].

Цель работы — разработать методологию оценки ходьбы для выявления усталостных и декомпенсаторных механизмов опорно-двигательной системы у больных коксартрозом, в том числе при наличии эндопротеза тазобедренного сустава на контралатеральной конечности.

МАТЕРИАЛ И МЕТОДЫ

Исследование проводили с января по март 2025 г. на базе Клиники высоких медицинских технологий им. Н.И. Пирогова СПбГУ. Паттерн ходьбы оценивали с использованием тренажера «Стэдис-Стэп» с биологической обратной связью (ООО «Нейрософт», Иваново) в комплектации «Оценка» (РУ № РЗН 2018/7458 от 07.08.2018). Пять инерциальных сенсоров «Нейросенс» устанавливали на пояснично-крестцовый отдел позвоночника и на симметричные участки средней трети бедер и голеней на 2 см выше наружных лодыжек (рис. 1). Пациенту предлагали ходить по ровной поверхности в течение двух минут в удобном темпе.

Рис. 1. Пример установки инерционных сенсоров при обследовании пациента

Анализировали стандартные показатели, автоматически заносимые программой в протокол анализа ходьбы:

- временные параметры ходьбы (цикл шага (ЦШ), шаг, частота шага);
- фазы ходьбы (период опоры, одиночная опора, двойная опора, первая двойная опора, вторая двойная опоры, начало второй двойной опоры, период переноса);
- пространственные параметры ходьбы (высота подъема стопы, циркумдукция, расстояние от центральной линии направления ходьбы до идентичных точек стопы во фронтальной плоскости, половина от базы шага):
- сгибание/разгибание в ТБС (амплитуда сгибания/разгибания, фаза максимального разгибания, максимальное разгибание, фаза максимального сгибания, максимальное сгибание);
- приведение/отведение в ТБС (амплитуда приведения/отведения, фаза максимального отведения, максимальное отведение, фаза максимального приведения, максимальное приведение);
- ротация в ТБС (амплитуда ротации, фаза максимальной наружной ротации, максимальная наружная ротация, фаза максимальной внутренней ротации, максимальная внутренняя ротация);
- кинематические параметры таза: приведение/отведение, сгибание/разгибание, ротация.

Учитывая значимость снижения опорной функции ТБС при развитии дегенеративных изменений в суставе, дополнительно проводили анализ гониограмм и кинематических параметров, синхронизированных с паттерном ходьбы ТБС (больной и интактной сторон) в периоде опоры (до 50 % ЦШ с шагом измерения в 5 % ЦШ).

В исследование включены пациенты (n=41) с коксартрозом III–IV стадии по Kellgren – Lawrence, госпитализированные в травматолого-ортопедическое отделение для планового тотального ЭП ТБС. Обследование проводили перед операцией. Рентгенограммы выполняли на цифровом рентгеновском аппарате с автосшивкой изображений SG Jumong retro (Корея).

Критерии невключения: пациенты с острыми и/или хроническими заболеваниями различной этиологии в стадии обострения.

В рамках исследования проведено сплошное проспективное обследование пациентов, поступивших на эндопротезирование ТБС, с использованием технологии объективной оценки функции ходьбы на базе инерциальных сенсоров. Для анализа особенностей биомеханики ходьбы у пациентов применяли методику интервального и непрерывного тестирования продолжительностью шесть минут, что позволило выявить наличие специфичных усталостных изменений в движении. В исследовании также оценивали влияние ЭП ТБС на показатели биомеханики при коксартрозе.

Пациенты разделены на две группы случайным образом. В группе $1\ (n=26)$ анализ ходьбы проведен тремя сериями со стандартным протоколом по две минуты с перерывом между тестами (отдыхом) не менее $20\$ минут. В группе $2\ (n=15)$ анализ ходьбы также осуществлен тремя сериями со стандартным протоколом по две минуты, общим временем обследования шесть минут, без перерыва между отдельными проходами. Группы были сопоставимы по половому и возрастному составу, что позволяет сравнивать полученные данные (табл. 1).

Таблица 1

Характеристика групп исследования

Показатели		Значения по группам			
ПОКазатели		Группа 1 (<i>n</i> = 26)	Группа 2 (n = 15)		
Средний возраст, лет		$58,23 \pm 14,78$	59,93 ± 14,85		
Managara	абс.	15	6		
Мужчины	%	58	40		
117	абс.	11	9		
Женщины	%	42	60		
Односторонний коксартроз		15	10		
		58	67		
Двусторонний коксартроз		5	1		
		19	6		
Наличие ЭП ТБС контралатеральной конечности		6	4		
		23	27		

Статистическую обработку полученных данных выполняли с использованием программы IBM SPSS Statistics v/23.0. Нормальность распределения полученных количественных данных определяли с использованием теста Шапиро – Уилка. Результаты показали, что все массивы данных соответствовали нормальному распределению, что позволило использовать параметры для дальнейшего анализа. Достоверность различий оценивали с использованием критерия Стьюдента (для независимых и зависимых групп), корреляционных взаимосвязей между параметрами, — ранговой корреляции Спирмена. Уровень достоверности принят α = 0,05. Результаты представлены в виде М \pm σ , где М- среднее арифметическое, σ — стандартное отклонение выборки.

Обследование проведено в соответствии с общепринятыми этическими принципами, нормами и правилами проведения научных исследований, регламентированными Хельсинской декларацией Всемирной медицинской ассоциации 1964 г., Федеральным законом № 323 «Об основах охраны здоровья граждан в Российской Федерации» от 21.11.2011, Федеральным законом № 152 «О персональных данных» от 27.07.2006.

РЕЗУЛЬТАТЫ

Пространственно-временные параметры ходьбы не продемонстрировали значимость различий по неопорным показателям всех пациентов исследования (табл. 2), что согласуется с ранее высказанным предположением о хорошем компенсаторном коридоре адаптации у пациентов травматолого-ортопедического профиля. В то же время определены значимые различия в периоде опоры за счет одиночной опоры, уменьшение ротации на стороне больного сустава и более ранняя фаза максимального сгибания, что в целом отражают механизмы компенсаторной разгрузки больной конечности для уменьшения опорной нагрузки на нее.

Таблица 2 Пространственно-временные параметры цикла шага и кинематики тазобедренного сустава

Пространственно-временные параметры	Больная	Здоровая
Цикл шага, с (ЦШ)	1,24 =	± 0,16
Шаг, с	$0,63 \pm 0,09$	0,61 ± 0,08
Частота шага, ш/мин	49,20	± 0,05
Период опоры, % ЦШ	63,79 ± 3,87**	66,77 ± 3,71
Одиночная опора, % ЦШ	33,17 ± 3,66**	36,13 ± 3,81
Двойная опора, % ЦШ	$3,63 \pm 6,73$	$30,63 \pm 6,75$
Начало второй двойной опоры, % ЦШ	48,98 ± 2,43	50,95 ± 2,43
Высота подъема стопы, см	11,20 ± 2,60	11,83 ± 2,19
Циркумдукция, см	$3,02 \pm 1,39$	3,24 ± 1,39
Амплитуда сгибания / разгибания, °	54,15 ± 8,05	55,00 ± 9,32
Фаза максимального разгибания, % ЦШ	89,17 ± 21,71	89,20 ± 23,23
Максимальное разгибание, °	7,41 ± 5,01	6,44 ± 5,27
Фаза максимального сгибания, % ЦШ	69,34 ± 3,54**	72,76 ± 2,99
Амплитуда приведения/отведения, ^о	8,85 ± 3,71	10,10 ± 3,29
Фаза максимального приведения/отведения, % ЦШ	66,46 ± 19,85	64,32 ± 21,30
Амплитуда ротации, ^о	11,29 ± 3,52*	13,39 ± 4,91

Примечание: показана достоверность различий между больной и интактной конечностями: $*-p \le 0.05, **-p \le 0.01$

При анализе кинематических показателей сгибания/разгибания в ТБС в группе 2 (без интервала между исследованиями) значения сгибания на стороне коксартроза значимо снижаются от первого к третьему измерению, что указывает на прогрессирующую усталость или болевой синдром. Показатели на контралатеральной стороне, изначально более высокие, к третьему измерению также уменьшаются, что может быть проявлением компенсаторной перегрузки (рис. 2, a).

В группе 1 (интервальная ходьба с отдыхом) на больной стороне начальные значения сгибания выше, но к третьему измерению значения разгибания в тазобедренном суставе увеличиваются, что свидетельствует о неэффективности отдыха как восстановительного мероприятия для функции ходьбы в долгосрочной перспективе. На контралатеральной стороне снижение начальной амплитуды не сопровождается значительными усталостными проявлениями, аналогичными выявленным в предыдущей группе, то есть мы наблюдаем замедление прогрессирования усталости (рис. 2, б).

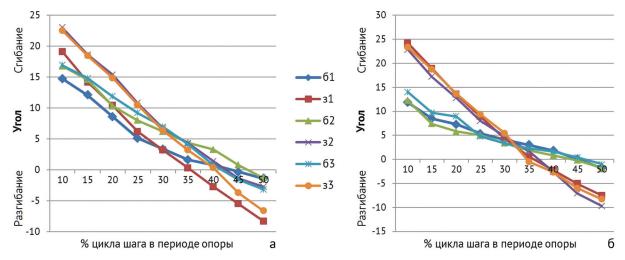


Рис. 2. Динамика значений сгибания (положительные значения) и разгибания (отрицательные значения) в цикле шага: а — в группе 2; б — в группе 1. Примечание: 61, 62, 63 — значения для «больной» нижней конечности за первое, второе и третье исследования; 31, 32, 33 — значения для «здоровой» нижней конечности за первое, второе и третье исследования

При анализе кинематического параметра приведение/отведение в группе 2 (без интервального отдыха) амплитуда на стороне больного сустава прогрессивно увеличивается (б1 = 3,70; б3 = 6,65; p < 0,05), что свидетельствует о компенсаторной гипермобильности. На здоровой стороне наблюдается снижение значений (31 = 3,90; 33 = 1,65; p < 0,05), отражающее адаптационные механизмы для стабилизации походки (рис. 3, a).

В группе 1 (интервальный отдых) на больной стороне амплитуда движений увеличивается, возможно, за счет временного снижения интенсивности боли, тогда как на контралатеральной стороне мы наблюдаем снижение значений. Это может свидетельствовать о перераспределении нагрузки с целью симметризации паттерна ходьбы, что говорит об универсальном «правиле оптимума походки» при синергетическом взаимодействии мышц (рис. 3, б).

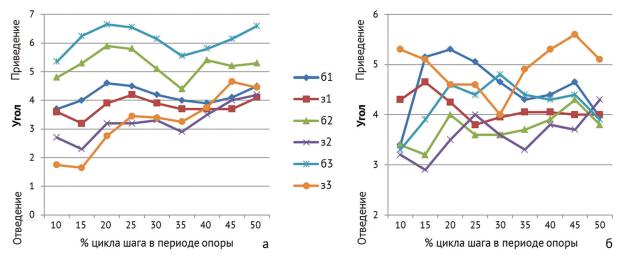


Рис. 3. Динамика значений приведения (положительные) / отведения (отрицательные) в цикле шага: а— в группе 2; б— в группе 1. Примечание: 61, 62, 63— значения для «больной» нижней конечности за первое, второе и третье исследования; 31, 32, 33— значения для «здоровой» нижней конечности за первое, второе и третье исследования

Таким образом, наличие интервального отдыха не позволяет выявить тонкие механизмы компенсации и усталостный вклад предельного напряжения при коксартрозе.

Для выявления усталостной декомпенсации мы сравнили в группе 2 (без интервального отдыха) параметры ходьбы отдельно у пациентов с ЭП ТБС на контралатеральной стороне (n = 4) и без него (n = 10) (табл. 3).

Таблица 3 Параметры ходьбы у пациентов группы 2 (без интервального отдыха) в зависимости от наличия ЭП ТБС на контралатеральной стороне

Поморожения оржениями можемово	1 измерение		2 измерение			3 измерение			
Показатели автоматического протокола анализа ходьбы	с ЭП (n = 4)	без ЭП (n = 10)	<i>p</i> < 0,05	с ЭП (n = 4)	без ЭП (n = 10)	p < 0,05	с ЭП (n = 4)	без ЭП (n = 10)	p < 0,05
Период опоры, разность, %	1,88	3,43	_	1,73	4,21	+	1,50	3,25	+
Одиночная опора, разность, %	1,75	3,52	+	1,38	4,10	+	1,53	3,25	_
Вторая двойная опора, разность, %	1,28	3,11	_	1,30	2,96	+	1,20	2,25	+
Период переноса, разность, %	1,88	3,43	_	1,73	4,16	+	1,50	3,25	+
Фаза максимального сгибания, разность, %	2,00	3,50	+	1,75	4,20	+	1,75	3,00	+
Таз (больная сторона), сгибание / разгибание, °	5,00	9,10	+	4,75	9,70	+	4,50	9,00	+
Таз (контралатеральная сторона), сгибание / разгибание, °	5,00	8,80	+	4,50	9,40	+	4,50	9,00	+
Приведение/отведение, разность, °	0,00	0,50	+	0,25	0,20	_	0,00	0,00	_

Примечание: разность — между правой и левой нижней конечностью; % — от длительности цикла шага.

При анализе результатов обращает на себя внимание снижение периода опоры в подгруппе пациентов с ЭП ТБС, в то время как показатели сгибания/разгибания таза (вышележащий иерархический уровень компенсации) остаются стабильными, что указывает на более равномерное распределение нагрузки. Амплитуда приведения/отведения во время ходьбы остается неизменной, что говорит о стабильности движений.

У пациентов подгруппы без ЭП ТБС на контралатеральной конечности период опоры нарастает, а амплитуда сгибания/разгибания таза во время движения не изменяется, что может свидетельствовать о компенсаторной перегрузке опорно-двигательной системы при повторных нагрузках. Адаптивные паттерны проявляются в увеличении фазы максимального сгибания. Очевидно, что выявленные феномены являются проявлением системного характера коксартроза и ограниченными резервами компенсации со стороны контралатеральной конечности.

Дополнительно по результатам анализа ходьбы пациентов группы 2 (без интервального отдыха) проанализированы параметры сгибания/разгибания, отведения/приведения и ротации ТБС у пациентов с ЭП и без ЭП на контралатеральной конечности (рис. 4). При наличии ЭП на контралатеральной конечности имеются более низкие значения амплитуды сгибания/разгибания во время ходьбы.

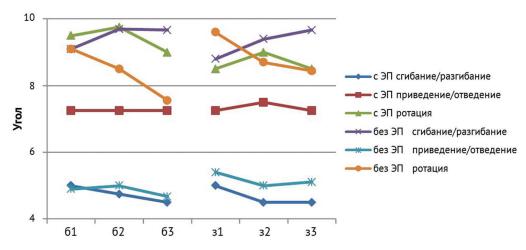


Рис. 4. Динамика амплитуды сгибания/разгибания, отведения/приведения и ротации ТБС в цикле шага без интервального отдыха между исследованиями: 61, 62, 63— значения для «больной» нижней конечности за первое, второе и третье исследования; 31, 32, 33— значения для «здоровой» нижней конечности за первое, второе и третье исследования

ОБСУЖДЕНИЕ

Активное развитие и трансляция в клиническую практику новых методов лечения актуализируют необходимость поиска и применения инновационных средств объективной оценки результатов. С этой точки зрения визуализация динамики и объективный анализ функции ходьбы позволяет более точно оценить степень нарушений функции движения в динамике применения различных технологий консервативного и ортопедического лечения пациентов с остеоартритом ТБС, начиная с ранних стадий заболевания [17, 18].

Т. Ibara et al. полагают, что объективная оценка функции движения у пациентов с остеоартритом ТБС возможна без носимых датчиков с использованием только данных силовой платформы [14]. Такой подход — простой и быстрый, однако он ограничен только измерением реактивных сил и не позволяет получать информацию о кинематике движений в опорно-двигательной системе в целом, во всем многообразии включаемых компенсаторных механизмов, — в изменениях углов суставов, скоростях и траекториях движений конечностей, включениях вышележащих иерархических уровней. Использование же носимых датчиков дает возможность одновременно измерять кинематику и пространственно-временные параметры ходьбы, что обеспечивает более полное понимание паттернов походки и позволяет проводить точный анализ двигательных функций. Поэтому носимые/инерциальные датчики предпочтительнее для комплексной оценки двигательной активности.

Полученные результаты свидетельствуют о том, что анализ ходьбы с использованием технологии инерциальных сенсоров воспроизводим при многоцентровых исследованиях, а наличие отдыха между отдельными исследованиями не влияют на объективные биомеханические параметры паттерна ходьбы (отдых не меньше 20 мин). Воспроизводимость параметров ходьбы при использовании технологии инерциальных датчиков неоднократно доказана и в других исследованиях здоровых людей и пациентов с нарушениями мобильности [12, 19, 20]. Примененная в исследовании методология оценки ходьбы без интервального отдыха с тремя сериями анализа позволяет выявить ключевые особенности декомпенсаторных и усталостных механизмов у пациентов, страдающих коксартрозом. Использование нескольких инерциальных датчиков в сочетании с их правильным расположением — перспективный подход для распознавания состояний усталости и контроля безопасности движений [21]. В настоящее время уже существуют модели машинного обучения, которые помогают выявлять усталостные изменения в походке, например по данным реакции опоры у молодых здоровых людей при беге [22]. Но такие модели, обученные на небольших выборках и в узких условиях, не подойдут для пациентов с остеоартрозом ТБС, так как движения могут значительно отличаться. Для использования подобных моделей в клинике необходимы исследования на больших выборках с учетом всех входных параметров, то есть следует доработать и переобучить модели в группах именно таких пациентов. Перспективность данного подхода подтверждается использованием машинного обучения для диагностики остеоартроза ТБС с помощью анализа параметров походки [23].

Уменьшение амплитуды движения в суставах при ходьбе без отдыха между измерениями указывает на нарастание усталостных компенсаторных процессов со стороны опорно-двигательной системы даже при кратковременных (шесть минут суммарно) нагрузках, достаточных для выявления истощения ресурсов организма и, в свою очередь, нуждающихся в компенсации. В исследовании H. Davis-Wilson et al. при шестиминутном тесте ходьбы обнаружено «увеличение наклона туловища вперёд на стороне остеоартроза и двустороннее сокращение длины шага», связыванное с компенсаторными механизмами, обусловленными болью, при этом усталостные механизмы влияния авторы не упоминали [24]. Снижение скорости ходьбы также связывают исключительно с болью, не имея возможности оценить усталостный компонент [25]. Контралатеральная конечность с интактным суставом, являясь равноценной частью единой биомеханической цепи опорно-двигательной системы нижних конечностей, также вовлекается в процесс компенсации, что проявляется признаками функциональной перегрузки, при этом запускается «порочный круг», усиливающий асимметрию походки, что в свою очередь уменьшает эффективность самих компенсаторных механизмов. Работа C. Hulet et al. с использованием оптоэлектронной системы также подтверждает наличие асимметрии походки и компенсаторных механизмов, что авторы связывают с болью в пораженном суставе и ограничением движений не только в больном ТБС, но и в ипсилатеральных коленном и голеностопных суставах [26]. Однако S. Van Rossom et al. при анализе походки во время ходьбы по лестнице у пациентов с остеоартрозом ТБС не наблюдают перегрузку контралатерального сустава и ипсилатерального коленного сустава, что свидетельствует о специфике компенсаторных стратегий в различных условиях и видах активностей [27]. Адаптация движений, связанная со страхом движений из-за боли, во время ходьбы может помочь пациентам снизить болевой синдром, однако приводит к перестройке всего паттерна за счет других уровней опорно-двигательной системы [27, 28]. K. Maezawa et al. свидетельствуют, что разница в длине нижних конечностей до 20 мм мало влияет на паттерны ходьбы, подтверждая наличие универсальных работающих компенсаторных механизмов при отсутствии выраженной деформации [29]. Компенсация при разности длины ног происходит из-за того, что укороченная нижняя конечность удлиняется за счет «большего разгибания в тазобедренном и коленном суставах, отведения бедра, подошвенного сгибания голеностопного сустава и меньшего приведения бедра», а другая нижняя конечность укорачивается «за счет более высокого сгибания в тазобедренном и коленном суставах, более высокого приведения бедра, дорсифлексии и более низкого приведения голеностопного сустава» [30].

Мы не обнаружили исследований, доказывающих влияние ЭП ТБС на усталостные механизмы при ходьбе. При этом в исследовании В. Langley et al. показано, что у пациентов с эндопротезом тазобедренного сустава, обладающих высокой функцией, достигается восстановление нормальной двигательной активности [31].

В нашем исследовании мы выявили, что при наличии ЭП на контралатеральной конечности значения амплитуды сгибания/разгибания во время ходьбы — более низкие, такие показатели отражают, скорее, стабилизацию биомеханики, ее стабильность, а не ухудшение функции. По нашему мнению, наличие ЭП ТБС на контралатеральной конечности ограничивает избыточные движения, предотвращая гипермобильность и перегрузку, как на больной, так и на здоровой сторонах при наличии ЭП ТБС без включения вышележащего уровня компенсации опорно-двигательной системы (пояснично-крестцовый отдел позвоночника). Если бы причиной сниженной амплитуды сгибания и разгибания во время ходьбы была неэффективная реабилитация, параметры амплитуды ротации и приведения/отведения также демонстрировали бы изменения, но, по нашим данным, они остаются стабильными.

Полученные результаты указывают на важность интеграции предложенной методологии динамической оценки ходьбы в клиническую практику для персонализации реабилитационных программ и ранней диагностики скрытых нарушений. Однако ограничения, связанные с объемом выборки, требуют дальнейших исследований с включением дополнительных методов оценки (опросники качества жизни, электромиография) при расширенной когорте пациентов.

Перспективным направлением является разработка алгоритмов прогнозирования декомпенсации на основе биомеханических маркеров и машинного обучения, что позволит оптимизировать лечение и улучшить качество жизни пациентов с коксартрозом.

ЗАКЛЮЧЕНИЕ

Выявлено, что наличие отдыха не менее 20 минут между отдельными сериями исследования ходьбы достаточно для воспроизведения исходных данных параметров ходьбы, что может быть использовано при многоцентровом мультидисциплинарном сопровождении пациентов.

В группе непрерывной ходьбы получены достоверные различия в динамике сгибания/разгибания в ТБС на здоровой стороне, значимо увеличивающиеся от первого к третьему измерению до 35 % цикла шага, и от первого ко второму — до 45 % цикла шага. Аналогичные результаты проявления усталостного компонента в группе пациентов с отдыхом между сериями проходов получены не были. Таким образом, анализ непрерывной ходьбы в большей степени выявляет напряжение компенсации опорнодвигательной системы для достижения оптимума, тогда как для больной конечности обеспечивается режим наилучшего функционирования за счет большего нагружения здоровой.

Определено, что у пациента, страдающего односторонним коксартрозом, наличие эндопротеза ТБС на контралатеральной конечности значимо влияет на паттерн ходьбы: при наличии ЭП зарегистрированы более низкие значения амплитуды сгибания/разгибания ТБС, что ограничивает избыточные движения, предотвращая гипермобильность и перегрузку как на больной, так и на здоровой сторонах.

Конфликт интересов. Отсутствует.

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования и подготовке публикации.

Этические нормы. Исследование проведено в соответствии с этическими стандартами Хельсинской декларации Всемирной медицинской ассоциации.

Информированное согласие. Все пациенты, участвующие в исследовании, добровольно подписали информированное согласие на публикацию персональной медицинской информации в обезличенной форме.

СПИСОК ИСТОЧНИКОВ

1. Boekesteijn RJ, Smolders JMH, Busch VJJF, et al. Independent and sensitive gait parameters for objective evaluation in knee and hip osteoarthritis using wearable sensors. *BMC Musculoskelet Disord*. 2021;22(1):242. doi: 10.1186/s12891-021-04074-2.

- 2. Costa D, Lopes DG, Cruz EB, et al. Trajectories of physical function and quality of life in people with osteoarthritis: results from a 10-year population-based cohort. *BMC Public Health*. 2023;23(1):1407. doi: 10.1186/s12889-023-16167-9.
- 3. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet Rheumatol.* 2023;5(9):e508-e522. doi: 10.1016/S2665-9913(23)00163-7.
- 4. Джигкаев А.Х., Тынтерова А.М., Козенков И.И. и др. Клинико-функциональный и нейропсихологический статус пациентов, поступивших на эндопротезирование суставов. *Гений ортопедии*. 2024;30(5):659-669. doi: 10.18019/1028-4427-2024-30-5-659-669.
- 5. Удинцева М.Ю., Волокитина Е.А., Колотыгин Д.А., Кутепов С.М. Первичное и ревизионное эндопротезирование тазобедренного сустава с восполнением дефектов вертлужной впадины. *Гений ортопедии*. 2024;30(6):797-810. doi: 10.18019/1028-4427-2024-30-6-797-810.
- 6. Rivera RJ, Karasavvidis T, Pagan C, et al. Functional assessment in patients undergoing total hip arthroplasty. *Bone Joint J.* 2024;106-B(8):764-774. doi: 10.1302/0301-620X.106B8.BJJ-2024-0142.R1.
- 7. Bahadori S, Middleton RG, Wainwright TW. Using Gait Analysis to Evaluate Hip Replacement Outcomes-Its Current Use, and Proposed Future Importance: A Narrative Review. *Healthcare (Basel)*. 2022;10(10):2018. doi: 10.3390/healthcare10102018.
- 8. Королева С.В. Технология объективной оценки двигательных нарушений в динамике реабилитации у больных травматолого-ортопедического профиля. Физическая и реабилитационная медицина. 2022;4(1):47-52. doi: 10.26211/2658-4522-2022-4-1-47-52.
- 9. Moseng T, Vliet Vlieland TPM, Battista S, et al. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis: 2023 update. *Ann Rheum Dis.* 2024;83(6):730-740. doi: 10.1136/ard-2023-225041.
- 10. Павлов В.В., Мушкачев Е.А., Тургунов Э.Н. и др. Альтернативный способ измерения параметров сагиттального баланса у пациентов в положении сидя и стоя. Гений ортопедии. 2024;30(3):362-371. doi: 10.18019/1028-4427-2024-30-3-362-371.
- 11. Скворцов Д.В. Диагностика двигательной патологии инструментальными методами: анализ походки, стабилометрия. М.: Науч.-мед. фирма МБН; 2007:617.
- 12. Скворцов Д.В., Королева С.В. Динамика параметров ходьбы в процессе реабилитации после тотального эндопротезирования коленного сустава. *Научно-практическая ревматология*. 2019;57(6):704-707. doi: 10.14412/1995-4484-2019-704-707.
- 13. Kobsar D, Masood Z, Khan H, et al. Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis-A Scoping Review. Sensors (Basel). 2020;20(24):7143. doi: 10.3390/s20247143.
- 14. Ibara T, Anan M, Karashima R, et al. Coordination Pattern of the Thigh, Pelvic, and Lumbar Movements during the Gait of Patients with Hip Osteoarthritis. *J Healthc Eng.* 2020;2020:9545825. doi: 10.1155/2020/9545825.
- 15. Ismailidis P, Nüesch C, Kaufmann M, et al. Measuring gait kinematics in patients with severe hip osteoarthritis using wearable sensors. *Gait Posture*. 2020;81:49-55. doi: 10.1016/j.gaitpost.2020.07.004.
- 16. Ismailidis P, Kaufmann M, Clauss M, et al. Kinematic changes in severe hip osteoarthritis measured at matched gait speeds. *J Orthop Res.* 2021;39(6):1253-1261. doi: 10.1002/jor.24858.
- $17. \ Homma\,D, Minato\,I, Imai\,N, et\,al.\, Three-dimensional\, evaluation\, of\, abnormal\, gait\, in\, patients\, with\, hip\, osteoarthritis. \textit{Acta\,Med\,Okayama.}\\ 2020; 74(5):391-399.\, doi:\, 10.18926/AMO/60798.$
- 18. Ghaffari Á, Clasen PD, Boel RV, et al. Multivariable model for gait pattern differentiation in elderly patients with hip and knee osteoarthritis: A wearable sensor approach. *Heliyon*. 2024;10(17):e36825. doi: 10.1016/j.heliyon.2024.e36825.
- 19. Kobsar D, Charlton JM, Tse CTF, et al. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. *J Neuroeng Rehabil*. 2020;17(1):62. doi: 10.1186/s12984-020-00685-3.
- 20. Rast FM, Labruyère R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. *J Neuroeng Rehabil*. 2020;17(1):148. doi: 10.1186/s12984-020-00779-y.
- 21. Lee YJ, Wei MY, Chen YJ. Multiple inertial measurement unit combination and location for recognizing general, fatigue, and simulated-fatigue gait. *Gait Posture*. 2022;96:330-337. doi: 10.1016/j.gaitpost.2022.06.011.
- 22. Gao Z, Zhu Y, Fang Y, et al. Automated recognition of asymmetric gait and fatigue gait using ground reaction force data. *Front Physiol.* 2023;14:1159668. doi: 10.3389/fphys.2023.1159668.
- 23. Ghidotti A, Regazzoni D, Rizzi C, et al. Applying Machine Learning to Gait Analysis Data for Hip Osteoarthritis Diagnosis. *Stud Health Technol Inform.* 2025;324:152-157. doi: 10.3233/SHTI250178.
- 24. Davis-Wilson H, Hoffman R, Cheuy V, et al. Gait compensations, pain, and functional performance during the six minute walk test in individuals with unilateral hip osteoarthritis. *Clin Biomech (Bristol)*. 2024;120:106366. doi: 10.1016/j.clinbiomech.2024.106366.
- 25. Ritsuno Y, Morita M, Mukaino M, et al. Determinants of gait parameters in patients with severe hip osteoarthritis. *Arch Phys Med Rehabil*. 2024;105(2):343-351. doi: 10.1016/j.apmr.2023.08.021.
- 26. Hulet C, Hurwitz DE, Andriacchi TP, et al. Functional gait adaptations in patients with painful hip. *Rev Chir Orthop Reparatrice Appar Mot.* 2000;86(6):581-9. (In French)
- 27. Van Rossom S, Emmerzaal J, van der Straaten R, et al. The biomechanical fingerprint of hip and knee osteoarthritis patients during activities of daily living. *Clin Biomech (Bristol)*. 2023;101:105858. doi: 10.1016/j.clinbiomech.2022.105858.
- 28. Aydemir B, Huang CH, Foucher KC. Gait speed and kinesiophobia explain physical activity level in adults with osteoarthritis: A cross-sectional study. *J Orthop Res*. 2023;41(12):2629-2637. doi: 10.1002/jor.25624.
- 29. Maezawa K, Nozawa M, Gomi M, et al. Effect of limited range of motion of the hip joint and leg-length discrepancy on gait trajectory: an experiment to reproduce the asymmetric gait that occurs in patients with osteoarthritis of the hip joint. *Hip Int.* 2023;33(4):590-597. doi: 10.1177/11207000221102849.
- 30. Siebers HL, Eschweiler J, Quack VM, et al. Inertial measurement units for the detection of the effects of simulated leg length inequalities. *J Orthop Surg Res.* 2021;16(1):142. doi: 10.1186/s13018-021-02212-z.
- 31. Langley B, Page RM, Whelton C, et al. Do patients with well-functioning total hip arthroplasty achieve typical sagittal plane hip kinematics? A proof of concept study. *Hip Int.* 2023;33(2):247-253. doi: 10.1177/11207000211044471.

Статья поступила 26.05.2025; одобрена после рецензирования 02.07.2025; принята к публикации 25.08.2025.

The article was submitted 26.05.2025; approved after reviewing 02.07.2025; accepted for publication 25.08.2025.

Информация об авторах:

Светлана Валерьевна Королева — доктор медицинских наук, профессор кафедры, drqueen@mail.ru, https://orcid.org/0000-0002-7677-1077;

Анжела Сергеевна Мулык — врач — травматолог-ортопед, md.amulyk@mail.ru, https://orcid.org/0009-0007-5041-1915;

Владимир Владимирович Кравченко— аспирант, врач— травматолог-ортопед, dr.vkravchenko@mail.ru, https://orcid.org/0009-0007-4104-8405;

Антон Андреевич Акулаев — кандидат медицинских наук, доцент кафедры, заведующий отделением, врач — травматолог-ортопед, antonakulaev@gmail.com, https://orcid.org/0000-0002-0502-8120;

Александр Вадимович Губин — доктор медицинских наук, профессор, заведующий кафедрой, заместитель главного врача, врач — травматолог-ортопед, shugu19@gubin.spb.ru, https://orcid.org/0000-0003-3234-8936.

Information about the authors:

Svetlana V. Koroleva — Doctor of Medical Sciences, Professor of the Department, drqueen@mail.ru, https://orcid.org/0000-0002-7677-1077;

Anzhela S. Mulyk — orthopaedic surgeon, md.amulyk@mail.ru, https://orcid.org/0009-0007-5041-1915;

Vladimir V. Kravchenko — postgraduate student, orthopaedic surgeon, dr.vkravchenko@mail.ru, https://orcid.org/0009-0007-4104-8405;

Anton A. Akulaev — Candidate of Medical Sciences, Associate Professor of the Department, Head of the Department, orthopaedic surgeon, antonakulaev@gmail.com, https://orcid.org/0000-0002-0502-8120;

 $A lexander \ V. \ Gubin - Doctor \ of \ Medical \ Sciences, Professor, Head \ of \ Department, Deputy \ Chief \ Physician, orthopaedic \ surgeon, shugu19@gubin.spb.ru, https://orcid.org/0000-0003-3234-8936.$

Вклад авторов:

Королева С.В., Мулык А.С., Кравченко В.В. — существенный вклад в разработку концепции и дизайна исследования, сбор, анализ и интерпретация данных; написание текста статьи, ее редактирование; ответственность за все аспекты статьи, обеспечивая надлежащее расследование и решение вопросов, связанных с точностью или целостностью любой части работы..

Акулаев А.А. — утверждение окончательного варианта статьи для публикации; ответственность за все аспекты статьи, обеспечивая надлежащее расследование и решение вопросов, связанных с точностью или целостностью любой части работы.

Губин А.В. — редактирование текста статьи; утверждение окончательного варианта статьи для публикации; ответственность за все аспекты статьи, обеспечивая надлежащее расследование и решение вопросов, связанных с точностью или целостностью любой части работы.

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-625-631

Evaluation of sclerostin as a new biomarker in the diagnosis of osteoporosis

A.K.H. Al-Masoody¹, S.A. Naser¹, M.N. AL-Khafaji¹, A.A. Al-Fahham²

- ¹ Al-Furat Al-Awsat Technical University, Babylon, Iraq
- ² University of Kufa, Najaf, Iraq

Corresponding author: Ali A. Al-Fahham, fahham925@gmail.com

Abstract

Background Sclerostin is a glycoprotein mostly produced by osteocytes; it has a key function in bone metabolism and the pathophysiology of osteoporosis.

Objectives The aim of this study is to evaluate the potential use of sclerostin as a new biomarker in the diagnosis of osteoporosis.

Methods This case-control cross-sectional study was carried in Najaf, in Iraq. Seventy patients diagnosed with osteoporosis were involved in the study. The control group consisted of 40 apparently healthy persons identified during the same period. Body Mass Index (BMI) categories were classified according to the world health organization classification. Serum sclerostin levels were determined by a sandwich ELISA technique.

Results The mean sclerostin concentration in patients was 7.9 ± 2.3 ng/mL, much greater than that measured in the control group 2.88 ± 1.22 ng/mL. The univariate logistic regression analysis shows a significant association between high sclerostin levels and the likelihood of having osteoporosis, with an odds ratio of 1.66 and a p-value of < 0.034. The results also indicated that sclerostin reported a sensitivity of 78 % and specificity of 82 % (p-value 0.029).

Conclusions This study indicated a strong association between high serum sclerostin levels and having osteoporosis risk, suggesting its potential as a bone health biomarker. Further research on larger sample is required to confirm its diagnostic value.

Keywords: sclerostin, osteoporosis, body mass index, receiver operating characteristics, area under the curve

For citation: Al-Masoody AKH, Naser SA, AL-Khafaji MN, Al-Fahham AA. Evaluation of Sclerostin as a new biomarker in the diagnosis of osteoporosis. *Genij Ortopedii*. 2025;31(5):625-631. doi: 10.18019/1028-4427-2025-31-5-625-631.

[©] Al-Masoody A.K.H., Naser S.A., AL-Khafaji M.N., Al-Fahham A.A., 2025

Научная статья

УДК 616.71-007.234-071 https://doi.org/10.18019/1028-4427-2025-31-5-625-631

Оценка склеростина как нового биомаркера в диагностике остеопороза

A.K.H. Al-Masoody¹, S.A. Naser¹, M.N. AL-Khafaji¹, A.A. Al-Fahham²[™]

- ¹ Al-Furat Al-Awsat Technical University, Babylon, Iraq
- ² University of Kufa, Najaf, Iraq

Автор, ответственный за переписку: Ali A. Al-Fahham, fahham925@gmail.com

Аннотация

Введение. Склеростин — гликопротеин, вырабатываемый преимущественно остеоцитами и играющий ключевую роль в метаболизме костной ткани и патофизиологии остеопороза.

Цель работы — оценить потенциальное использование склеростина в качестве нового биомаркера диагностики остеопороза.

Материалы и методы. Перекрестное исследование «случай – контроль» проведено в Наджафе (Ирак). В исследовании приняли участие 70 пациентов с диагнозом остеопороз, контрольная группа состояла из 40 здоровых людей. Индекс массы тела (ИМТ) соответствовал классификации Всемирной организации здравоохранения. Уровни склеростина в сыворотке крови определяли методом сэндвич-ИФА.

Результаты. Средняя концентрация склеростина у пациентов составила $(7,9\pm2,3)$ нг/мл, что значительно выше, чем в контрольной группе, — $(2,88\pm1,22)$ нг/мл. Однофакторный логистический регрессионный анализ показал значимую связь между высоким уровнем склеростина и вероятностью развития остеопороза с отношением шансов 1,66 и значением p < 0,034. Чувствительность склеростина составила 78%, а специфичность — 82% (p = 0,029).

Заключение. Данное исследование выявило тесную связь между высоким уровнем склеростина в сыворотке крови и риском развития остеопороза, что свидетельствует о его потенциале в качестве биомаркера здоровья костей. Для подтверждения его диагностической ценности необходимы дальнейшие исследования на более крупной выборке.

Ключевые слова: склеростин, остеопороз, индекс массы тела, ROC-кривая, площадь под кривой

Для цитирования: Al-Masoody A.K.H., Naser S.A., AL-Khafaji M.N., Al-Fahham A.A. Оценка склеростина как нового биомаркера в диагностике остеопороза. *Гений ортопедии*. 2025;31(5):625-631. doi: 10.18019/1028-4427-2025-31-5-625-631.

-

[©] Al-Masoody A.K.H., Naser S.A., AL-Khafaji M.N., Al-Fahham A.A., 2025

INTRODUCTION

Sclerostin is a glycoprotein mostly produced by osteocytes; it has a key function in bone metabolism. As such, sclerostin holds critical assumptions for the understanding and treatment of diseases related to bone. The pathway involves Wnt/β-catenin and the regulation by micro RNAs that sclerostin has to create in itself an interaction, therefore creating complexity which needs future attention [1]. Further studies on the structure and physiology of sclerostin will not only deepen the knowledge about bone but also help in creating new ways of treating issues related to bones, like osteoporosis. It works as an inhibitor for the growing process of bones by blocking a certain type of signaling linked to Wnt/β-catenin that is very important for producing new bone cells [2]. The implementation of sclerostin measurement in clinical practice comes with various benefits. It permits better patient stratification according to their fracture risk, which can consequently inform more individualized treatment strategies. For instance, the level of sclerostin could direct the choice of pharmacologic therapies that work by enhancing bone density and lowering fracture risk [3]. These individualized treatment plans are most important in postmenopausal women, where there is a higher prevalence of fractures related to osteoporosis [4]. Besides, the levels of sclerostin give judgments about bone formation over resorption; thus, it has potential as a monitoring biomarker for treatment. By evaluating changes in sclerostin levels over time, it can help at least for sure interventions and hence improve indexing treatments [5]. J. Delgado-Calle et al. highlighted the role of the sclerostin-LRP4 interaction in bone metabolism, suggesting that sclerostin suppresses Wnt/β-catenin signaling through this pathway. This mechanism is crucial for understanding the way by which sclerostin controls bone remodeling and demonstrates that therapeutic modulation of this pathway may offer novel strategies for the treatment of osteoporosis [6]. Regulatory micro RNAs can also be one of the routes through which miR-218 influences sclerostin, hence affecting the differentiation of osteoblasts. Therefore it shows the subtle intricate role sclerostin plays within the larger parameters of bone biology. A study by M.O. Hassan et al. reported that miR-218 enhances osteoblast differentiation through down-regulation of sclerostin, therefore promoting Wnt signaling pathway activity [1]. The cross-talk between miR-218 and sclerostin not only gives a greater insight into osteobiology but indeed opens up prospective pharmacological targets for driving bone formation processes in pathological states characterized by reduced bone mass [7]. The bone formation effects of sclerostin are just one small aspect of its physiology. High levels of sclerostin, and therefore low skeletal mass, are often seen in postmenopausal women and so underscore the involvement of sclerostin in osteoporosis [8]. This was one of the objectives tested clinically in a trial like that of R.R. Recker et al., which checked whether blosozumab, an anti-sclerostin monoclonal antibody, could increase bone mineral density in such patients. The findings revealed that at both the spine and hip, blosozumab substantially increased bone mineral density maturing the concept of sclerostin as a negative regulator of bone formation with an optimistic therapeutic approach for managing osteoporosis [9]. The various signaling pathways that involve sclerostin also point to its multiple roles in maintaining healthy bones. Those are the interactions from which one might derive insight aimed at crafting fresh intervention strategies leveraging targets on sclerostin to boost bone mass and reduce osteoporotic infection dangers [10]. There remains a gap in knowledge of the role of sclerostin in bone biology. Thus, till now, the exact molecular mechanisms that govern the regulation of sclerostin expression under different physiological conditions have not been fully clarified. Also, though well established, the contribution of other potential interacting partners to the sclerostin-LRP4 interaction should also be explored [11]. The future should bring studies that uncover new microRNAs and signaling pathways involved in regulating networks for controlling sclerostin expression and activity. Longitudinal studies on bone health after treatment with anti-sclerostin therapies like blosozumab in varied populations would help fill this gap. Studies outside osteoporosis, like metastatic bone disease, will give us broader information on the role of sclerostin in skeletal health [9].

The **aim** of this work is to evaluate the potential use of sclerostin as a new biomarker in the diagnosis of osteoporosis.

MATERIALS AND METHODS

Patients and data collection

This case-control cross-sectional study was carried out at Al-Najaf General Hospital, in Najaf, in Iraq, from February 2024 to September 2024. Seventy patients diagnosed with osteoporosis were involved in the study. The control group consisted of 40 apparently healthy persons identified during the same period. Information about the age and body mass index (BMI) was collected directly from the patients. BMI categories were classified according to the World Health Organization (WHO) classification [12]. Serum sclerostin levels were determined by a technique of sandwich ELISA using the Human SOST Quantikine Immunoassay kit (Rand D, USA). Human SOST Quantikine Immunoassay Kit is a sandwich ELISA for the quantitative determination of sclerostin (SOST) in human serum or plasma. Samples were added to microplate wells that had been pre-coated with capture antibody to ensure attachment of sclerostin from the samples followed by detection with enzyme-linked antibodies. After washing away unbound components, color substrate was

added and color development was observed; intensity of color is proportional to concentration of sclerostin in the sample. Finally, the reaction was stopped and the absorbance was measured at 450 nm standard curve used to determine levels in tested samples.

Statistical Analysis

Data was analyzed using SPSS Statistics software, version 25.0 (SPSS, Chicago). The Kolmogorov – Smirnov test was utilized to check the normality of parametric data. Those data that demonstrated normal distribution were expressed as mean \pm standard deviation and were subjected to the independent t-test for comparison. The predictive ability of sclerostin in predicting relapses among patients with osteoporosis can be tested by applying the receiver operating characteristic (ROC) curve. A p-value of less than 0.05 was considered statistically significant.

RESULTS

The demographic comparison as shown in Table 1 indicates that there was no statistical difference between the two groups of patients and controls with regard to age (χ^2 = 4.79, p = 0.18) or gender distribution (χ^2 = 0.33, p = 0.56), meaning that these variables were well matched between the two samples. However, there was a very marked difference in the classification of BMI χ^2 = 19.04, p = 0.000 with underweight participants significantly more in number in the study group; this accounted for about 37 % of the osteoporosis patients and only about 5 % of the controls

Table 1 Distribution of patients (osteoporosis) and control groups by their demographic data

Itoma	Dating	Patient $(n = 70)$		Control	Chi Square	
Items	Rating	Freq.	%	Freq.	%	(p-value)
	21-30	14	20.00	13	32.5	
A	31-40	25	35.71	17	42.5	4.79
Age	41-50	16	22.86	4	10	(0.18)
	52-60	15	21.43	6	15	
Mean ± SD			46.33 ± 12.47			
Gender	Male	31	44.29	20	50	0.33
Gender	Female	39	55.71	20	50	(0.56)
	Underweight	26	37.14	2	5	
DMI	Normal	22	31.43	28	70	19.04
BMI Ov	Overweight	18	25.71	8	20	(0.000)
	Obese	4	5.71	2	5	

As shown in Figure 1, it was found that the patients' group had a significantly raised level of serum sclerostin as compared to the controls (p < 0.000). The mean sclerostin concentration in the patients was 7.9 ± 2.3 ng/mL, much greater than that measured in the control group (2.88 ± 1.22 ng/mL). This striking difference indicates that increased expression of sclerostin may be intimately linked with the pathophysiology of the disease under study; perhaps it reflects altered bone metabolism or impaired osteogenic signaling among the patients of this group.

The univariate logistic regression analysis shows a significant association between high sclerostin levels and the likelihood of having osteoporosis, with an odds ratio (OR) of 1.66 and a p-value of < 0.034; 95 % confidence interval (CI) just includes 1.0 (0.92–1.79), the p-value appears to be statistically

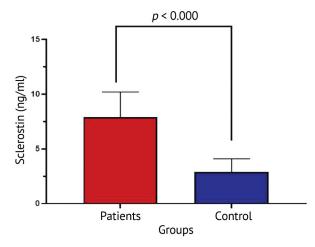


Fig. 1. Measurement of serum sclerostin (ng/mL) between patients and control groups

significant. So, it allows us to conclude sclerostin is relevant as a possible risk factor. From these results, we can infer that increased sclerostin levels may lead to osteoporosis, underlining its potential role in risk prediction and clinical evaluation.

The analysis of diagnostic performance has revealed sclerostin to have a strong potential as a biomarker for osteoporosis with an area under the curve (AUC) of 0.82 which is fairly good. At a cut-off value of 5.8 sclerostin reported a sensitivity of 78 % and specificity of 82 % which means it can fairly well identify those individuals who have osteoporosis from those who do not. The p-value obtained (0.029) also adds to the evidence in favor of the reliability of sclerostin in this case. These findings strengthen the potential clinical application of sclerostin evaluation as a non-invasive biomarker in the future for detecting and assessing the risk of osteoporosis at an early stage (Fig. 2).

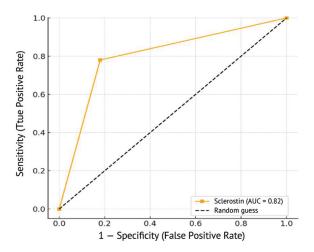


Fig. 2. ROC curve for sclerostin in the diagnosis of osteoporosis

DISCUSSION

The present study findings resonate well with the strong association between low BMI and osteoporosis; thus, in this specific population, low BMI could potentially be considered a risk factor when assessed clinically for bone health [12]. Many previous studies have associated BMI with osteoporosis. Thus, J.S. Walsh et al. reported significant correlation between BMI and osteoporosis, suggesting possible causes like increased loading and higher aromatase activity [13]. Another study conducted by J.T. Lloyd et al. in the USA showed that every unit of increase in BMI was associated with 0.0082 g/cm² increase in BMD [14]. Also, D.T. Felson et al. showed the guarding effect of elevated body weight on bone mineral density (BMD) values in different places, mainly in bones that bear weight [15]. In a likely manner, an Asian study found good links between body weight, BMI, height, and being osteoporotic at various anatomical sites [16]. The potential of sclerostin as an osteoporosis biomarker has been discussed in several scenarios. Studies report that the sclerostin level has positive correlation with BMD in postmenopausal women, implying its relevance in assessing fracture risk [17]. Also, the link of sclerostin with metabolic disease markers makes it plausible that it could be a dual biomarker for bone and metabolic diseases in postmenopausal women [18–19]. The only real action that sclerostin performs is to primarily inhibit the Wnt signaling pathway, essential for bone formation. High sclerostin levels have then been associated with low osteoblastic activity and defective bone formation; thus, they are useful towards evaluating severity of osteoporosis [10]. Sclerostin's involvement in bone metabolism highlights its possible application as a diagnostic tool, more so in postmenopausal women, who are about to develop an increased risk of osteoporosis because of estrogen deficiency [20]. Osteoporosis has a very complicated pathophysiology, involves processes at the level of bone remodeling which are controlled by several molecular factors on the activity of sclerostin. Sclerostin is an inhibitor of bone formation which is a glycoprotein produced by osteocytes, it exerts its actions by blocking Wnt signaling pathway, one of the most important regulators of metabolism in bones [21]. The regulation of sclerostin should be very important concerning the maintenance of bone density; high levels have been associated with osteoporosis; elevated sclerostin is also involved in repression of bone formation what makes it an attractive potential therapeutic target for anti-sclerostin therapy that has currently emerged as a very promising novel interdisciplinary approach targeted toward enhancement of bone formation treatment for osteoporosis [10]. The UK National Osteoporosis Guideline Group (NOGG) recommended the incorporation of sclerostin in clinical practice as a biomarker for the diagnosis and management of osteoporosis. The measurement of sclerostin may improve understanding of individual bone health, that is, BMD assessed conventionally [22]. In this way, treatment could be tailored more on an individual basis for specific high-risk postmenopausal women [23]. Evidence shows that a combined assessment of sclerostin and BMD can give a holistic view regarding the diagnosis and treatment of osteoporosis [10]. Sclerostin assessment will not replace conventional BMD measurements as a linchpin for diagnosing osteoporotic disease but can be added as a biomarker to refine diagnosis and monitoring of treatment [2]. The possible role of sclerostin in guiding clinical choices gets more backing from studies that link its levels to how patients with osteoporosis respond to treatment [21]. The combined use of sclerostin and BMD measurements is likely to provide a comprehensive view in osteoporosis diagnosis and management evaluation [10]. BMD is one essential component in diagnosing osteoporosis, and the incorporation of biomarkers like sclerostin may refine diagnostic precision as well as treatment monitoring [24]. Further, the implied clinical utility of sclerostin based on its level studies relating to treatment response in osteoporotic patients has been underscored by investigations [21]. The importance of sclerostin does not limit its involvement merely to the diagnostic aspect but rather plays a pivotal role in mechanistic understanding related to the coupling within bone remodeling between osteoclasts and osteoblasts. Sclerostin inhibition will be a completely new way that could stimulate bone formation specifically without influencing resorption [25]. Study of the Sirt1-sclerostin route further underlines sclerostin's role as a likely marker and target, implying that changes in this pathway might allow new methods for osteoporosis treatment [26].

CONCLUSION

This study indicates that high serum sclerostin levels are greatly linked to higher risk of osteoporosis, underlining its possible role as a beacon for bone health check. Sclerostin also showed a near link, hinting at a likely tie between metabolic state and bone density. These findings need more investigation in bigger varied studies to confirm the real importance of this biomarker in osteoporosis diagnosis and care.

Ethics approval The protocol in this study was approved by the ethical committee of the Medical College at the University of Kufa (No. 188 in 2025).

Consent to participate Before collection of samples, the patients involved in the protocol were asked to sign consent for their participation.

Funding The researchers rely only on their own financial support.

REFERENCES

- 1. Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. *J Biol Chem.* 2012;287(50):42084-42092. doi: 10.1074/jbc.M112.377515.
- 2. Maeda K, Kobayashi Y, Koide M, et al. The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci. 2019;20(22):5525. doi: 10.3390/ijms20225525.
- 3. Rossini M, Gatti D, Adami S. Involvement of WNT/ β -catenin signaling in the treatment of osteoporosis. *Calcif Tissue Int.* 2013;93(2):121-132. doi: 10.1007/s00223-013-9749-z.
- 4. Walker EC, Mcgregor NE, Poulton IJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. *J Clin Invest*. 2010;120(2):582-592. doi: 10.1172/JCI40568.
- 5. Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. *Ther Clin Risk Manag.* 2018;14:2029-2049. doi: 10.2147/TCRM.S138000.
- 6. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29-37. doi: 10.1016/j. bone.2016.10.007.
- 7. Li H, Wang Z, Fu Q, Zhang J. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. *Biomarkers*. 2014;19(7):553-556. doi: 10.3109/1354750X.2014.935957.
- 8. Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease--related markers in Japanese postmenopausal women. *J Clin Endocrinol Metab*. 2012;97(8):E1473-1477. doi: 10.1210/jc.2012-1218.
- 9. Recker RR, Benson CT, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. *J Bone Miner Res.* 2015;30(2):216-224. doi: 10.1002/jbmr.2351.
- 10. Kuo TR, Chen CH. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. *Biomark Res.* 2017;5:18. doi: 10.1186/s40364-017-0097-4.
- 11. Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. *J Biol Chem.* 2011;286(22):19489-19500. doi: 10.1074/jbc.M110.190330.
- 12. Chiu CT, Lee JI, Lu CC, et al. The association between body mass index and osteoporosis in a Taiwanese population: a cross-sectional and longitudinal study. *Sci Rep.* 2024;14(1):8509. doi: 10.1038/s41598-024-59159-4.
- 13. Walsh JS, Vilaca T. Obesity, Type 2 Diabetes and Bone in Adults. *Calcif Tissue Int.* 2017;100(5):528-535. doi: 10.1007/s00223-016-0229-0.
- 14. Lloyd JT, Alley DE, Hawkes WG, et al. Body mass index is positively associated with bone mineral density in US older adults. *Arch Osteoporos*. 2014;9:175. doi: 10.1007/s11657-014-0175-2.
- 15. Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. *J Bone Miner Res.* 1993;8(5):567-573. doi: 10.1002/jbmr.5650080507.
- 16. Wu SF, Du XJ. Body Mass Index May Positively Correlate with Bone Mineral Density of Lumbar Vertebra and Femoral Neck in Postmenopausal Females. *Med Sci Monit*. 2016;22:145-151. doi: 10.12659/msm.895512.
- 17. Polyzos S, Anastasilakis A, Bratengeier C, et al. Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women--the six-month effect of risedronate and teriparatide. *Osteoporos Int.* 2012;23(3):1171-1176. doi: 10.1007/s00198-010-1525-6.
- Reppe S, Noer A, Grimholt RM, et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. *J Bone Miner Res.* 2015;30(2):249-256. doi: 10.1002/jbmr.2342.
 Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease--related markers
- 19. Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease--related markers in Japanese postmenopausal women. *J Clin Endocrinol Metab.* 2012;97(8):E1473-1477. doi: 10.1210/jc.2012-1218.
- 20. Bousson V, Bergot C, Sutter B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489-1501. doi: 10.1007/s00198-011-1824-6.
- 21. Akkawi I, Zmerly H. Osteoporosis: Current Concepts. *Joints*. 2018;6(2):122-127. doi: 10.1055/s-0038-1660790.
- 22. Compston J, Cooper A, Cooper C, et al. UK clinical guideline for the prevention and treatment of osteoporosis. *Arch Osteoporos*. 2017;12(1):43. doi: 10.1007/s11657-017-0324-5.

- 23. Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3-44. doi: 10.1007/s00198-018-4704-5.
- 24. Hlaing TT, Compston JE. Biochemical markers of bone turnover uses and limitations. *Ann Clin Biochem*. 2014;51(Pt 2):189-202. doi: 10.1177/0004563213515190.
- 25. Yu Y, Wang L, Ni S, et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. *Nat Commun.* 2022;13(1):4241. doi: 10.1038/s41467-022-31997-8.
- 26. D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. *Antioxid Redox Signal*. 2018;28(8):711-732. doi: 10.1089/ars.2017.7178.

The article was submitted 05.05.2025; approved after reviewing 28.05.2025; accepted for publication 25.08.2025.

Статья поступила 05.05.2025; одобрена после рецензирования 28.05.2025; принята к публикации 25.08.2025.

Information about the authors:

Ali Kareem Hameed Al-Masoody — dr.eman.m.saeed@uotelafer.edu.iq, https://orcid.org/0009-0002-0516-2837; Salena Abdulabbas Naser — Salena.naser@atu.edu.iq, https://orcid.org/0009-0001-7735-0039; Mayada Nazar AL-Khafaji — Mamnazar83@gmail.com, https://orcid.org/0000-0001-7670-5478; Ali A. Al-Fahham — Professor, Faculty of Nursing, fahham925@gmail.com, https://orcid.org/0009-0005-2108-1668.

Научная статья

УДК 616.833-006.38.03-06:617.3-092:004 https://doi.org/10.18019/1028-4427-2025-31-5-632-638

Особенности ортопедической патологии у больных нейрофиброматозом I типа в республике Башкортостан

Р.Н. Мустафин

Башкирский государственный медицинский университет, Уфа, Россия

Рустам Наилевич Мустафин, ruji79@mail.ru

Аннотация

Введение. Нейрофиброматоз I типа (NF-1) — наследственный опухолевый синдром, характеризующийся не только развитием кожных, подкожных и плексиформных нейрофибром, глиом зрительных нервов и когнитивных расстройств, но и ортопедической патологией. Актуальность исследования особенностей клинических проявлений NF-1 обусловлена частым развитием скелетных аномалий у пациентов, требующих специфического подхода в лечении в связи с возможным наличием опухолеподобных процессов в областях поражения костей и суставов.

Цель работы — определить частоту встречаемости ортопедической патологии и особенности проявления характерных для заболевания признаков у больных NF-1 в Республике Башкортостан (РБ), сравнить полученные результаты с данными мировой статистики.

Материалы и методы. Материал для исследования — амбулаторные карты пациентов с клиническим диагнозом «нейрофиброматоз I типа», результаты лабораторных и инструментальных исследований. Проведен ретроспективный анализ частоты встречаемости основных клинических проявлений NF-1 и ортопедической патологии. Использована интерактивная таблица сопряженности 2×2 с вычислением статистик связи (критерий Пирсона χ^2) с поправкой Йейтса на непрерывность, разработанная В.П. Леоновым, выполнен анализ четырехпольных таблиц сопряженности.

Результаты и обсуждение. Частота встречаемости NF-1 в РБ в 2024 году составила 1:7407, что в 2,3 раза реже, чем в среднем по миру (1:3000 человек). Определены: развитие сколиоза — у 17,4 %, деформация грудной клетки — у 5,3 %, псевдоартроз — у 3 %, дисморфизм лица — у 9 %, низкий рост — у 13,8 % больных. Случаи остеопороза, асимметрии лица и дисплазии крыла клиновидной кости у больных NF-1 в регионе не зарегистрированы. При помощи четырехпольных таблиц сопряженности определено статистически значимое отличие частоты встречаемости ортопедической патологии у больных NF-1 из РБ. Согласно ретроспективному анализу, частота встречаемости ортопедической патологии у больных NF-1 из РБ оказалась статистически значимо ниже, чем в среднем по миру, что свидетельствует о необходимости внесения консультации ортопеда в медико-экономические стандарты для своевременного выявления патологии и назначения лечения.

Заключение. Анализ особенностей проявлений ортопедической патологии у больных NF-1 из PБ показал сравнимую с мировыми данными частоту встречаемости деформации грудной клетки, сколиоза, низкого роста и псевдоартроза. Однако у пациентов с NF-1 из PБ определена достоверно более редкая регистрация скелетных аномалий в целом, дисморфизма лица, макроцефалии. Данных об остеопорозе, асимметрии лица и дисплазии крыла клиновидной кости, характерных для больных NF-1, в проанализированной группе не обнаружено. У больных NF-1 с ортопедической патологией выявлены более частые трудности в обучении в сравнении со всей группой пациентов с NF-1 из PБ.

Ключевые слова: деформация грудной клетки, нейрофиброматоз I типа, остеопороз, псевдоартроз, сколиоз, частота встречаемости

Для цитирования: Мустафин Р.Н. Особенности ортопедической патологии у больных нейрофиброматозом I типа в республике Башкортостан. *Гений ортопедии*. 2025;31(5):632-638. doi: 10.18019/1028-4427-2025-31-5-632-638.

_

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-632-638

Specific features of orthopedic pathology in neurofibromatosis type I patients of the Republic of Bashkortostan

R.N. Mustafin

Bashkir State Medical University, Ufa, Russian Federation

Rustam N. Mustafin, ruji79@mail.ru

Abstract

Background Neurofibromatosis type 1 (NF-1) is a hereditary tumor syndrome characterized by cutaneous, subcutaneous and plexiform neurofibromas, optic nerve gliomas, cognitive disorders and can be associated with orthopedic pathology. Clinical manifestations of NF-1 include skeletal abnormalities requiring a specific approach to treatment of the tumor-like processes in the involved bones and joints.

The **objective** was to determine the frequency of orthopedic pathology and clinical manifestations of the disease in NF-1 patients seen in the Republic of Bashkortostan (RB) and make international comparisons.

Material and methods Outpatient records of patients with a clinical diagnosis of NF-I, the results of laboratory and instrumentation studies were examined. A retrospective analysis of the frequency of occurrence of the main clinical manifestations of NF-1 and orthopedic pathology was conducted. An interactive 2×2 contingency table was used for calculation of association statistics (Pearson χ^2 criterion) with the Yates correction for continuity developed by V.P. Leonov and four-field contingency tables were analyzed.

Results and discussion The incidence rate of NF-1 was 1:7407 by 2024 in the RB, which is 2.3 times less than the world average (1:3000 people). Associated malformations included scoliosis seen in 17.4 %, chest deformity observed in 5.3 %, pseudoarthrosis in 3 %, facial dysmorphism in 9 %, short stature in 13.8 % of patients. Osteoporosis, facial asymmetry and sphenoid wing dysplasia were not observed in NF-1 patients in the region. A statistically significant difference in the frequency of occurrence of orthopedic pathology was determined in patients with NF-1 from the RB using four-field contingency tables. A retrospective analysis showed a statistically lower incidence of orthopedic pathology in NF-1 patients of RB as compared to the world average which indicated the need to include orthopedic consultation in medical and economic standards for the timely detection of pathology and treatment.

Conclusion Analysis of orthopedic pathology in NF-1 patients from RB showed the occurrence of chest deformity, scoliosis, short stature and pseudoarthrosis being comparable with world data. Skeletal anomalies, facial dysmorphism and macrocephaly were not common for NF-1 patients of RB. No cases of osteoporosis, facial asymmetry and sphenoid wing dysplasia being characteristic of NF-1 patients were detected in the patients. Learning difficulties were more common for NF-1 patients with orthopedic pathology as compared to NF-1 patients of RB.

Keywords: chest wall deformity, neurofibromatosis type 1, osteoporosis, pseudoarthrosis, scoliosis, frequency of occurrence

For citation: Mustafin RN. Specific features of orthopedic pathology in neurofibromatosis type I patients of the Republic of Bashkortostan. *Genij Ortopedii*. 2025;31(5):632-638. doi: 10.18019/1028-4427-2025-31-5-632-638.

[©] Mustafin R.N., 2025

[©] Translator Irina A. Saranskikh, 2025

ВВЕДЕНИЕ

Нейрофиброматоз объединяет три нозологии, которые имеют различную генетическую природу: нейрофиброматоз I типа (NF-1), нейрофиброматоз II типа и шванноматоз. NF-1 является моногенным заболеванием, обусловленным гетерозиготными мутациями в гене-супрессоре опухолей NF1, расположенном на длинном плече 17 хромосомы (17q11.2) [1]. По данным проведенного мета-анализа [2], NF-1 встречается с частотой в среднем 1:3164 населения в мире, варьируя в различных популяциях от 1:2020 до 1:4329, а заболеваемость — от 1:1968 до 1:3601 (в среднем 1:2662). Около половины случаев NF-1 являются семейными, вследствие передачи заболевания следующему поколению по аутосомно-доминантному типу, тогда как другая половина случаев — спорадические, вызванные вновь возникшими мутациями в половых клетках родителей [3]. NF-1 — это наследственный опухолевый синдром, характерными проявлениями болезни являются множественные пигментные пятна цвета кофе-с-молоком (франц.: café-au-lait macules, CALM), диаметром более 5 мм в допубертате и более 15 мм в постпубертате, 99 % из которых представляют собой опухолевые разрастания меланоцитов в коже вследствие потери гетерозиготности в гене NF1 [4], гамартомы радужной оболочки глаз (узелков Лиша), кожные и подкожные нейрофибромы, глиомы зрительных нервов и плексиформные нейрофибромы. Специфические для NF-1 костные дисплазии включают врожденный ложный сустав (псевдоартроз) и/или истончение кортикального слоя длинных трубчатых костей, дисплазию клиновидной кости, сколиотическую/кифосколиотическую деформацию позвоночника и деформацию грудной клетки по типу воронкообразной/килевидной [5]. Согласно критериям NIH (англ.: National Institutes of Health), при обнаружении двух из этих признаков, диагноз NF-1 устанавливают клинически. При наличии подтвержденного случая NF-1 у кровных родственников достаточно одного признака болезни [6].

Наиболее распространенными для больных NF-1 являются опухолевые проявления. Так, CALM определяют у 96,5 % пациентов с NF-1, веснушчатость подмышечных и паховых областей — у 90 % [7]. Кожные и/или подкожные нейрофибромы выявляют более чем у 99 %, гамартомы радужной оболочки глаз — у 70 %, плексиформные нейрофибромы — у половины больных NF-1 [6]. Характерно также поражение головного мозга в виде глиом зрительных нервов — в 27 % случаев NF-1, опухолей головного мозга — в 10 %, гидроцефалии — в 7,7 % [8], эпилепсии — в 8,1 % [9]. Тяжелыми осложнениями NF-1 являются элокачественные опухоли из оболочек периферических нервов MPNST (*англ.*: malignant peripheral nerve sheath tumors), которые определяют у 13 % пациентов с NF-1, как правило, в результате перерождения уже существующих плексиформных нейрофибром, для данных пациентов характерна высокая летальность [10].

Помимо опухолевых проявлений NF-1 у всех пациентов наблюдают диффузные, заметные на протяжении всей жизни, когнитивные нарушения, приводящие в 40 % случаев к трудностям в обучении [3], а также частое поражение опорно-двигательной системы (ОДС). Согласно проведенному мета-анализу [11], приблизительно у 26,6 % пациентов с NF-1 имеется сколиоз. Как правило, он развивается в раннем детстве, наиболее часто поражая грудной отдел позвоночника. Достоверной корреляции между сколиозом и генотипом NF-1 не выявлено. В среднем у 24 % больных NF-1 в мире определяют низкий рост [12], у 5 % — псевдоартроз [6], который развивается вследствие образования фиброзных гамартом длинных трубчатых костей с потерей гетерозиготности гена NF1 в данных тканях [13]. В совокупности скелетные аномалии определяют не менее чем у 60 % больных NF-1, они часто являются тяжелыми случаями, требующими оперативного лечения [14]. Так, для лечения псевдоартроза при NF-1 используют иссечение тканей фиброзных гамартом с последующей коррекцией аппаратом Илизарова [13]. Спондилодез и техника растущих стержней при лечении сколиоза у больных NF-1 показали лучшие результаты с точки зрения эффективности и безопасности [11].

Характерную для NF-1 дисплазию крыла клиновидной кости определяют в среднем у 9 %, асимметрию лица — у 10 %, макроцефалию — у 25 % [15], аномалии черепа, приводящие к лицевому дисморфизму — у 53 % пациентов с NF-1 [16]. Деформация грудной клетки выявлена у 3,5 % больных NF-1, что значительно выше общей популяции (0,3 %) [17]. Проведенный метаанализ [18] показал, что при NF-1 наблюдают снижение минеральной плотности костной ткани в поясничном отделе позвоночника и бедренной кости с повышением в крови уровней паратгормона и С-телопептида коллагена первого типа, а также со снижением щелочной фосфатазы, кальция, витамина D, остеокальцина, маркеров формирования костной ткани по сравнению со здоровыми людьми. В связи с этим у половины пациентов диагностируют остеопороз [19]. Актуальность исследования ортопедической патологии у больных NF-1 обусловлена необходимостью систематизации данных об особенностях распространенности скелетных аномалий у пациентов из различных регионов, обнаружением особенностей оказания медицинской помощи с целью их коррекции.

Цель работы — определить частоту встречаемости ортопедической патологии и особенности проявления характерных для заболевания признаков у больных NF-1 в Республике Башкортостан, сравнить полученные результаты с данными мировой статистики.

МАТЕРИАЛЫ И МЕТОДЫ

Проведен анализ особенностей ортопедической патологии у больных NF-1 из Республики Башкортостан (РБ), состоящих на учете у врача генетика в Республиканском медико-генетическом центре с установленным диагнозом «нейрофиброматоз I типа». Всего исследовано 543 больных NF-1 из 433 семей в возрасте от 1 до 85 лет (средний возраст — 30 лет и 7 месяцев), из них мужчин — 259 (48 %), женщин — 284 (52 %). МРТ была проведена 60 пациентам, КТ — 28, данные о рентгенографии и денситометрии в амбулаторных картах не представлены. Из всех пациентов четыре больных NF-1 получают лечение ингибитором митоген-активируемой протеинкиназы (селуметиниб или коселуго). Все исследования проведены с соблюдением норм биомедицинской этики и соответствуют стандартам GCP (англ.: Good Clinical Practice). Исследованы особенности клинических проявлений NF-1 у больных из РБ, проведено сравнение полученных данных с общемировыми данными, а также сравнение частоты встречаемости и выраженность опухолевого синдрома у больных со скелетными аномалиями с общей группой пациентов с NF-1 из РБ.

Для получения качественных бинарных данных проводили статистическую обработку с использованием интерактивной таблицы сопряженности 2×2 с вычислением статистик связи (критерий Пирсона χ^2) с поправкой Йейтса на непрерывность, разработанной В.П. Леоновым (http://www.biometrica.tomsk.ru/freq2.htm), анализа четырехпольных таблиц сопряженности на сайте https://medstatistic.ru/calculators/calchi.html. Помимо статистического анализа проведено молекулярно-генетическое исследование образцов ДНК больных NF-1, в результате чего у 20 из них были идентифицированы мутации в гене *NF1*. Из 544 пациентов с NF-1 восьми проведен подробный осмотр офтальмолога, который осматривал больных с помощью щелевой лампы для выявления гамартом радужной оболочки.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В РБ зарегистрировано 543 больных NF-1 из 433 семей. С учетом населения республики, частота встречаемости болезни составила 1:7 407 человек, что более чем в два раза отличается от общемирового показателя (1 на 3 164 населения [2]). Из 543 описанных пациентов у 245 (45 %) выявлено наследование заболевания от одного из родителей, тогда как у 299 (55 %) — спорадические случаи без семейного анамнеза, что соответствует данным других исследователей [3]. Соотношение мужчин к женщинам составило приблизительно 1:1.

Пигментные пятна определены у 100 % больных NF-1, поскольку данный критерий был основным для постановки диагноза. Необходимо учесть, что подобные пятна на коже, сходные с таковыми при NF-1, могут встречаться и при других наследственных опухолевых синдромах, таких как туберозный склероз [20], синдромы Leopard [21], Нунан и Костелло [22], Коудена [23], Пейтца-Егерса [24], Легиуса [25] и нейрофиброматоз II типа [22]. Поэтому при постановке диагноза NF-1 использовано не менее двух критериев, установленных NIH [6]. Лишь у 314 пациентов (58 %) обнаружены кожные или подкожные нейрофибромы, что достоверно ниже, чем в среднем по миру (99 %) [6].

Не найдено данных о наличии у больных NF-1 из PБ злокачественных опухолей MPNST, которые встречаются у 13 % больных NF-1 [10]. Когнитивный дефицит определен у 79 (14,5 %) больных из PБ, что также достоверно ниже результатов других исследователей (40%) [3]. У части пациентов с NF-1 из PБ определено поражение головного мозга, вызывающее у 20 (3,7 %) больных NF-1 эпилепсию, у 23 (4,23 %) — гидроцефалию, у 21 (3,86 %) — опухоли головного мозга, у 28 (5,15 %) — кисты головного мозга, что статистически незначимо отличается от данных других исследователей [8, 9, 26]. У больных NF-1 из PБ достоверно более редко по сравнению с мировыми исследованиями [6, 8] выявлены глиомы зрительных нервов (n = 34; 6,25 %), плексиформные нейрофибромы (n = 38; 7 %) и узелки Лиша (n = 5; 1 %).

Плексиформные нейрофибромы могут быть обнаружены как при визуальном осмотре, так и с помощью методов МРТ и КТ [27]. Их отличительными чертами являются нечеткие границы с инвазией в окружающие ткани с расположением вдоль нервных стволов, разрастанием вокруг деформированных нервных пучков с разрастанием вдоль соседних нервных ветвей, мышц и кожи [28]. В соответствии с этими критериями клиницистами установлено наличие плексиформных нейрофибром у пациентов. Плексиформные нейрофибромы характеризуются высокой частотой перерождения в злокачественные опухоли MPNST. У пациентов с NF-1 с большой плексиформной нейрофибромой рекомендуется проводить сцинтиграфию (с галлием-67) в качестве скринингового метода. У пациентов с MPNST пятилетняя выживаемость составляет всего 30 %, поэтому для их дифференциальной диагностики от плексиформных нейрофибром рекомендуется использовать позитронно-эмиссионную томографию с триптофаном, меченым фтором-18 [29].

Следует отметить, что наличие плексиформных нейрофибром является показанием для назначения селуметиниба, поскольку в отличие от кожных нейрофибром, которые можно лечить хирургически [30], иссечение плексиформных нейрофибром затруднено в связи с их инфильтративным ростом и прорастанием в окружающие ткани. Применение селуметиниба в разных странах показало эффек-

тивность в уменьшении размеров плексиформных нейрофибром у детей (частота объективного ответа — 64% [31], 68% [32, 33]) и у взрослых (частота объективного ответа — 63,6% [34]). Определена также эффективность селуметиниба в отношении роста спинальных нейрофибром [35].

Патологии ОДС выявлены у 206 (38 %) больных NF-1 из PE, из них сколиоз обнаружен у 95 (17,4 %) человек, низкий рост — у 75 (13,8 %), дисморфизм лица — у 49 (9 %), деформация грудной клетки — у 29 (5,3 %), псевдоартроз костей голеней — у 15 (3 %), плоскостопие — у 10 (1,8 %), макроцефалия — у 5 (1 %). Асимметрия лица, дисплазия крыла клиновидной кости и остеопороз не описаны ни у одного из больных NF-1 из PE.

Сравнительный анализ поражения ОДС у больных NF-1 из PБ (табл. 1) свидетельствует о статистически значимом более редком выявлении скелетных аномалий в целом, дисморфизма лица и макроцефалии [14–16]. Отсутствуют данные о наличии остеопороза, асимметрии лица и дисплазии крыла клиновидной кости, что достоверно отличается от данных по миру [15, 19]. Частота встречаемости деформации грудной клетки относительно выше, а сколиоза, низкого роста и псевдоартроза — ниже, чем в данных других исследователей, однако статистически незначимо. Помимо поражений ОДС у больных NF-1 из PБ достоверно реже определена частота развития кожных и подкожных нейрофибром, узелков Лиша, плексиформных нейрофибром, глиом зрительных нервов по сравнению с данными по миру [3, 6, 8, 10, 12], что свидетельствует о недостаточном обследовании пациентов. Представляет интерес сравнение частоты проявления данных симптомов в группе больных с поражением ОДС у пациентов с NF-1 из PБ по сравнению с данными по миру и со всеми пациентами с NF-1 из PБ.

Таблица 1 Сравнительная характеристика ортопедической патологии при NF-1

Клинические проявления	Частота встречаемости в РБ			речаемости	Критерий χ^2 ; значение p	
тогини теские продъления	абс.	%	%	[источник]	при степени свободы 1	
скелетные аномалии в целом	206	38,0	60	[14]	$\chi^2 = 9,684; p = 0,002$	
деформация грудной клетки	29	5,3	3,7	[17]	$\chi^2 = 0,116; p = 0,734$	
сколиоз	95	17,4	26,6	[11]	$\chi^2 = 2,914; p = 0,088$	
низкий рост	75	13,8	24,0	[12]	$\chi^2 = 3,25$; $p = 0,072$	
псевдоартроз	15	3,0	5,0	[6]	$\chi^2 = 0,521; p = 0,471$	
остеопороз	0	0	50,0	[19]	$\chi^2 = 66,667$; $p < 0,001$	
дизморфизм лица	49	9,0	53,0	[16]	$\chi^2 = 39,841; p < 0,001$	
макроцефалия	5	1,0	25,0	[15]	$\chi^2 = 15,686$; $p < 0,001$	
асимметрия лица	0	0	1,0	[15]	$\chi^2 = 10,526; p = 0,002$	
дисплазия крыла клиновидной кости	0	0	9,0	[15]	$\chi^2 = 9,424; p = 0,003$	

Сравнительный анализ частоты встречаемости характерных для NF-1 клинических проявлений (табл. 2) у больных NF-1 с ортопедической патологией из PБ по сравнению с мировыми данными свидетельствуют о статистически достоверно более редкой регистрации кожных и подкожных нейрофибром, MPNST, плексиформных нейрофибром, глиом зрительных нервов и трудностей в обучении. По сравнению с общей группой пациентов с NF-1 в PБ у больных с ортопедической патологией определено статистически незначимо более частое развитие когнитивного дефицита (табл. 3), однако частота встречаемости других проявлений оказалась аналогична.

Таблица 2 Сравнительный анализ клинических проявлений NF-1 у пациентов с ортопедической патологией

Клинические проявления	Частота встречаемости у больных NF-1 из PБ, <i>n</i> = 206			речаемости VF-1 в мире	Критерий $χ^2$; значение p	
1	абс.	%	%	[источник]	при степени свободы 1	
нейрофибромы	123	59,7	99	[6]	$\chi^2 = 46,664; p < 0,001$	
MPNST	0	0	13	[10]	$\chi^2 = 13,904; p < 0,001$	
узелки Лиша	3	1,5	70	[6]	$\chi^2 = 100,347; p < 0,001$	
плексиформные нейрофибромы	15	7,3	50	[6]	$\chi^2 = 45,369$; $p < 0,001$	
глиомы зрительных нервов	17	8,3	27	[8]	$\chi^2 = 12,502; p < 0,001$	
опухоль головного мозга	9	4,4	10	[8]	$\chi^2 = 2,765$; $p = 0,097$	
кисты головного мозга	13	6,3	2	[26]	$\chi^2 = 2,083; p = 0,149$	
гидроцефалия	13	6,3	7,7	[8]	$\chi^2 = 0.307$; $p = 0.58$	
эпилепсия	8	3,9	8,1	[9]	$\chi^2 = 1,418; p = 0,234$	
трудности в обучении	45	22,0	40	[3]	$\chi^2 = 7,574; p = 0,006$	

Таблица 3 Сравнительный анализ клинических проявлений NF-1 у пациентов с ортопедической патологией с общей группой больных NF-1 из PБ

Клинические проявления	Частота вст у больн с ортопедическ n =	ых NF-1 ой патологией,	Частота вст у всех болг n =	речаемости ьных NF-1, 544	Критерий χ²; значение р при степени свободы 1	
	абс.	%	абс.	%		
нейрофибромы	123	59,7	314	58	$\chi^2 = 0,243; p = 0,623$	
MPNST	0	0	0	0	неприемлемо	
узелки Лиша	3	1,5	5	1	$\chi^2 = 0,409; p = 0,523$	
плексиформные нейрофибромы	15	7,3	38	7	$\chi^2 = 0.02$; $p = 0.888$	
глиомы зрительных нервов	17	8,3	34	6,25	$\chi^2 = 0.945$; $p = 0.331$	
опухоль головного мозга	9	4,4	21	3,86	$\chi^2 = 0,101; p = 0,752$	
кисты головного мозга	13	6,3	28	5,15	$\chi^2 = 0.391; p = 0.532$	
гидроцефалия	13	6,3	23	4,23	$\chi^2 = 1,418; p = 0,234$	
эпилепсия	8	3,9	20	3,7	$\chi^2 = 0.018$; $p = 0.894$	
трудности в обучении	45	22,0	79	14,5	$\chi^2 = 6,559; p = 0,011$	

Отсутствие в проанализированной группе данных об остеопорозе, асимметрии лица и дисплазии крыла клиновидной кости, характерных для больных НФ-1, свидетельствует о необходимости более тщательного обследования пациентов с обязательными консультациями врача-ортопеда и проведения инструментальных исследований.

ЗАКЛЮЧЕНИЕ

Анализ особенностей проявлений ортопедической патологии у больных NF-1 из PБ показал сравнимую с мировыми данными частоту встречаемости деформации грудной клетки, сколиоза, низкого роста и псевдоартроза. Однако у пациентов с NF-1 из PБ определена достоверно более редкая регистрация скелетных аномалий в целом, дисморфизма лица, макроцефалии. Данных об остеопорозе, асимметрии лица и дисплазии крыла клиновидной кости, характерных для больных NF-1, среди проанализированной группы не обнаружено. У больных NF-1 с ортопедической патологией выявлены более частые трудности в обучении в сравнении со всей группой пациентов с NF-1 из PБ.

Конфликт интересов. Автор заявляет, что данная работа, её тема, предмет и содержание не затрагивают конкурирующих интересов.

Источник финансирования. Автор заявляет об отсутствии финансирования при проведении исследования.

Соответствие принципам этики. Все исследования велись с соблюдением норм биомедицинской этики, и соответствуют стандартам GCP.

СПИСОК ИСТОЧНИКОВ

- 1. Chai P, Luo Y, Zhou C, et al. Clinical characteristics and mutation Spectrum of NF1 in 12 Chinese families with orbital/periorbital plexiform Neurofibromatosis type 1. *BMC Med Genet*. 2019;20(1):158. doi: 10.1186/s12881-019-0877-9.
- 2. Lee TJ, Chopra M, Kim RH, et al. Incidence and prevalence of neurofibromatosis type 1 and 2: a systematic review and meta-analysis. *Orphanet J Rare Dis.* 2023;18(1):292. doi: 10.1186/s13023-023-02911-2.
- Crow AJD, Janssen JM, Marshall C, et al. A systematic review and meta-analysis of intellectual, neuropsychological, and psychoeducational functioning in neurofibromatosis type 1. Am J Med Genet A. 2022;188(8):2277-2292. doi: 10.1002/ajmg.a.62773.
- 4. De Schepper S, Maertens O, Callens T, et al. Somatic mutation analysis in NF1 café au lait spots reveals two NF1 hits in the melanocytes. J Invest Dermatol. 2008;128(4):1050-1053. doi: 10.1038/sj.jid.5701095.
- 5. Gutmann DH, Ferner RE, Listernick RH, et al. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3:17004. doi: 10.1038/nrdp.2017.4.
- Ly KI, Blakeley JO. The Diagnosis and Management of Neurofibromatosis Type 1. Med Clin North Am. 2019;103(6):1035-1054. doi: 10.1016/j.mcna.2019.07.004.
- 7. Miraglia E, Moliterni E, Iacovino C, et al. Cutaneous manifestations in neurofibromatosis type 1. *Clin Ter.* 2020;171(5):e371-e377. doi: 10.7417/CT.2020.2242.
- 8. Glombova M, Petrak B, Lisy J, et al. Brain gliomas, hydrocephalus and idiopathic aqueduct stenosis in children with neurofibromatosis type 1. *Brain Dev.* 2019;41(8):678-690. doi: 10.1016/j.braindev.2019.04.003.
- 9. Wu F, Ji X, Shen M, et al. Prevalence, clinical characteristics and outcomes of seizures in neurofibromatosis type 1: A systematic review and single arm meta-analysis. *Epilepsy Res.* 2024;208:107476. doi: 10.1016/j.eplepsyres.2024.107476.
- 10. Lim Z, Gu TY, Tai BC, Puhaindran ME. Survival outcomes of malignant peripheral nerve sheath tumors (MPNSTs) with and without neurofibromatosis type I (NF1): a meta-analysis. *World J Surg Oncol*. 2024;22(1):14. doi: 10.1186/s12957-023-03296-z.
- 11. Wang D, Zhang BH, Wen X, et al. Clinical features and surgical treatments of scoliosis in neurofibromatosis type 1: a systemic review and meta-analysis. *Eur Spine J.* 2024;33(7):2646-2665. doi: 10.1007/s00586-024-08194-w.
- 12. Virdis R, Street ME, Bandello MA, Tripodi C, Donadio A, Villani AR, Cagozzi L, Garavelli L, Bernasconi S. Growth and pubertal disorders in neurofibromatosis type 1. *J Pediatr Endocrinol Metab*. 2003;16 Suppl 2:289-292.
- 13. Stevenson DA, Little D, Armstrong L, et al. Approaches to treating NF1 tibial pseudarthrosis: consensus from the Children's Tumor Foundation NF1 Bone Abnormalities Consortium. *J Pediatr Orthop*. 2013;33(3):269-275. doi: 10.1097/BPO.0b013e31828121b8.
- 14. Mladenov KV, Spiro AS, Krajewski KL, et al. Management of spinal deformities and tibial pseudarthrosis in children with neurofibromatosis type 1 (NF-1). *Childs Nerv Syst.* 2020;36(10):2409-2425. doi: 10.1007/s00381-020-04775-4.

- 15. Chauvel-Picard J, Lion-Francois L, Beuriat PA, et al. Craniofacial bone alterations in patients with neurofibromatosis type 1. *Childs Nerv Syst.* 2020;36(10):2391-2399. doi: 10.1007/s00381-020-04749-6.
- 16. Luna EB, Janini ME, Lima F, et al. Craniomaxillofacial morphology alterations in children, adolescents and adults with neurofibromatosis 1: A cone beam computed tomography analysis of a Brazilian sample. *Med Oral Patol Oral Cir Bucal*. 2018;23(2):e168-e179. doi: 10.4317/medoral.22155.
- 17. Francis L, Subramanyam R, Mahmoud M. Severe spinal and chest deformity secondary to neurofibromatosis. *Can J Anaesth*. 2016;63(4):488-489. doi: 10.1007/s12630-015-0543-4.
- 18. Kaspiris A, Vasiliadis E, Iliopoulos ID, et al. Bone mineral density, vitamin D and osseous metabolism indices in neurofibromatosis type 1: A systematic review and meta-analysis. *Bone*. 2024;180:116992. doi: 10.1016/j.bone.2023.116992.
- 19. Rhodes SD, Yang FC. Aberrant Myeloid Differentiation Contributes to the Development of Osteoporosis in Neurofibromatosis Type 1. *Curr Osteoporos Rep.* 2016;14(1):10-15. doi: 10.1007/s11914-016-0298-z.
- 20. Tolliver S, Smith ZI, Silverberg N. The genetics and diagnosis of pediatric neurocutaneous disorders: Neurofibromatosis and tuberous sclerosis complex. *Clin Dermatol*. 2022;40(4):374-382. doi: 10.1016/j.clindermatol.2022.02.010.
- 21. Yue X, Zhao X, Dai Y, Yu L. Leopard syndrome: the potential cardiac defect underlying skin phenotypes. *Hereditas*. 2021;158(1):34. doi: 10.1186/s41065-021-00199-5.
- 22. Lalor L, Davies OMT, Basel D, Siegel DH. Café au lait spots: When and how to pursue their genetic origins. *Clin Dermatol*. 2020;38(4):421-431. doi: 10.1016/j.clindermatol.2020.03.005.
- 23. Yotsumoto Y, Harada A, Tsugawa J, et al. Infantile macrocephaly and multiple subcutaneous lipomas diagnosed with PTEN hamartoma tumor syndrome: A case report. *Mol Clin Oncol*. 2020;12(4):329-335. doi: 10.3892/mco.2020.1988.
- 24. Xu ZX, Jiang LX, Chen YR, et al. Clinical features, diagnosis, and treatment of Peutz-Jeghers syndrome: Experience with 566 Chinese cases. World J Gastroenterol. 2023;29(10):1627-1637. doi: 10.3748/wjg.v29.i10.1627.
- 25. Kavamura Mi, Leoni C, Neri G. Dermatological manifestations, management, and care in RASopathies. *Am J Med Genet C Semin Med Genet*. 2022;190(4):452-458. doi: 10.1002/ajmg.c.32027.
- 26. Sánchez Marco SB, López Pisón J, Calvo Escribano C, et al. Neurological manifestations of neurofibromatosis type 1: our experience. Neurologia (Engl Ed). 2022;37(5):325-333. doi: 10.1016/j.nrleng.2019.05.008.
- 27. de Brons B, Dhaenens B, van Minkelen R, Oostenbrink R. Identification of the Determinants of Plexiform Neurofibroma Morbidity in Pediatric and Young Adult Neurofibromatosis Type 1 Patients: A Pilot Multivariate Approach. *Cancers (Basel)*. 2025;17(1):123. doi: 10.3390/cancers17010123.
- 28. Pratama AAT, Atmaja MHS. The role of multimodality imaging in diffuse pelvicoabdominal plexiform neurofibroma: A rare case report. *Radiol Case Rep.* 2024;19(12):5605-5611. doi: 10.1016/j.radcr.2024.08.037.
- 29. Yue X, Stauff E, Boyapati S, et al. PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. *Pharmaceuticals (Basel)*. 2024;17(6):685. doi: 10.3390/ph17060685.
- 30. Ota M, Nobeyama Y, Asahina A. Real-world Settings for the Surgical Treatment of Neurofibroma in Patients with Neurofibromatosis Type 1. *JMA J*. 2024;7(2):205-212. doi: 10.31662/jmaj.2023-0161.
- 31. Nishida Y, Nonobe N, Kidokoro H, et al. Selumetinib for symptomatic, inoperable plexiform neurofibromas in pediatric patients with neurofibromatosis type 1: the first single-center real-world case series in Japan. *Jpn J Clin Oncol*. 2025:hyae184. doi: 10.1093/ijco/hyae184
- 32. Gross AM, Achée C, Hart SE, et al. Selumetinib for children with neurofibromatosis type 1 and plexiform neurofibromas: A plain language summary of SPRINT. *Future Oncol*. 2024;20(14):877-890. doi: 10.2217/fon-2023-0565.
- 33. Han Y, Li B, Yu X, et al. Efficacy and safety of selumetinib in patients with neurofibromatosis type 1 and inoperable plexiform neurofibromas: a systematic review and meta-analysis. *J Neurol*. 2024;271(5):2379-2389. doi: 10.1007/s00415-024-12301-8.
- 34. Gross AM, O'Sullivan Coyne G, Dombi E, et al. Selumetinib in adults with NF1 and inoperable plexiform neurofibroma: a phase 2 trial. *Nat Med*. 2025;31(1):105-115. doi: 10.1038/s41591-024-03361-4.
- 35. Jackson S, Baker EH, Gross AM, et al. The MEK inhibitor selumetinib reduces spinal neurofibroma burden in patients with NF1 and plexiform neurofibromas. *Neurooncol Adv.* 2020;2(1):vdaa095. doi: 10.1093/noajnl/vdaa095.

Статья поступила 04.12.2024; одобрена после рецензирования 06.02.2025; принята к публикации 25.08.2025.

The article was submitted 04.12.2024; approved after reviewing 06.02.2025; accepted for publication 25.08.2025.

Информация об авторе:

Рустам Наилевич Мустафин — кандидат медицинских наук, доцент кафедры, ruji79@mail.ru, SPIN-код: 4810-2534, https://orcid.org/0000-0002-4091-382X.

Information about the author:

Rustam N. Mustafin — Candidate of Medical Sciences, Associate Professor of the Department, ruji79@mail.ru, SPIN code: 4810-2534, https://orcid.org/0000-0002-4091-382X.

Научная статья

УДК 616.728.2-089.843-77:615.464:616-073.43 https://doi.org/10.18019/1028-4427-2025-31-5-639-647

Аудиограмма шумов керамической пары трения эндопротеза тазобедренного сустава и их связь с положением вертлужного компонента

Б.Р. Таштанов $^{1 \bowtie}$, В.В. Павлов 1 , М.А. Райфельд 2 , В.Н. Васюков 2 , Н.Б. Бактыяров 1 , А.А. Корыткин 1

- ¹ Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна, Новосибирск, Россия
- ² Новосибирский государственный технический университет, г. Новосибирск, Россия

Автор, ответственный за переписку: Байкожо Рустамович Таштанов, b.tashtanov95@gmail.com

Аннотация

Введение. Одной из частых жалоб пациентов после тотального эндопротезирования тазобедренного сустава керамической парой трения является феномен шума (скрип, хруст), который порождает множество вопросов и исследований причин его происхождения. Среди ортопедов набирает популярность метод исследования акустической эмиссии, — акустическая артрометрия, позволяющая визуализировать звуковые характеристики.

Цель работы — продемонстрировать возможность идентификации шумов керамической пары трения эндопротезов тазобедренного сустава методом акустической артрометрии и определить связь шумов с положением вертлужного компонента.

Материалы и методы. Ретроспективное исследование включает 36 пациентов, перенесших тотальное эндопротезирование тазобедренного сустава с керамической парой трения. Жалобы на шум в области эндопротезированного сустава имели семь (19,44 %) пациентов. Пациенты разделены на две группы по признаку наличия шума (n=7) и его отсутствия (n=29). Проведен онлайн-опрос и анализ клини-ко-рентгенологических показателей по возрасту, сроку наблюдения, ИМТ, инклинации и антеверсии вертлужного компонента. Выполнена акустическая артрометрия 10 пациентам, дан сравнительный анализ критериев: высота импульса, PEAK, ASYMMETRY и WIDTH.

Результаты. Сравнительный анализ отдельных клинико-рентгенологических показателей двух групп не выявил статистически значимых различий. Однако анализ отклонений по любому из двух критериев положения вертлужного компонента составил 20,7 % в группе пациентов без жалоб на шум и 57,1 % в группе пациентов с жалобами на шум (p = 0.048). Акустическая эмиссия эндопротезов с шумом имеет визуальные отличия акустической сигнатуры, а также критериев, среднее значение которых составило: РЕАК — 0,492 в группе без шума и 0,488 в группе с шумом; ASYMMETRY — 0,012 против 0,015; WIDTH — 479,2 против 486,5.

Обсуждение. Полученные данные коррелируют с результатами предыдущих исследований и подтверждают взаимосвязь углов имплантации вертлужного компонента и феномена шума. В отличие от других исследований акустической артрометрии в выполненном нами методе кроме визуализации и анализа акустических сигнатур имеется возможность объективной оценки шума в статистических единицах.

Заключение. Проведенное исследование демонстрирует возможности применения акустической артрометрии, которая позволяет идентифицировать различные состояния керамической пары трения, охарактеризовать выявляемый шум и измерить его в количественных величинах.

Ключевые слова: эндопротезирование тазобедренного сустава, керамическая пара трения, шум в паре трения, акустическая артрометрия

Для цитирования: Таштанов Б.Р., Павлов В.В., Райфельд М.А., Васюков В.Н., Бактыяров Н.Б., Корыткин А.А. Аудиограмма шумов керамической пары трения эндопротеза тазобедренного сустава и их связь с положением вертлужного компонента. *Гений ортопедии*. 2025;31(5):639-647. doi: 10.18019/1028-4427-2025-31-5-639-647.

[©] Таштанов Б.Р., Павлов В.В., Райфельд М.А., Васюков В.Н., Бактыяров Н.Б., Корыткин А.А., 2025

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-639-647

Audiogram of ceramic friction noises in total hip arthroplasty and their relationship with acetabular component position

B.R. Tashtanov^{1⊠}, V.V. Pavlov¹, M.A. Raifeld², V.N. Vasyukov², N.B. Baktyyarov¹, A.A. Korytkin¹

- ¹ Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Novosibirsk, Russian Federation
- ² Novosibirsk State Technical University, Novosibirsk, Russian Federation

Corresponding author: Baikozho R. Tashtanov, b.tashtanov95@gmail.com

Abstract

Introduction Noise from a total hip replacement's ceramic friction pair is known as hip squeaking. Acoustic arthrometry in total hip replacement (THR) involves using acoustic emission technology to visualize sound characteristics.

The **objective** was to identify the possibility of identifying noises of a THR ceramic friction pair using the acoustic arthrometry and to determine the relationship of noises with the position of the acetabular component.

Material and methods The retrospective study included 36 patients who underwent THR with a ceramic bearing pair. Seven patients (19.44 %) reported noise at the site of the THR joint. The patients were divided into two groups based on the noise (n = 7) and no noise reported (n = 29). Clinical and radiological parameters were reviewed through online survey considering age, follow-up period, BMI, inclination and anteversion of the acetabular component. Acoustic arthrometry was performed for 10 patients with the pulse height, PEAK, ASYMMETRY and WIDTH measured and compared.

Results Comparative analysis of individual clinical and radiological parameters showed no statistically significant differences in the two groups. However, deviations by any of the two criteria in the acetabular component position was 20.7 % in the no-noise group and 57.1 % in the noise reported group (p = 0.048). Acoustic emission of THR with noise had visual differences in acoustic signature with the mean PEAK measuring 0.492 in the no-noise group and 0.488 in the noise reported group; ASYMMETRY being 0.012 versus 0.015 and WIDTH measuring 479.2 versus 486.5, respectively.

Discussion The findings correlated with the results of previous studies and confirmed the relationship between the angles of the implanted acetabular component and the noise. In contrast to previous studies of acoustic arthrometry, the method offered facilitated objective statistical noise assessment in addition to visualization and analysis of acoustic signatures.

Conclusion The study demonstrated possibilities of acoustic arthrometry in identification of different states of the ceramic friction pair, characterization of the noise detected and its quantification.

Keywords: total hip replacement, ceramic bearings, hip squeaking, acoustic arthrometry

For citation: Tashtanov BR, Pavlov VV, Raifeld MA, Vasyukov VN, Baktyyarov NB, Korytkin AA. Audiogram of ceramic friction noises in total hip arthroplasty and their relationship with acetabular component position. *Genij Ortopedii*. 2025;31(5):639-647. doi: 10.18019/1028-4427-2025-31-5-639-647.

[©] Tashtanov B.R., Pavlov V.V., Raifeld M.A., Vasyukov V.N., Baktyyarov N.B., Korytkin A.A., 2025

[©] Translator Irina A. Saranskikh, 2025

ВВЕДЕНИЕ

Тотальное эндопротезирование тазобедренного сустава (ТБС) в XXI веке является оптимальным вариантом лечения пациентов с дегенеративными заболеваниями ТБС в стадии исхода. По сей день одним из актуальных осложнений эндопротезирования ТБС остается износ пары трения и его последствия [1]. Для решения данной проблемы в истории эндопротезирования было предложено не мало материалов пары трения, начиная с уходящей в историю металл-металлической парой и заканчивая актуальной керамико-полиэтиленовой парой трения [1, 2]. В поисках лучшего материала пары трения в 1972 г. французским ортопедом Р. Boutin была предложена пара трения «керамика-керамика» (Се-Се), представленная как износостойкий и биоинертный материал, массовое производство которого было реализовано немецкой компанией Ceramtec [3]. Тем не менее, первое поколение данного материала выделялось не только высокой износостойкостью, но и повышенной хрупкостью [4]. В дальнейшем при разработке следующих поколений керамики внимание было акцентировано на упомянутые недостатки для их устранения. В результате поиска решений современная керамическая пара трения (четвертого поколения) выполнена из сплава оксидов алюминия и циркония (Al_2O_5, ZrO_2) . Несмотря на то, что в керамике четвертого поколения устранены прежние недостатки, все более актуальным становится феномен шума (хруст, скрип, стук), исходящего из области эндопротезированного ТБС, находящегося в слышимом диапазоне, который беспокоит пациентов, имеющих керамическую пару трения, и порождает множество вопросов о причине его происхождения [5].

По результатам исследования S.J. Stanat et al. пациенты часто слышат скрип, который является наиболее частым из шумов, вторым по частоте среди слышимых шумов является хруст [6]. Согласно данным национальных регистров Великобритании и Южной Кореи, головка керамической пары трения поколения Delta устойчивее предыдущих, но показатели раскола вкладыша остаются на прежнем уровне [7, 8]. В Российской Федерации в 2019 г. было выполнено более 88 тыс. первичных и ревизионных эндопротезирований ТБС. При этом доля имплантации эндопротезов с парой трения Ce–Ce сравнительно невелика и составляет от 0,5 % до 8,2 % от общего числа эндопротезирований ТБС в 2008–2020 гг. В возрастной группе пациентов до 30 лет доля имплантаций керамических пар трения значительно выше (30 % от общего числа) [9]. И мы в праве ожидать, что среди этого количества пациентов будут неудовлетворенные результатом эндопротезирования ТБС из-за слышимого шума.

Среди ортопедов все большую популярность набирают исследования, направленные на изучение вибраций и слышимых шумов в области эндопротезированного сустава [10, 11]. Наибольший интерес представляют исследования, направленные на изучение не только слышимых шумов (стук, скрип, хруст), но и неслышимых шумов (колебаний), которые находятся в диапазонах за пределами физиологических особенностей слухового аппарата человека, — инфра- и ультразвук.

Метод акустической артрометрии, основанный на анализе полученных с помощью акселерометра акустических сигнатур, в частных случаях продемонстрировал возможность оценки не только расшатывания компонентов эндопротеза, но и разрушения пар трения, таких как Ce-Ce [12]. Данный метод не исключает гипотетическую возможность анализа звуковых феноменов твердых пар трения, находящихся в диапазонах инфра- и ультразвука, с последующей их интерпретацией. К тому же исследование шума, возникающего в результате трения керамических пар эндопротезов, дает перспективу прогнозировать сроки эксплуатации эндопротезов, что является существенным дополнением арсенала ортопеда для оценки выживаемости эндопротезов в отдалённом периоде.

Цель работы — продемонстрировать возможность идентификации шумов керамической пары трения эндопротезов тазобедренного сустава методом акустической артрометрии и определить связь шумов с положением вертлужного компонента.

МАТЕРИАЛЫ И МЕТОДЫ

Характеристики пациентов и эндопротезов

В ретроспективное одноцентровое исследование включены 36 пациентов, перенесших в период с 2008 по 2020 гг. тотальное эндопротезирование ТБС с парой трения Се–Се. Средний возраст пациентов на момент хирургического вмешательства составил 46 лет (18–69), лицами женского пола являлись 23 (64 %) исследуемых, мужского — 13 (36 %). У 16 (44 %) пациентов ранее был прооперирован контралатеральный сустав, но эндопротезами с парой трения металл-полиэтилен, у 20 (56 %) пациентов проведено односторонне эндопротезирование ТБС.

Все участники были информированы и подписали согласие на участие в исследовании до хирургического вмешательства.

Пациенты распределены на две группы: первую группу составили пациенты, не имеющие жалоб на шум в области эндопротеза (n = 29), вторую — пациенты, имеющие жалобы на слышимый шум в области эндопротеза (n = 7).

Все хирургические вмешательства (эндопротезирование ТБС) были первичными и проведены через переднебоковой доступ.

Проанализированы такие критерии как: возраст, срок наблюдения, индекс массы тела (ИМТ), угол инклинации вертлужного компонента и угол антеверсии вертлужного компонента, а также оценено соответствие измеренных углов пределам допустимых значений, рекомендованных Lewinnek: инклинация — $(45 \pm 15)^{\circ}$; антеверсия — $(15 \pm 10)^{\circ}$.

Акустическая артрометрия

Исследование акустической артрометрии проведено у 10 пациентов с керамической парой трения ЭТБС, из них семь (70 %) пациентов имели жалобы на слышимый шум в области прооперированного сустава, и три пациента без жалоб на слышимый шум, которых мы рассматривали как вариант нормы. Устройство регистрации акустической эмиссии, оснащенное трех-осевым акселерометром (заявка на ИС, рег. № 2024134340) было фиксировано в область проекции большого вертела согласно разработанному способу (заявка на ИС, рег. № 2025105401). Все исследуемые выполняли одинаковое движение, — ходьбу на дистанции 200 м по ровной поверхности в обычном индивидуальном темпе.

Критерии, которые мы использовали при расшифровке, были разработаны, обоснованы, определены и автоматизированы сотрудниками кафедры теоретических основ радиотехники ФГБОУ НГТУ (заведующий кафедрой — М.А. Райфельд; профессор кафедры — В.Н. Васюков) [13].

При расшифровке акустической сигнатуры (рис. 1) учитывали критерии:

- высоты импульсов, обозначенных условными единицами 0, 1, 2, 3...;
- PEAK (перевод с англ.: вершина импульса) искажение импульса с пороговым значением < 0,49;
- ASYMMETRY асимметричность импульса, отображающая износ компонентов с пороговым значением > 0,02;
- WIDTH ширина импульса, представляющая расшатанность или разрушение компонентов с пороговым значением > 500.

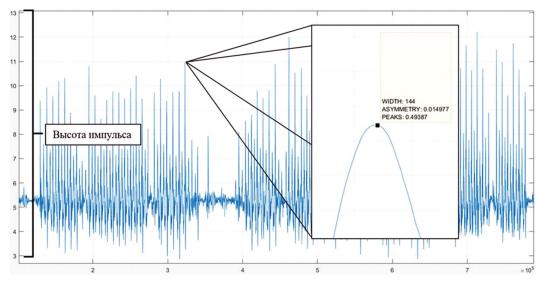


Рис. 1. Оценка акустических сигнатур. В прямоугольнике изображён избирательно взятый нормальный импульс акустической сигнатуры трения керамической пары (обозначен сходящимися черными линиями), который проанализирован с позиции предложенных критериев: высота -11 ед.; PEAK -0.49387; ASYMMETRY -0.014977; WIDTH -144

Анализ акустических сигнатур проводили с использованием программного обеспечения MATLAB. Детальное описание механизма устройства представлено в нашей предыдущей работе [13].

Статистический анализ

Для анализа данных применяли язык программирования Python (версия 3.11). Для количественных переменных двух групп (возраст, сроки наблюдения, ИМТ, инклинация и антеверсия ацетабулярного компонента) оценивали среднее значение и диапазон. В исследовании применен t-тест Стьюдента для независимых выборок, а при нарушении нормальности распределения — U–критерий Манна – Уитни. Для категориальных переменных проведен анализ с использованием точного критерия Фишера. Уровень статистической значимости установлен на уровне p < 0,05.

РЕЗУЛЬТАТЫ

В результате опроса и последующего анализа полученных данных определено, что шум, исходящий из области протезированного ТБС эндопротезом с керамической парой трения, подтвержден у семи пациентов, что соответствует 19,44 % от всей выборки (7 из 36). Трое из семи пациентов отметили, что шум слышали не только они, но и рядом находящиеся люди, остальные четыре пациента слышали шум только лично, 29 (80,56 %) пациентов из группы не сообщили о наличии феномена шума в области протезированного сустава.

Сравнительный анализ клинико-рентгенологических показателей двух групп не выявил статистически значимых различий (табл. 1).

Таблица 1 Параметры пациентов двух групп, разделенных по признаку «наличие или отсутствие» слышимого шума

Порозходи	Первая группа (без шума)	Вторая группа (с шумом)	n volue	
Параметр	<i>n</i> = 29; 80,56 %	<i>n</i> = 7; 19,44 %	<i>p</i> -value	
Возраст, лет	51,17 ± 14,98	52,57 ± 10,89	0,779	
ИМТ, кг/м ²	26,75 ± 4,32	26,32 ± 4,39	0,794	
Сроки наблюдения, лет	6,20 ± 1,63	$5,29 \pm 1,30$	0,089	
Инклинация чашки, °	42,00 ± 7,02	38,00 ± 9,59	0,181	
Антеверсия чашки, °	12,63 ± 8,35	11,80 ± 4,30	0,758	

В дополнение проведен анализ соответствия угла инклинации ацетабулярного компонента рекомендованным значениям (45 ± 15)°. В первой группе пациентов (без шума в области протезированного сустава) отклонение от данного значения выявлено в 17,2 % случаев, в то время как во второй группе (с шумом) этот показатель был равен 42,9 %. Отклонения от допустимых значений антеверсии, рекомендованных Lewinnek (15 ± 10)°, в группе без шума было выявлено в 13,8 % случаев, тогда как в группе без шума — в 28,6 % случаев. Ни в одном из отдельно взятых показателей не получено статистически значимой разницы, однако выявлена значимая разница в процентном соотношении по общему количеству отклонений обоих углов имплантации вертлужного компонента: в группе без шума — 20,7 %, в группе с шумом — 57,1 % (табл. 2). Таким образом, результаты исследования показали, что отклонение от пределов рекомендованных углов имплантации вертлужного компонента влияет на возникновение феномена шума.

Таблица 2 Сравнительный анализ показателей отклонения от условной нормы инклинации и антеверсии вертлужного компонента двух групп, разделенных по признаку «наличие или отсутствие» слышимого шума

	Первая групг	та (без шума)	Вторая групі	<i>p-</i> value	
Параметр	n = 29;	80,56 %	<i>n</i> = 7; 19,44 %		
	абс.	%	абс.	%	
Отклонение по инклинации	5	17,2	3	42,9	0,145
Отклонение по антеверсии	4	13,8	2	28,6	0,290
Отклонение по любому критерию	6	20,7	4	57,1	0,048*

Анализ акустической артрометрии

Акустическая эмиссия эндопротезов со слышимым шумом имеет существенные визуальные отличия в искаженности всей акустической сигнатуры (рис. 2). Во второй группе с шумом (n=7) высота импульсов не превышает 10 у.е. в средних значениях, а в группе без шума (n=3), где аудиограмму принимали как условную норму, высота импульса превышала 10 у.е. в средних значениях (красная линия рис. 2, а). Среднее значение критерия PEAK составил 0,492 в группе без шума и 0,488 в группе со слышимым шумом, ASYMMETRY, — 0,012 против 0,015, WIDTH, — 479,2 против 486,5.

При исследовании акустической сигнатуры на первом этапе необходим анализ общей картины графика и высоты импульсов (в норме ≥ 10,0 ед.), не зависимо от толщины мягких тканей. Вторым этапом проводят анализ критерия РЕАК (в норме ≥ 0,49 ед). Значение ниже указанного порога свидетельствует о нарушении конгруэнтности трущейся поверхности. Третьим этапом анализируют критерий ASYMMETRY (≤ 0,0200 ед.). Полученное значение выше указанного свидетельствует о разрушении компонентов пары трения. Четвертым критерием, подлежащим анализу, является WIDTH, нормальные значения соответствуют ≤ 500 ед. При превышении данного значения можно судить о расшатывании одного из компонентов.

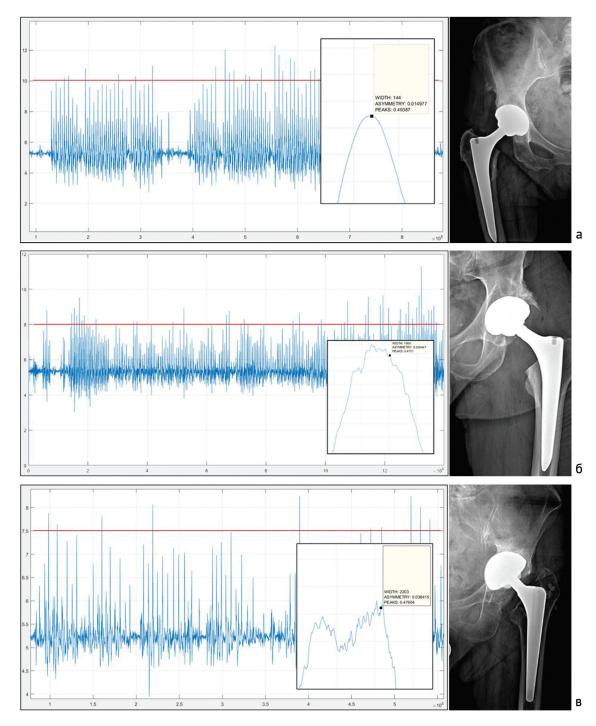


Рис. 2. Общий вид акустических сигнатур, детализация отдельно взятых вершин импульсов и рентгенограммы ТБС в прямой проекции: а — без шума и без расшатывания компонентов эндопротеза; инклинация вертлужного компонента — 40° и антеверсия — 12° ; б — с шумом (скрип), но без расшатывания компонентов; инклинация вертлужного компонента — 30° и антеверсия — 7° ; в — с шумом (хруст) и расшатыванием (пролапс) вертлужного компонента эндопротеза

ОБСУЖДЕНИЕ

В нашем пилотном исследовании имеются ограничения, связанные с тем, что выборка пациентов, прошедших акустическую артрометрию, ограничена 10 пациентами из 36, среди которых семь пациентов жаловались на слышимый шум керамической пары трения, а аудиограммы трех из 29 пациентов, не имеющих жалобы на шум, были нами приняты как вариант нормы. Во временной перспективе керамика в тотальном эндопротезировании ТБС является относительно новой по сравнению с другими парами трения. Учитывая продолжительность функционирования эндопротеза, данную пару трения рекомендуют имплантировать молодым пациентам [14]. Это связано с их более подвижным образом

жизни и ее продолжительностью относительно других возрастных групп. С другой стороны, хрупкость керамики и риск развития феномена шума, снижающие качество жизни, склоняет ортопедов быть более избирательными к выбору категории пациентов, которым возможна имплантация данной пары трения, или отказываться от нее в пользу полиэтилен-керамической пары трения.

В данном исследовании статистически значимой разницы между группами в возрасте, ИМТ, сроках наблюдения, углах имплантации вертлужного компонента не выявлено. Однако зарегистрирована разница в процентном соотношении общего количества отклонений в группах сравнения, что подтверждает влияние корректной установки вертлужного компонента на возникновение шума [5, 15, 16]. В ранее проведенных клинических исследованиях количество пациентов, имеющих шум в области эндопротеза, варьирует от 3 % до 30 % от общего числа [5, 15, 17]. Результаты нашего исследования коррелируют с данными, полученными другими авторами.

Сам факт технической возможности регистрации колебаний, возникающих при трении керамической пары в эндопротезе ТБС при движении, способствует детализации звуковой сигнатуры в зависимости от типа керамики, размера головки, угла инклинации и антеверсии ацетабулярного компонента в диапазонах инфразвука и ультразвука. Мы впервые в мире описали колебания, возникающие в керамической паре трения в исследуемой группе с помощью запатентованного нами прибора. Полученные результаты открывают большие возможности для изучения слышимого шума, неслышимого шума (колебаний), которых в цельной и конгруэнтной керамической паре трения теоретически быть не должно в связи с отсутствием сухого трения, а вершины импульсов должны иметь симметричный и равномерный характер.

Шум отдельно может быть воспринят, как малозначимое нежелательное явление, так как не сопровождается болевым синдромом, вследствие чего пациенты не акцентируют на этом внимание. Однако за феноменом шума могут скрываться существенные процессы деструкции (сухое трение) керамической пары трения [18]. В случае выявления так называемого «допустимого» шума (соударение или нагрузка на задний край вкладыша при чрезмерном сгибании) проблему зачастую решает сам пациент, ограничивая объем определенных причинно-следственных движений (благоприятный прогноз) [19]. Шум, возникающий в результате краевой нагрузки (керамическая головка на край керамического вкладыша в положении стоя), является «недопустимым» и не устраняется превентивными мерами самим пациентом. Последствия «недопустимого» шума могут быть значительными (неблагоприятный прогноз), вплоть до раскола керамики и миграции в мягкие ткани керамического дебриса, который сложно извлечь при ревизионных оперативных вмешательствах [20]. Это подтверждается исследованием S. Lucchini et al., которые указывают на то, что шум может быть признаком несостоятельности керамических материалов компонентов, что может привести к многоступенчатому разрушению пары трения [21]. Впоследствии это обстоятельство приводит к более сложным ревизионным оперативным вмешательствам, требующим тщательного удаления остатков разрушенной керамики из окружающих мягких тканей. При разрушении керамической пары трения распространение дебриса хаотично, и, несмотря на тщательное удаление керамики из мягких тканей, есть вероятность повторного повреждения последующих установленных при ревизии керамических пар трения (вкладыш/головка) не удаленными керамическими осколками (третье тело), а имплантация полиэтиленового вкладыша грозит его ранним износом и остеолизисом костной ткани.

Акустическая артометрия, как неинвазивный и безопасный метод, дает возможность непрерывного мониторинга состояния эндопротезов с керамической парой трения. S. Wakayama [22] и Y. Yamada [23] в числе первых предположили, что с помощью анализа акустической эмиссии возможна диагностика микротрещин трущейся керамической поверхности, и экспериментально доказали, что повышение импульсов эмиссии (хитов/ударов) соответствует моменту раскола керамики. В последующем анализ акустической эмиссии пар трения, включая керамические, в сопровождении видеофлюороскопии выполнили D. Glaser et al., выявив прямое соответствие колебаний, фиксированных при помощи артрометрии, движениям в протезированном суставе, в том числе и корреляцию изменений в соответствии с наличием скрипа, хруста и иных шумов [24]. L. Roffe et al. провели анализ акустических эмиссий 82 суставов, подвергшихся эндопротезированию с керамической парой трения, и исключили искажение колебания влиянием поверхности кожи или иного возможного шума в области головки эндопротеза и конуса Морзе [25]. В дополнение авторы указали, что в зависимости от толщины подкожно-жировой клетчатки может снизиться магнитуда эмиссии, но никак не количество и частота колебаний.

В ходе исследования акустической эмиссии 98 ТБС с эндопротезами F.J. Киmmer et al. установили, что график (акустическая сигнатура) подвержен искажению в зависимости от стабильности имплантов и целостности поверхности пары трения [26], что соответствует полученным нами результатам. Как изображено на рис 2, акустическая сигнатура зависит от стабильности компонентов и характеризуется отсутствием резких и хаотичных колебаний.

G.W. Rodgers et al. обнаружили и экспериментально подтвердили разницу в высоте колебаний акустических эмиссий различных шумов. Скрип отличался от хруста и стука высоким и протяженным во времени колебанием, тогда как хруст характеризовался низкой частотой, а стук — прерывистостью [27, 28]. В разработанном нами методе исследования предложены новые статистические единицы измерения, — PEAK, ASYMMETRY и WIDTH, совокупно представляющие характер искажения колебаний, который облегчит практикующему врачу восприятие информации в акустической сигнатуре.

ЗАКЛЮЧЕНИЕ

Проведенное пилотное исследование открывает перспективы и возможности применения метода акустической артрометрии, который позволяет идентифицировать различные состояния керамической пары трения и стандартизировать измерение шума, характеризовать выявляемый шум и измерять его в количественных величинах. Описание шума числовыми значениями (величинами) позволит провести сравнительный анализ шума с получением статистических данных и корреляционных связей и тем самым выявить начальные признаки разрушения пары трения, что будет способствовать принятию ранних мер профилактики нежелательных явлений и осложнений.

Конфликт интересов. Нет.

Источник финансирования. Нет.

Этическая экспертиза. Не требуется.

Информированное согласие. Все участники исследования подписали письменное согласие на участие.

СПИСОК ИСТОЧНИКОВ

- 1. Callaghan JJ, Cuckler JM, Huddleston JI, et al. How have alternative bearings (such as metal-on-metal, highly cross-linked polyethylene, and ceramic-on-ceramic) affected the prevention and treatment of osteolysis? *J Am Acad Orthop Surg.* 2008;16 Suppl 1:S33-S38. doi: 10.5435/00124635-200800001-00008.
- 2. Шубняков И.И., Тихилов Р.М., Гончаров М.Ю. и др. Достоинства и недостатки современных пар трения эндопротезов тазобедренного сустава (обзор иностранной литературы). *Травматология и ортопедия России*. 2010;16(3):147-156. doi: 10.21823/2311-2905-2010-0-3-147-156.
- 3. Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. *Rev Chir Orthop Reparatrice Appar Mot.* 1972;58(3):229-246.
- Hannouche D, Nich C, Bizot P, et al. Fractures of ceramic bearings: history and present status. Clin Orthop Relat Res. 2003;(417):19-26. doi: 10.1097/01.blo.0000096806.78689.50.
- 5. Zhao CC, Qu GX, Yan SG, Cai XZ. Squeaking in fourth-generation ceramic-on-ceramic total hip replacement and the relationship with prosthesis brands: meta-analysis and systematic review. *J Orthop Surg Res*. 2018;13(1):133. doi: 10.1186/s13018-018-0841-y.
- 6. Stanat SJ, Capozzi JD. Squeaking in third- and fourth-generation ceramic-on-ceramic total hip arthroplasty: meta-analysis and systematic review. *J Arthroplasty*. 2012;27(3):445-453. doi: 10.1016/j.arth.2011.04.031.
- 7. Holleyman RJ, Critchley RJ, Mason JM, et al. Ceramic bearings are associated with a significantly reduced revision rate in primary hip arthroplasty: an analysis from the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man. *J Arthroplasty*. 2021;36(10):3498-3506. doi: 10.1016/j.arth.2021.05.027.
- 8. Yoon BH, Park JW, Cha YH, et al. Incidence of ceramic fracture in contemporary ceramic-on-ceramic total hip arthroplasty: a meta-analysis of proportions. *J Arthroplasty*. 2020;35(5):1437-1443.e3. doi: 10.1016/j.arth.2019.12.013.
- 9. Шубняков Й.И., Риахи А., Денисов А.О. и др. Основные тренды в эндопротезировании тазобедренного сустава на основании данных регистра артропластики НМИЦ ТО им. Р.Р. Вредена с 2007 по 2020 г. Травматология и ортопедия России. 2021;27(3):119-142. doi: 10.21823/2311-2905-2021-27-3-119-142.
- 10. Таштанов Б.Р., Райфельд М.А., Васюков В.Н. и др. Возможности акустической артрометрии в эндопротезировании тазобедренного сустава: обзор литературы. Травматология и ортопедия России. 2025;31(1):133-143. doi: 10.17816/2311-2905-17552.
- 11. Lee C, Zhang L, Morris D, et al. Non-invasive early detection of failure modes in total hip replacements (THR) via acoustic emission (AE). J Mech Behav Biomed Mater. 2021;118:104484. doi: 10.1016/j.jmbbm.2021.104484.
- 12. FitzPatrick AJ, Rodgers GW, Hooper GJ, Woodfield TB. Development and validation of an acoustic emission device to measure wear in total hip replacements in-vitro and *in-vivo*. *Biomed Signal Process Control*. 2017;33:281-288. doi: 10.1016/j.bspc.2016.12.011.
- 13. Васюков В.Н., Райфельд М.А., Соколова Д.О. и др. Обработка и анализ сигналов для диагностики состояния эндопротеза тазобедренного сустава. *Доклады АН ВШ РФ*. 2024;(4):48-63.
- 14. Atrey A, Wolfstadt JI, Hussain N, et al. The ideal total hip replacement bearing surface in the young patient: a prospective randomized trial comparing alumina ceramic-on-ceramic with ceramic-on-conventional polyethylene: 15-year follow-up. *J Arthroplasty*. 2018;33(6):1752-1756. doi: 10.1016/j.arth.2017.11.066.
- Shah SM, Deep K, Siramanakul C, et al. Computer navigation helps reduce the incidence of noise after ceramic-on-ceramic total hip arthroplasty. J Arthroplasty. 2017;32(9):2783-2787. doi: 10.1016/j.arth.2017.04.019.
- 16. Sarrazin J, Halbaut M, Martinot P, et al. Are CPR (Contact Patch to Rim) distance anomalies associated with the occurrence of abnormal noises from ceramic-on-ceramic THA? *Orthop Traumatol Surg Res.* 2023;109(1):103438. doi: 10.1016/j.otsr.2022.103438.
- 17. McDonnell SM, Boyce G, Baré J, et al. The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. *Bone Joint J.* 2013;95-B(2):160-165. doi: 10.1302/0301-620X.95B2.30450.
- 18. Таштанов Б.Р., Кирилова И.А., Павлова Д.В., Павлов В.В. «Шум керамики» как нежелательное явление в эндопротезировании тазобедренного сустава. *Гений ортопедии*. 2023;29(5):565-573. doi: 10.18019/1028-4427-2023-29-5-565-573.
- 19. Walter WL, Insley GM, Walter WK, Tuke MA. Edge loading in third generation alumina ceramic-on-ceramic bearings: stripe wear. *J Arthroplasty*. 2004;19(4):402-413. doi: 10.1016/j.arth.2003.09.018.
- 20. Таштанов Б.Р., Корыткин А.А., Павлов В.В., Шубняков И.И. Раскол керамического вкладыша эндопротеза тазобедренного сустава: клинический случай. *Травматология и ортопедия России*. 2022;28(3):63-73. doi: 10.17816/2311-2905-1804.
- 21. Lucchini S, Baleani M, Giardina F, et al. A case-driven hypothesis for multi-stage crack growth mechanism in fourth-generation ceramic head fracture. *J Orthop Surg Res.* 2022;17(1):293. doi: 10.1186/s13018-022-03190-6.
- 22. Wakayama S, Jibiki T, Ikeda J. Quantitative detection of microcracks in bioceramics by acoustic emission source characterization. *J Acoustic Emission*. 2006;24:173-179.

- 23. Yamada Y, Wakayama S, Ikeda J, Miyaji F. Fracture analysis of ceramic femoral head in hip arthroplasty based on microdamage monitoring using acoustic emission. *J Mater Sci.* 2011;46:6131-6139. doi: 10.1007/s10853-011-5578-5.
- 24. Glaser D, Komistek RD, Cates HE, Mahfouz MR. Clicking and squeaking: in vivo correlation of sound and separation for different bearing surfaces. *J Bone Joint Surg Am*. 2008;90 Suppl 4:112-120. doi: 10.2106/JBJS.H.00627.
- 25. Roffe L, FitzPatrick AJ, Rodgers GW, et al. Squeaking in ceramic-on-ceramic hips: no evidence of contribution from the trunnion morse taper. *J Orthop Res.* 2017;35(8):1793-1798. doi: 10.1002/jor.23458.
- 26. Kummer F, Jaffe WL. Feasibility of using ultrasonic emission for clinical evaluation of prosthetic hips. *Bull NYU Hosp Jt Dis.* 2010;68(4):262-265.
- 27. Rodgers GW, Young JL, Fields AV, Shearer RZ, et al. Acoustic Emission Monitoring of Total Hip Arthroplasty Implants. *IFAC Proceedings Volumes*. 2014;47(3):4796-4800. doi: 10.3182/20140824-6-ZA-1003.00928.
- 28. Rodgers GW, Welsh RJ, King LJ, et al. Signal processing and event detection of hip implant acoustic emissions. *Control Engineering Practice*. 2017;58:287-297. doi: 10.1016/J.CONENGPRAC.2016.09.013.

Статья поступила 30.05.2025; одобрена после рецензирования 11.08.2025; принята к публикации 25.08.2025.

The article was submitted 30.05.2025; approved after reviewing 11.08.2025; accepted for publication 25.08.2025.

Информация об авторах:

Байкожо Рустамович Таштанов — врач — травматолог-ортопед, аспирант, b.tashtanov95@gmail.com, https://orcid.org/0000-0002-8553-9712;

Виталий Викторович Павлов — доктор медицинских наук, доцент, начальник научно-исследовательского отделения, pavlovdoc@mail.ru, https://orcid.org/0000-0002-8997-7330;

Михаил Анатольевич Райфельд — доктор технических наук, доцент, заведующий кафедрой, rajfeld@corp.nstu.ru, https://orcid.org/0000-0002-8826-4240;

Василий Николаевич Васюков — доктор технических наук, профессор кафедры, vasyukov@corp.nstu.ru, https://orcid.org/0000-0001-5938-0368;

Нуржан Бактыярович Бактыяров — ординатор, baktiyarovnurchik@gmail.com, https://orcid.org/0009-0002-5887-415X;

Андрей Александрович Корыткин — кандидат медицинских наук, доцент, директор, andrey.korytkin@gmail.com, https://orcid.org/0000-0001-9231-5891.

Information about the authors:

 $Baikozho\ R.\ Tashtanov-orthopaedic\ surgeon,\ postgraduate\ student,\ b.tashtanov95@gmail.com,\ https://orcid.org/0000-0002-8553-9712;$

Vitaly V. Pavlov — Doctor of Medical Sciences, Associate Professor, Head of the Research Department, pavlovdoc@mail.ru, https://orcid.org/0000-0002-8997-7330;

 $\label{lem:mikhail} \begin{tabular}{ll} Mikhail A. Raifeld — Doctor of Technical Sciences, Associate Professor, Head of the Department, rajfeld@corp.nstu.ru, https://orcid.org/0000-0002-8826-4240; \end{tabular}$

Vasily N. Vasyukov — Doctor of Technical Sciences, Professor of the Department, vasyukov@corp.nstu.ru, https://orcid.org/0000-0001-5938-0368;

Nurzhan B. Baktyyarov — Resident, baktiyarovnurchik@gmail.com, https://orcid.org/0009-0002-5887-415X;

 $And rey\ A.\ Korytkin-Candidate\ of\ Medical\ Sciences,\ Associate\ Professor,\ Director,\ and rey.\ korytkin@gmail.com,\ https://orcid.org/0000-0001-9231-5891.$

Клиническое наблюдение

УДК 616.758.3-072.1-089.844-06:616.728.3-022.1:615.33:616.71-089.844-036.8 https://doi.org/10.18019/1028-4427-2025-31-5-648-654

Результат лечения пациентки с инфекцией коленного сустава после артроскопической пластики передней крестообразной связки

Э.Г. Давлетова, А.С. Тряпичников $^{\bowtie}$, А.М. Ермаков, А.В. Каминский

Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова, Курган, Россия

Автор, ответственный за переписку: Александр Сергеевич Тряпичников, pich86@bk.ru

Аннотация

Введение. Инфекция коленного сустава (септический артрит) является редким, но довольно серьезным послеоперационным осложнением. В связи с ростом числа первичных и ревизионных артроскопических операций на крупных суставах, выполняемых ежегодно, повышается и частота инфекционных осложнений.

Цель работы — представить результат успешно проведенного двухэтапного лечения пациентки с инфекцией коленного сустава, вызванной метициллинрезистентным эпидермальным стафилококком, после артроскопической пластики передней крестообразной связки.

Материалы и методы. Пациентка 22 лет с диагнозом «Хронический посттравматический остеомиелит правого бедра и большеберцовой кости. Артрит правого коленного сустава. Состояние после реконструкции передней крестообразной связки (ПКС) правого коленного сустава». В анамнезе — несколько безуспешных санирующих операций. На первом этапе проведена санация сустава с удалением инфицированного трансплантата ПКС и заполнением костных дефектов костным цементом с антибактериальными препаратами. На втором этапе удален костный цемент, костные дефекты заполнены аллокостной крошкой, проведена пластика ПКС сухожилием длинной малоберцовой мышцы. Выполнена клиническая, инструментальная и функциональная оценка эффективности лечения.

Результаты. Проведённое лечение позволило купировать инфекционный процесс. Достигнута ремиссия инфекционного процесса и восстановлена функция оперированной конечности. Длительность наблюдения — два года.

Обсуждение. В отечественной литературе представлено ограниченное количество публикаций по лечению инфекции после артроскопических операций на крупных суставах. Данное клиническое наблюдение демонстрирует положительный результат купирования инфекции после пластики ПКС с вынужденным удалением связки на фоне безуспешных санирующих операций.

Заключение. Выбор тактики лечения исходил из особенностей анамнеза и желаемых запросов. Ведение пациентки с инфекцией коленного сустава, возникшей после пластики ПКС, включало правильно подобранную и проведенную антибиотикотерапию, необходимый объем своевременных оперативных вмешательств. Оптимально выбранная тактика в конечном итоге помогла добиться хороших результатов.

Ключевые слова: клинический случай, ревизионная артроскопия, пластика ПКС, костная пластика, инфекция, двухэтапная ревизия, остеомиелит, MRSE

Для цитирования: Давлетова Э.Г, Тряпичников А.С., Ермаков А.М., Каминский А.В. Результат лечения пациентки с инфекцией коленного сустава после артроскопической пластики передней крестообразной связки. *Гений ортопедии*. 2025;31(5):648-654. doi: 10.18019/1028-4427-2025-31-5-648-654.

-

[©] Давлетова Э.Г, Тряпичников А.С., Ермаков А.М., Каминский А.В., 2025

Clinical case

https://doi.org/10.18019/1028-4427-2025-31-5-648-654

Treatment outcome in a patient with knee joint infection developed after arthroscopic plasty of the anterior cruciate ligament

E.G. Davletova, A.S. Triapichnikov[™], A.M. Ermakov, A.V. Kaminsky

Ilizarov National Medical Research Centre for Traumatology and Orthopedics, Kurgan, Russian Federation

Corresponding author: Alexander S. Triapichnikov, pich86@bk.ru

Abstract

Introduction Knee joint infection (septic arthritis) is a rare but severe postoperative complication. With the increasing number of primary and revision arthroscopic surgeries on large joints performed annually, the incidence of infectious complications has also grown.

The **aim** of this study is to present the outcome of a successful two-stage treatment of a female patient with knee joint infection caused by methicillin-resistant Staphylococcus epidermidis after arthroscopic anterior cruciate ligament reconstruction.

Materials and Methods A 22-year-old female patient diagnosed with chronic posttraumatic osteomyelitis of the right femur and tibia, arthritis of the right knee following reconstruction of the anterior cruciate ligament (ACL) of the right knee. Her medical records stated several failures of debridement surgeries. The first stage involved joint debridement, removal of the infected ACL graft, and filling of the bone defects with bone cement containing antibacterial agents. In the second stage, the bone cement was removed, the bone defects were filled with allograft bone chips, and ACL reconstruction was performed using the peroneus longus tendon. Clinical, instrumental, and functional evaluations of treatment effectiveness were performed.

Results The treatment managed to control the infection. Remission of the infection was achieved, and function of the affected limb was restored. The follow-up period was two years.

Discussion There are few publications in the Russian medical literature on the treatment of infection after arthroscopic surgery on large joints. This clinical case demonstrates a positive outcome in infection resolution after ACL reconstruction with forced ligament removal following failures of debridement procedures.

Conclusion The choice of treatment strategy was based on the patient's medical history and desired needs. The management of knee infection that developed after ACL reconstruction included appropriately selected and administered antibiotic therapy and the necessary number of timely surgical interventions. This optimally chosen approach ultimately resulted in good outcome.

Keywords: clinical case, revision arthroscopy, ACL reconstruction, bone grafting, infection, two-stage revision, osteomyelitis, MRSE

For citation: Davletova EG, Triapichnikov AS, Ermakov AM, Kaminsky AV. Treatment outcome in a patient with knee joint infection developed after arthroscopic plasty of the anterior cruciate ligament. *Genij Ortopedii*. 2025;31(5):648-654. doi: 10.18019/1028-4427-2025-31-5-648-654.

[©] Davletova E.G., Triapichnikov A.S., Ermakov A.M., Kaminsky A.V., 2025

[©] Translator Tatyana A. Malkova, 2025

ВВЕДЕНИЕ

Инфекция коленного сустава (септический артрит) является редким, но довольно серьезным послеоперационным осложнением. В общей популяции инфекционные осложнения после данного оперативного вмешательства встречаются с частотой 0,14–1,8 % [1]. Возбудителями инфекции, как правило, являются коагулазонегативный и золотистый стафилококк [2, 3, 4]. Большему риску инфицирования коленного сустава подвержены пациенты молодого возраста, получающие инъекции кортикостероидов, имеющие в анамнезе сахарный диабет, а также пациенты с сопутствующими хирургическими вмешательствами [5, 6, 7]. Некоторые исследователи утверждают, что частота инфекционных осложнений выше при выборе в качестве трансплантата сухожилий мышц хармстрингов [8]. Позднее обращение пациентов либо отсроченное начало лечения грозят такими исходами инфекционного артрита, как отслойка хряща, его истончение, остеоартрит и остеомиелит [9].

Диагностика инфекции после реконструкции передней крестообразной связки (ПКС) основывается на анамнезе пациента, осмотре, лабораторных показателях и анализах синовиальной жидкости после суставной аспирации. Клинически септический артрит проявляется отеком мягких тканей, гиперемией, локальным повышением температуры, болью и нарушением функции пораженного сустава, а также незаживающими послеоперационными ранами. Лабораторная диагностика включает исследование сывороточных маркеров и внутрисуставного содержимого (синовиальная жидкость и образцы ткани, полученные интраоперационно) [5].

Многие ортопеды на первом этапе отдают предпочтение процедурам, сохраняющим трансплантат связки: этапным артроскопиям, дебридменту и антибиотикотерапии [1, 2, 10, 11]. Однако при неэффективности такого лечения или выявлении резистентного к терапии возбудителя проводят санацию сустава с удалением трансплантата и фиксирующих его имплантатов, что связано со способностью микроорганизмов адгезироваться на поверхности внедряемых в сустав элементов [6, 12].

В данной статье представлено клиническое наблюдение пациентки с инфекционными осложнениями после реконструкции ПКС. Отличительная особенность данного случая состоит в заполнении костных каналов цементным спейсером с добавлением антибиотика и костной пластике этих каналов на втором этапе, после удаления спейсера. Авторы публикации подобного клинического случая использовали цементные спейсеры в виде шариков, расположенных в полости сустава [9].

Цель работы — представить результат успешно проведенного двухэтапного лечения пациентки с инфекцией коленного сустава, вызванной метициллинрезистентным эпидермальным стафилококком, после артроскопической пластики передней крестообразной связки.

МАТЕРИАЛЫ И МЕТОЛЫ

Пациентка 22 лет поступила в клинику костно-суставной инфекции НМИЦ ТО имени академика Г.А. Илизарова с жалобами на ночные боли «пульсирующего» характера в правом коленном суставе, нестабильность правого коленного сустава.

Диагноз: Хронический посттравматический остеомиелит правого бедра и большеберцовой кости. Артрит правого коленного сустава. Состояние после протезирования ПКС правого коленного сустава (рис. 1).

Из анамнеза заболевания: 2010 г. — травма правого коленного сустава, повреждение ПКС, артроскопическое протезирование ПКС. Июнь 2016 г. — повторная травма, лечебно-диагностическая артроскопия с резекцией медиального мениска. Июнь 2021 г. — травма правого коленного сустава с повреждением трансплантата ПКС. Июль 2021 г. — повторная резекция медиального мениска артроскопически и ревизионное протезирование ПКС, в послеоперационном периоде — гнойный артрит. Август 2021 г. — дренирование коленного сустава.

Рис. 1. Рентгенограммы правого коленного сустава в прямой и боковой проекциях при поступлении

Локальный статус. Состояние кожных покровов: ран и свищей нет. Умеренный отек правого коленного сустава. Локальные гиперемия и гипертермия кожных покровов. Симптом «переднего выдвижного ящика» — положительный. Тест Лахмана — положительный. Особенности походки: передвигается с опорой на костыли. Ортопедический статус: укорочения нет. Пульсация на периферических сосу-

дах: пульсация на а. dorsalis pedis пальпируется на обеих нижних конечностях. Движения в суставах больной конечности: сгибательно-разгибательная контрактура правого коленного сустава (сгибание/разгибание — $110/170^{\circ}$). Функциональное состояние правого коленного сустава: 19,5 баллов (по KSS), 40 баллов (по Lysholm).

Результаты лабораторных исследований. Анемия легкой степени (Hb 98 г/л), повышены CO \ni (61 мм/ч) и CP \mapsto (6,7 мг/л). В пунктате правого тазобедренного сустава обнаружен рост *Staphylococcus epidermidis*, MRSE 10^3 KOE/мл.

Операция в нашей клинике проведена в декабре 2021 г.

Первый этап лечения. Ревизия правого коленного сустава; удаление трансплантата ПКС; дебридмент; УЗ кавитация раны; пластика дефектов костным цементом с ванкомицином (рис. 2). Результаты интраоперационного микробиологического исследования — MRSE 10^3 КОЕ/мл. Интраоперационная кровопотеря составила 100 мл, гемотрансфузию не проводили. Рана зажила первичным натяжением. Дренаж удален на третьи сутки после операции.

После каждого из этапов оперативного вмешательства проводили двухнедельный курс этиотропной антибактериальной терапии ванкомицином 1,0 г × 2 раза/день и меропенемом 1,0 г × 3 раза/день в стационаре; четырехнедельный курс моксифлоксацином 400 мг × 1 раз/день и ко-тримоксазолом 480 мг × 3 раза/день на амбулаторном периоде лечения. Пациентке рекомендовано использование костылей при ходьбе с ограничением нагрузки на оперированную конечность.

Рис. 2. Рентгенограммы правого коленного сустава в прямой и боковой проекциях после проведения первого этапа лечения

Спустя три месяца после первого этапа лечения прове-

дена диагностическая пункция правого коленного сустава, рост возбудителя не выявлен. Гематологические показатели: анемия легкой степени (Hb 107 г/л), острофазовые маркеры воспаления в пределах нормы (СОЭ 2,0 мм/час и СРБ 1,6 мг/л).

В марте 2022 г. проведен *второй этап лечения*: ревизия правого коленного сустава; удаление спейсера; дебридмент правой бедренной и большеберцовой кости; УЗ кавитация раны; пластика дефектов бедренной и большеберцовой кости аллокостным материалом с добавлением ванкомицина; открытая реконструкция ПКС правого коленного сустава с использованием аутотрансплантата (рис. 3).

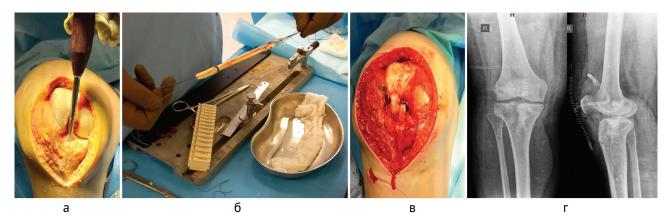


Рис. 3. Второй этап лечения: а — пластика костных дефектов бедра и большеберцовой кости аллокостной крошкой; б — подготовка аутотрансплантата ПКС из сухожилия m. peroneus longus dexter (длина — $10\,$ см, диаметр — $8\,$ мм); в — фиксация аутотрансплантата ПКС в бедренном и тибиальном каналах имплантатами-фиксаторами; г — рентгенограммы правого коленного сустава в прямой и боковой проекциях после проведения второго этапа лечения

Интраоперационная кровопотеря составила 150 мл, гемотрансфузию не проводили. При интраоперационном микробиологическом исследовании роста возбудителей не обнаружено. Пациентка получала восстановительное лечение, активизацию больной осуществляли на вторые сутки после операции с инструктором ЛФК. Дренаж удален на третьи сутки после операции. Рана зажила первичным натяжением.

ПОСЛЕДУЮЩЕЕ НАБЛЮДЕНИЕ И РЕЗУЛЬТАТЫ

На контрольном осмотре через два года данных за обострение гнойно-воспалительного процесса не выявлено. Нестабильность в коленном суставе не наблюдали (симптомы переднего выдвижного ящика, заднего выдвижного ящика и тест Лахмана — отрицательные), маркеры воспаления — в пределах нормы (СОЭ — 21 мм/час; СРБ — 3 мг/л). Функциональное состояние правого коленного сустава составило 77 баллов по KSS, 69 баллов по Lysholm (рис. 4).

Рис. 4. Результат через два года после проведенного лечения: а — фото, демонстрирующее функцию конечности; б — рентгенограммы правого коленного сустава в прямой и боковой проекциях

В результате лечения купирована инфекция в области правого коленного сустава и восстановлена функция конечности. Пациентка результатом лечения довольна, не использует дополнительные средства опоры, вернулась к повседневной трудовой деятельности.

ОБСУЖДЕНИЕ

Септический артрит после реконструкции ПКС увеличивает риск быстрого разрушения коленного сустава. Инфекционные осложнения после данного оперативного вмешательства встречаются с частотой от 0,1 % до 1,7 % случаев в общей популяции [2]. Своевременная диагностика и правильный выбор тактики ведения пациента являются главными составляющими успешного лечения и предотвращения раннего и значительного ухудшения состояния сустава. Несмотря на увеличение числа встречаемости данной проблемы, единого мнения о тактике лечения нет.

Артроскопия обеспечивает легкий доступ к суставу, адекватную санацию, более короткое время послеоперационного восстановления и физиологический лаваж под давлением [13], а также дает возможность определить стадию поражения сустава. Согласно классификации, предложенной немецким ученым А. Gaechter [14], выделяют четыре стадии поражения сустава: стадия І — выпот в суставе, покраснение синовиальной оболочки и возможные петехиальные кровотечения; стадия ІІ — сильное воспаление, фибринозные отложения и гной в колене; стадия ІІІ — утолщение синовиальной оболочки и множественные карманы из-за спаек; стадия ІV — агрессивный паннус с инфильтрацией в хрящ, возможно, подрывающий хрящ, рентгенологические признаки субхондрального остеолиза и возможных костных эрозий и кист [5, 15].

Во время первичной артроскопической оценки и дебридмента необходимо оценить целостность и жизнеспособность трансплантата, оценить его натяжение, а также провести тест переднего выдвижного ящика. Если тест положительный, жизнеспособность трансплантата следует подвергнуть сомнению и произвести санационную артроскопию с экстенсивным лаважем и полноценной синовэктомией [2, 3, 4]. По завершении вмешательства устанавливают закрытую дренажную систему и иммобилизируют коленный сустав на короткий срок.

Большинство авторов не ограничиваются одной операцией, среднее количество артроскопий составляет 2,8 (минимум — одна, максимум — пять операций) [10, 12, 13, 16]. Во время этапных санационных артроскопий хирурги принимают решение об удалении связки и фиксаторов. Сохранение или удаление трансплантата по-прежнему является спорным вопросом и зависит от предпочтений, опыта и мнения специалиста [17]. В некоторых случаях причиной рецидива инфекции, вероятно, является образование биоплёнки, и удаление трансплантата и всех материалов может привести к успешным результатам с точки зрения борьбы с инфекцией [17]. Помимо этого, одним из факторов, имеющих решающее значение для жизнеспособности трансплантата, является ранняя диагностика, поскольку у пациентов, которым диагноз был поставлен более чем через семь дней после появления симптомов,

чаще удаляют трансплантат [18]. В данном случае все фиксаторы должны быть удалены, дебридмент каналов осуществлен в пределах здоровых тканей. Данная операция может быть проведена как посредством артроскопической техники, так и путем артротомии [2].

При расширенных каналах в случае асептических ревизий активно применяют костную пластику. По данным анализа 460 повторных реконструкций ПКС, костная пластика симультанно с установкой трансплантата выполнена в 3 % случаев, в 9 % случаев потребовалось этапное лечение с восполнением дефектов на первой стадии и ревизионной пластикой на второй [19]. После удаления трансплантата необходимо обрабатывать костные каналы, поскольку вероятность дальнейшего костного распространения инфекции крайне высока [2, 16]. Пластика каналов бедренной и большеберцовой костей спейсером с антибактериальным препаратом, по нашему мнению, обеспечивает лучший контроль инфекции у пациентов перед последующей реимплантацией. Нашу работу выделяет факт заполнения каналов спейсером с антибиотиком, поскольку обычно используются шарики с антибиотиком, которые во время санирующего этапа помещают в полость сустава артроскопически или открыто и удаляют при реконструкции связки [20]. В представленном клиническом случае в связи с длительным анамнезом септического артрита, наличием тяжелой полирезистентной микрофлоры и необходимостью установки в костные каналы спейсера с антибиотиком было принято решение выбрать тактику открытой хирургии. Исследование М. Osti et al. подтверждает, что в таких случаях следует воздержаться от артроскопической техники и остановить свой выбор на артротомии [21].

Наряду с хирургическим вмешательством в обязательном порядке проводят длительный курс этиотропной терапии (антибиотикотерапии) [7]. Парентеральное введение антибиотика, активного против наиболее распространенных микроорганизмов (*Staphylococcus aureus* и коагулазоотрицательный стафилококк), необходимо начинать сразу после получения результата посева микроорганизмов из пунктата коленного сустава. Для достижения клинической эффективности рекомендуют применение комбинации антибиотиков, выбор которых должен основываться исходя из микроорганизма по итогам консультации с клиническим фармакологом [5]. Общепризнанным является сочетание цефалоспоринов третьего поколения и ванкомицина/гентамицина. Однако последние используют с осторожностью ввиду их нефро- и ототоксичности. Курс антибиотиков начинают с внутривенного введения в течение трех—четырех недель с последующим переводом на пероральные формы препаратов [2, 16].

Второе оперативное вмешательство по поводу реимплантации связки рекомендуется отсрочить и провести через шесть—восемь месяцев после первичной операции [5]. Однако грамотно и своевременно проведенный первый этап, отсутствие роста возбудителя в пунктате из коленного сустава и нормальные значения показателей воспаления, как в представленном клиническом случае, дают возможность более раннего проведения второго этапа, что сокращает сроки восстановления пациента [22].

В раннем послеоперационном периоде оперированную конечность фиксируют в ортезе в положении разгибания 175°. Со следующего дня начинают реабилитационные мероприятия, направленные на купирование боли, отека, увеличение амплитуды пассивных и активных движений, укрепление четырехглавой мышцы бедра. Главной целью является увеличение нагрузки на конечность и ходьба без средств дополнительной опоры [23].

С функциональной точки зрения пациенты могут вернуться к трудовой и повседневной жизни, что подтверждается увеличением значений по шкалам IKSS и Lysholm в приведенном клиническом примере. Мы сравнили функциональные результаты, полученные нами, с результатами зарубежных хирургов. В работе J. Gille зарегистрированы показатели 63,9 балла по шкале Lysholm и 63 балла по шкале IKSS [15]. Следует отметить, что конечные данные в представленном нами клиническом примере нисколько не уступают средним значениям в публикациях иностранных авторов. Купирование инфекционного осложнения и стабилизация сустава улучшили качество жизни пациента, и в перспективе это должно снизить скорость развития гонартроза.

К сильным сторонам данной работы можно отнести оригинальность техники, которая, тем не менее, не отклоняется от общей парадигмы лечения пациентов с инфекционными осложнениями, и наличие отдаленного результата лечения. Применение данной методики при лечении одного пациента, несомненно, является ограничением исследования.

ЗАКЛЮЧЕНИЕ

На клиническом примере продемонстрирован успешный индивидуальный подход к лечению пациентов с инфекцией, возникшей после пластики ПКС. Выбор тактики лечения исходил из особенностей анамнеза и желаемых запросов. Оптимальная тактика, включавшая правильно подобранную и проведенную антибиотикотерапию и необходимый объем своевременных оперативных вмешательств, в конечном итоге помогла добиться хороших результатов.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Государственное бюджетное финансирование.

Этическая экспертиза. Исследование одобрено локальным этическим комитетом ФГБУ «НМИЦ ТО имени академика Г.А. Илизарова» Минздрава России (протокол N°1(76) от 29.11.2024) и проведено в соответствии с этическим истандартами Хельсинкской декларации, разработанной Всемирной медицинской ассоциацией, «Этическими принципами проведения научных медицинских исследований с участием человека» с поправками 2000 г.

Информирование согласие. Пациентка дала добровольное письменное информирование согласие на участие в исследовании и публикацию его результатов.

СПИСОК ИСТОЧНИКОВ

- $Schuster\,P, Schulz\,M, Immendoerfer\,M, et\,al.\,Septic\,Arthritis\,After\,Arthroscopic\,Anterior\,Cruciate\,Ligament\,Reconstruction: Evaluation\,Arthritis\,After\,Arthroscopic\,Anterior\,Cruciate\,Arthroscopic\,Arthritis\,After\,Arthroscopic\,Anterior\,Cruciate\,Arthroscopic\,Arthritis\,After\,Arthroscopic\,Anterior\,Cruciate\,Arthroscopic\,Arthritis\,After\,Arthroscopic\,Anterior\,Cruciate\,Arthroscopic Arthroscopic Arthr$ of an Arthroscopic Graft-Retaining Treatment Protocol. Am J Sports Med. 2015;43(12):3005-3012. doi: 10.1177/0363546515603054.
- Cadet ER, Makhni EC, Mehran N, Schulz BM. Management of septic arthritis following anterior cruciate ligament reconstruction: a review of current practices and recommendations. J Am Acad Orthop Surg. 2013;21(11):647-656. doi: 10.5435/JAAOS-21-11-647.
- Geethan I, Easwaran R, Sahanand S, et al. Management Guidelines for Infection After ACL Reconstruction: Expert Opinion Statement Based
- on the Modified Delphi Survey of Indian Arthroscopy Surgeons. *Indian J Orthop*. 2021;55(2):342-351. doi: 10.1007/s43465-021-00363-z. Torres-Claramunt R, Gelber P, Pelfort X, et al. Managing septic arthritis after knee ligament reconstruction. *Int Orthop*. 2016;40(3):607-614. doi: 10.1007/s00264-015-2884-6.
- Babalola OR, Babalola AA, Alatishe KA. Approaches to Septic Arthritis of the Knee Post Anterior Cruciate Ligament Reconstruction. Curr Rev Musculoskelet Med. 2023;16(7):274-283. doi: 10.1007/s12178-023-09841-3.
- Клюшин Н.М., Ермаков А.М., Каминский А.В. и др. Результат лечения двусторонней перипротезной инфекции тазобедренных суставов. *Гений ортопедии*. 2018;24(1):81-85. doi: 10.18019/1028-4427-2018-24-1-81-85.
- Клюшин Н.М., Ермаков А.М. Двухэтапное артродезирование голеностопного сустава при лечении перипротезной инфекции. Гений ортопедии. 2020;26(1):99-102. doi: 10.18019/1028-4427-2020-26-1-99-102.
- Kim SJ, Postigo R, Koo S, Kim JH. Infection after arthroscopic anterior cruciate ligament reconstruction. Orthopedics. 2014;37(7):477-484. doi: 10.3928/01477447-20140626-06.
- Gille J, Gerlach U, Oheim R, et al. Functional outcome of septic arthritis after anterior cruciate ligament surgery. Int Orthop. 2015;39(6):1195-1201. doi: 10.1007/s00264-014-2600-y.
- 10. Williams RJ 3rd, Laurencin CT, Warren RF, et al. Septic arthritis after arthroscopic anterior cruciate ligament reconstruction. Diagnosis and management. Am J Sports Med. 1997;25(2):261-267. doi: 10.1177/036354659702500222.
- 11. Torres-Claramunt R, Pelfort X, Erquicia J, et al. Knee joint infection after ACL reconstruction: prevalence, management and functional outcomes. Knee Surg Sports Traumatol Arthrosc. 2013;21(12):2844-2849. doi: 10.1007/s00167-012-2264-3.
- 12. Burks RT, Friederichs MG, Fink B, et al. Treatment of postoperative anterior cruciate ligament infections with graft removal and early reimplantation. Am J Sports Med. 2003;31(3):414-418. doi: 10.1177/03635465030310031501.
- 13. McAllister DR, Parker RD, Cooper AE, et al. Outcomes of postoperative septic arthritis after anterior cruciate ligament reconstruction. Am J Sports Méd. 1999;27(5):562-570. doi: 10.1177/03635465990270050301.
- 14. Gaechter A. Arthroscopic lavage for joint infections. Orthop Traumatol. 1993;(2):104-106. doi:10.1007/bf02620466.
- 15. Gille J, Gerlach U, Oheim R, et al. Functional outcome of septic arthritis after anterior cruciate ligament surgery. Int Orthop. 2015;39(6):1195-1201. doi: 10.1007/s00264-014-2600-y.
- 16. Wang C, Meng LY, Chen NY, et al. Management algorithm for septic arthritis after anterior cruciate ligament reconstruction.
- Beijing Da Xue Xue Bao Yi Xue Ban. 2021;53(5):850-856. (In Chin.) doi: 10.19723/j.issn.1671-167X.2021.05.007.

 17. Komnos GA, Chalatsis G, Mitrousias V, Hantes ME. Postoperative Infection after Anterior Cruciate Ligament Reconstruction: Prevention and Management. Microorganisms. 2022;10(12):2349. doi: 10.3390/microorganisms10122349.
- 18. Pérez-Prieto D, Totlis T, Madjarevic T, et al. ESSKA and EBJIS recommendations for the management of infections after anterior cruciate ligament reconstruction (ACL-R): prevention, surgical treatment and rehabilitation. *Knee Surg Sports Traumatol Arthrosc.* 2023;31(10):4204-4212. doi: 10.1007/s00167-023-07463-3.
- 19. Wright RW, Huston LJ, Spindler KP, et al. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med. 2010;38(10):1979-1986. doi: 10.1177/0363546510378645.
- 20. Schulz AP, Götze S, Schmidt HG, et al. Septic arthritis of the knee after anterior cruciate ligament surgery: a stage-adapted treatment regimen. Am J Sports Med. 2007;35(7):1064-1069. doi: 10.1177/0363546507299744.
- 21. Osti M, Simkovic M, Haffner N. Options and limits of arthroscopic treatment of joint empyema. Unfallchirurg. 2022;125(1):26-32. (In German) doi: 10.1007/s00113-021-01111-6.
- 22. Matava MJ, Evans TA, Wright RW, Shively RA. Septic arthritis of the knee following anterior cruciate ligament reconstruction: results of a survey of sports medicine fellowship directors. Arthroscopy. 1998;14(7):717-725. doi: 10.1016/s0749-8063(98)70098-2.
- 23. Yabroudi MA, Irrgang JJ. Rehabilitation and return to play after anatomic anterior cruciate ligament reconstruction. Clin Sports Med. 2013;32(1):165-175. doi: 10.1016/j.csm.2012.08.016.

Статья поступила 02.12.2024; одобрена после рецензирования 28.05.2025; принята к публикации 25.08.2025.

The article was submitted 02.12.2024; approved after reviewing 28.05.2025; accepted for publication 25.08.2025.

Информация об авторах:

Эльза Галинуровна Давлетова — клинический ординатор, elzikwin@gmail.com, https://orcid.org/0000-0002-6578-9888;

Александр Сергеевич Тряпичников — кандидат медицинских наук, врач — травматолог-ортопед, pich86@bk.ru, https://orcid.org/0000-0001-7305-506X, Scopus ID: 57201281800;

Артем Михайлович Ермаков — доктор медицинских наук, врач — травматолог-ортопед, руководитель клиники, ema_cab@mail.ru, https://orcid.org/0000-0002-5420-4637, Scopus ID: 57069678600;

Андрей Владимирович Каминский — кандидат медицинских наук, врач — травматолог-ортопед, заместитель главного врача, drkav@mail.ru, https://orcid.org/0000-0001-8647-4044.

Information about the authors:

Elza G. Davletova - clinical resident, elzikwin@gmail.com, https://orcid.org/0000-0002-6578-9888;

Aleksandr S. Triapichnikov — Candidate of Medical Sciences, orthopaedic surgeon, pich86@bk.ru, https://orcid.org/0000-0001-7305-506X, Scopus ID: 57201281800;

Artem M. Ermakov — Doctor of Medical Sciences, orthopaedic surgeon, Head of the Clinic, ema_cab@mail.ru, https://orcid.org/0000-0002-5420-4637, Scopus ID: 57069678600;

Andrey V. Kaminsky — Candidate of Medical Sciences, orthopaedic surgeon, Deputy Chief Physician, drkav@mail.ru, https://orcid.org/0000-0001-8647-4044.

Клиническое наблюдение

УДК 616.711-002-007.24-089:615.477.2:615.465:616-089.193.4 https://doi.org/10.18019/1028-4427-2025-31-5-655-665

Редкий случай тяжелой деформации у пациента с анкилозирующим спондилитом

И.В. Басанкин 1,2 , А.А. Гюльзатян $^{1 \bowtie}$, И.Е. Грицаев 1 , К.К. Тахмазян 1

- ¹ Научно-исследовательский институт Краевая клиническая больница № 1 имени профессора С.В. Очаповского, Краснодар, Россия
- ² Кубанский государственный медицинский университет, Краснодар, Россия

Автор, ответственный за переписку: Абрам Акопович Гюльзатян, abramgulz@gmail.com

Аннотация

Введение. Анкилозирующий спондилит (АС) — хроническое воспалительное заболевание, сопровождающееся формированием ригидных деформаций позвоночника и нарушением сагиттального баланса. Уникальность представленного клинического случая обусловлена сочетанием АС со спондилитом Андерсена, выраженной трёхплоскостной деформацией и необходимостью проведения многоэтапного комбинированного хирургического лечения с применением оригинальной методики наружной репозиции.

Цель работы — демонстрация особенностей и хирургических аспектов лечения пациента с тяжёлыми деформациями позвоночника на фоне анкилозирующего спондилита, осложненного спондилитом Андерсена и выраженным сагиттальным дисбалансом.

Материалы и методы. Рассмотрен клинический случай 53-летнего пациента с выраженной кифосколиотической деформацией позвоночника, хроническим болевым синдромом и нарушением горизонтального взора. Многокомпонентное хирургическое лечение включало остеотомию шестого типа по Schwab на уровне Th₁₂-L₁, спондилодез из дорзального и трансплеврального доступов, остеопластику поствинтовых дефектов, установку ламинарных крюков и реконструкцию металлоконструкции. Применены методики предоперационного 3D-планирования и оригинальные приемы фиксации и редукции позвоночника.

Результаты. Несмотря на развитие нестабильности имплантатов после первичной операции, последовательные этапные хирургические вмешательства позволили восстановить ось и опорность позвоночного столба. Через год наблюдения отмечены: формирование надежного межтелового спондилодеза, отсутствие признаков нестабильности металлоконструкции и значительное улучшение качества жизни пациента.

Обсуждение. АС может сопровождаться тяжёлыми трёхплоскостными деформациями позвоночника и спондилитом Андерсена. Коррекция подобных деформаций требует многоэтапного подхода с применением комбинированных хирургических методик. Адекватная фиксация передней и задней опорных колонн позвоночника критически важна для предотвращения нестабильности.

Заключение. Представленный клинический случай демонстрирует необходимость комплексного многоэтапного подхода к лечению пациента с тяжёлыми деформациями позвоночника при АС, осложнённом спондилитом Андерсена и выраженным сагиттальным дисбалансом. Проведённое этапное лечение позволило достичь стойкого клинического и функционального улучшения, подчёркивая важность индивидуализированного планирования и готовности к адаптации хирургической тактики при возникновении осложнений.

Ключевые слова: анкилозирующий спондилит, деформация позвоночника, коррекция, осложнения, нестабильность металлоконструкции

Для цитирования: Басанкин И.В., Гюльзатян А.А., Грицаев И.Е., Тахмазян К.К. Редкий случай тяжелой деформации у пациента с анкилозирующим спондилитом. *Гений ортопедии*. 2025;31(5):655-665. doi: 10.18019/1028-4427-2025-31-5-655-665.

[©] Басанкин И.В., Гюльзатян А.А., Грицаев И.Е., Тахмазян К.К., 2025

Clinical case

https://doi.org/10.18019/1028-4427-2025-31-5-655-665

A rare case of severe deformity in a patient with ankylosing spondylitis

I.V. Basankin^{1,2}, A.A. Giulzatyan^{1⊠}, I.E. Gritsaev¹, K.K. Takhmazyan¹

Corresponding author: Abram A. Giulzatyan, abramgulz@gmail.com

Abstract

Introduction Ankylosing spondylitis (AS) is a chronic inflammatory disease with associated rigid spinal deformities and sagittal imbalance. The identity of the clinical case reported was characterized by AS combined with Andersson lesion, pronounced three-plane deformity and the need for multi-stage combined surgical treatment involving an original technique of external reduction.

The **objective** was to demonstrate surgical treatment of a patient with severe spinal deformities due to ankylosing spondylitis complicated by Andersson lesion and severe sagittal imbalance.

Material and methods The clinical case of a 53-year-old patient with severe kyphoscoliosis, chronic pain and horizontal gaze disorder is reported. Multicomponent surgical management included a Schwab type 6 osteotomy at the $Th_{12}-L_1$ level, spondylodesis via posterior and transpleural approaches, osteoplasty of post-screw defects, placement of laminar hooks and reconstruction of the metal construct. Preoperative 3D planning and original methods of fixation and reduction of the spine were employed.

Results With the implant instability developed after the primary operation, successive staged surgical interventions facilitated restoration of the axis and support of the spinal column. Reliable interbody spondylodesis with no signs of hardware instability and improvement in the patient's quality of life were observed at one-year follow-up.

Conclusion The clinical case demonstrated the need for a comprehensive multi-stage approach to the treatment of an AS patient with severe spinal deformities complicated by Andersen lesion and severe sagittal imbalance. The staged treatment resulted in sustainable clinical and functional improvement with the emphasis on individualized planning and adapted surgical strategy if complications arise.

Keywords: ankylosing spondylitis, spinal deformity, correction, complications, hardware instability

For citation: Basankin IV, Giulzatyan AA, Gritsaev IE, Takhmazyan KK. A rare case of severe deformity in a patient with ankylosing spondylitis. *Genij Ortopedii*. 2025;31(5):655-665. doi: 10.18019/1028-4427-2025-31-5-655-665.

_

Research Institute — Regional Clinical Hospital No. 1 named after Professor S.V. Ochapovsky, Krasnodar, Russian Federation

² Kuban State Medical University, Krasnodar, Russian Federation

[©] Basankin I.V., Giulzatyan A.A., Gritsaev I.E., Takhmazyan K.K., 2025

[©] Translator Irina A. Saranskikh, 2025

ВВЕДЕНИЕ

Анкилозирующий спондилит (АС) — редкая серонегативная спондилоартропатия, встречающаяся примерно у 1,4 % населения с распространенностью 0,03–1,80 % [1]. Данное хроническое воспалительное заболевание в первую очередь поражает крестцово-подвздошные сочленения и позвоночник, характеризуется образованием спинальных мостовидных синдесмофитов, энтезита, сакроилеита и увеита. Прогрессирование АС приводит к формированию кифотической деформации и увеличению подбородочно-бровного вертикального угла (CVBA), что обусловливает функциональные нарушения у 30 % пациентов [2]. Основная цель хирургии при АС — коррекция сагиттального дисбаланса, восстановление горизонтального взгляда, уменьшение болевого синдрома и улучшение функционального статуса.

Уникальность представленного клинического случая обусловлена сочетанием АС со спондилитом Андерсена, выраженной трёхплоскостной деформацией и необходимостью проведения многоэтапного комбинированного хирургического лечения с применением оригинальной методики наружной репозиции.

Цель работы — демонстрация особенностей и хирургических аспектов лечения пациента с тяжёлыми деформациями позвоночника на фоне анкилозирующего спондилита, осложненного спондилитом Андерсена и выраженным сагиттальным дисбалансом.

МАТЕРИАЛЫ И МЕТОДЫ

Пациент 53-х лет в 2022 г. поступил в отделение нейрохирургии с жалобами на постоянную боль (6–7 баллов по ВАШ) в грудном и поясничном отделах позвоночника и крупных суставах, деформацию позвоночника, утреннюю скованность, нарушение горизонтального взора.

Anamnesis morbi: Впервые боли в позвоночнике появились в 2000 г. Больной не обследовался и не лечился, занимался плаванием и гимнастикой. После установления диагноза «болезнь Бехтерева» в 2011 г. получал НПВП, пульс-терапию глюкокортикостероидами, физиолечение, ЛФК. На фоне терапии отмечалась положительная динамика в виде регресса болевого синдрома, однако нарастали деформация позвоночника и постепенное нарушение горизонтального взора. В 2021 г. произошел перелом с признаками нестабильности на уровне C_6 – C_7 тип В3 по классификации АО Spine, в связи с чем была выполнена дорзальная фиксация C_{5-6} – Th_{1-2} . Фиксацию осуществляли с использованием транспедикулярных винтов, обеспечивших стабилизацию повреждённого отдела. С 2022 г. по 2023 г. получал базовую терапию, однако болевой синдром прогрессировал, нарастала деформация, отмечалось резкое снижение качества жизни.

Объективно: Пациент — гиперстенического телосложения.

У пациента выявлены:

- выраженная кифосколиотическая деформация («поза просителя») (рис. 1, a);
- выраженная болезненность в области остистого отростка L5, в местах прикрепления ахилловых сухожилий к пяточной кости, в области гребня подвздошной кости с двух сторон, I и VII грудино-реберных сочленений (индекс MASES (англ.: Maastricht Ankylosing Spondylitis Enthesitis Score) = 9);
- выраженное ограничение подвижности позвоночника (индекс BASMI (*англ.*: Bath Ankylosing Spondylitis Metrology Index) = 10);
- выраженные функциональные нарушения (индекс BASFI (*англ.*: Bath Ankylosing Spondilitis Functional Index) = 9.1).

Количественная оценка общей активности АС:

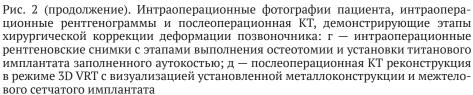
- индекс BASDAI (англ.: Bath Ankylosing Spondilitis Disease Activity Index) = 9,2;
- индекс ASDAS (англ.: Ankylosing Spondilitis Disease Activity Score) по CO₉ = 3,5.

Неврологический статус — без особенностей.

По данным инструментальной диагностики установлены:

- двусторонний сакроилеит 3 ст.;
- клиновидная деформация Th_{12} , L_1 позвонков с формированием спондилита Андерсена на этом уровне и кифосколиотической деформацией позвоночного столба (рис. 1, б);
- нарушение сагиттального баланса (SVA 280 мм);
- грубое нарушение горизонтального взора (расстояние «козелок стена» 25 см, CBVA (*англ.*: Chin-Brow Vertical Axis) 75°).

В рамках предоперационного планирования выполнена оценка минеральной плотности костной ткани (МПКТ) по данным КТ: $Th_9 - 98$ HU, $Th_{10} - 100$ HU, $Th_{11} - 102$ HU, $L_2 - 98$ HU, $L_3 - 94$ HU, $L_4 - 96$ HU. Полученные значения соответствовали сниженной плотности костной ткани (остеопеническому диапазону).


Рис. 1. Фото пациента и данные КТ грудного и поясничного отделов позвоночника при поступлении в стационар: а — внешний вид пациента, отмечается выраженная кифосколиотическая деформация; 6- КТ в режиме 3D VRT и MPR, сагиттальная проекция, визуализируются признаки спондилита Андерсена, клиновидная деформация Th_{12} и L_1 с вентральным спонтанным спондилодезом и оссификацией передней продольной связки

Предоперационное планирование проводили в программе Surgimap. Объем хирургического вмешательства определяли наличием ригидной кифосколиотической деформации с вершиной на уровне $Th_{12}-L_1$, вследствие перелома и формирования вентрального блока. По совокупности данных было решено выполнить транспедикулярную фиксацию $Th_{9-10-11}-L_{2-3-4}$, 6 тип остеотомии по Schwab на уровне $Th_{12}-L_1$, спондилодез из дорзального доступа титановым сетчатым имплантатом с аутокостью. Достигнута коррекция деформации 52° . Продолжительность операции — 260 мин, кровопотеря — 1 100 мл (рис. 2).

Рис. 2. Интраоперационные фотографии пациента, интраоперационные рентгенограммы и послеоперационная КТ, демонстрирующие этапы хирургической коррекции деформации позвоночника: а — положение пациента на операционном столе до и после оперативного вмешательства, отмечается визуальный регресс кифотической деформации; 6 — вид операционной раны до выполнения коррекции с установленными провизорными штангами; в — вид операционной раны после выполнения коррекции и компрессии вдоль окончательных штанг

В первые сутки после операции начали пассивную реабилитацию, а с четвертых суток — активную с вертикализацией пациента в грудопоясничном корсете. Отмечен регресс болевого синдрома, улучшение горизонтального взора. На 11-ые сутки после операции произошла манифестация болевого синдрома (ВАШ = 7), резистентного к НПВС и наркотическим анальгетикам. После выполнения КТ позвоночника обнаружены нестабильность металлоконструкции в виде расшатывания и «вырывания» нижних шести винтов, миграция межтелового имплантата, трансляция грудного отдела позвоночника (рис. 3, а), что стало основанием для сложного и нетипичного ревизионного вмешательства, обусловленного описанными анатомическими изменениями.

Единственно возможным вариантом фиксации было удаление нестабильных винтов, установка ламинарных крюков на уровне расшатанных винтов с последующей заменой межтелового имплантата. Интраоперационно технически сложной задачей оказалась репозиция фактически разобщённого позвоночного столба для устранения грубой трансляции и предотвращения повреждения спинного мозга. Для решения данной задачи был сконструирован оригинальный внешний фиксатор (рис. 3, б), который позволил осуществить дозированную редукцию поясничного отдела позвоночника до необходимого уровня и провизорную его фиксацию для предотвращения сагиттального смещения во время установки крючков и окончательной фиксации.

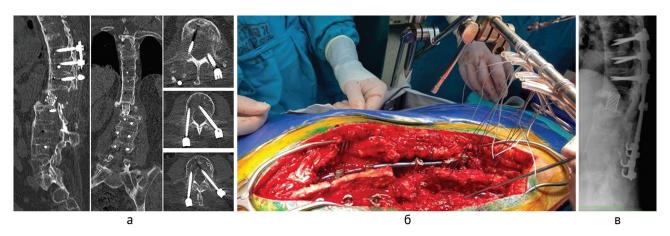


Рис. 3. Радиологические и интраоперационные данные, иллюстрирующие признаки нестабильности металлоконструкции и этапы первичного ревизионного вмешательства: а — КТ сагиттальной, фронтальной и аксиальной плоскостей на 12-е сутки после первичной операции, трансляция грудного отдела позвоночника, миграция межтелового имплантата, расшатывание всех винтов в поясничном отделе позвоночника с большими (> 3 мм) зонами остеолиза в позвонках L_2 , L_3 , L_4 ; δ — фото внешнего фиксатора, представляющего конструкцию из рукава рамы ретрактора Томпсона и лавсановых ниток, проведенных через остистые отростки и фиксированных к данной раме; в — послеоперационная рентгенограмма в сагиттальной плоскости

Длительность оперативного вмешательства (редукция, фиксация, замена межтелового кейджа) составила 90 мин, кровопотеря — 600 мл. Достигнута устойчивая фиксация (рис. 3, в).

Через 10 дней вновь диагностирована нестабильность, что явилось основанием для еще одной ревизии. Учитывая повторную нестабильность металлоконструкции и сетчатого имплантата, мы отказались от очередной попытки одномоментного вмешательства в пользу двухэтапной операции.

Первый этап. Ревизия раны, установка ламинарных крючков в L_2 , L_3 , L_4 (n=8), перемонтаж гибридной металлоконструкции по типу винт – крючки, удаление мигрировавшего сетчатого имплантата, остеопластика поствинтовых дефектов в позвонках L_2 , L_3 , L_4 . Длительность первого этапа ревизионной хирургии (рис. 4) составила 140 мин., кровопотеря — 800 мл.

В послеоперационном периоде неврологический статус — без изменений, сила мышц в конечностях — пять баллов, проводниковых нарушений нет. Пациенту назначен строгий постельный режим в течение пяти дней (до второго этапа). В данном промежутке проводили форсированную восстановительную сосудистую терапию, гемотрансфузию, антибиотикотерапию, профилактику тромбоза вен.

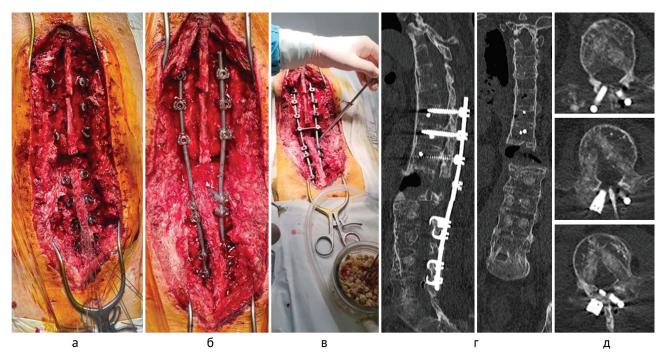


Рис. 4. Интраоперационные изображения и данные КТ, демонстрирующие этапы второго ревизионного вмешательства, включая остеопластику поствинтовых дефектов: а — вид операционной раны с установленными крючками, дорзальная часть позвонка «подвешена» оригинальным фиксатором; б — вид операционной раны после установки стержней и окончательной фиксации; в — процедура остеопластики поствинтовых дефектов с помощью аллогенной костной стружки и ортобиологического продукта тромбогель; г — сагиттальный и фронтальный сканы грудного и поясничного отделов позвоночника; д — позвонки L_2 , L_3 , L_4 с зонами остеопластики поствинтовых дефектов

Второй этап. Трансплевральный корпородез с использованием титанового сетчатого имплантата и смоделированного фрагмента аллокости (рис. 5). Длительность второго этапа хирургического вмешательства — 90 мин., кровопотеря — 100 мл.

В послеоперационном периоде пациент был вертикализирован на десятые сутки из-за выраженных ортостатических нарушений. Проводили пассивную и активную реабилитацию, дыхательную гимнастику, физиотерапию, сеансы ГБО. Отмечали положительную динамику в виде регресса болевого синдрома до 2–3 балов по ВАШ, улучшение качества жизни за счет изменения угла взора.

Пациент выписан из стационара на 41-ые сутки в удовлетворительном состоянии (рис. 6, а). В последующем пациенту выполнялся КТ контроль всех отделов позвоночника через шесть, 12 месяцев после выписки. По данным КТ через один год у пациента отмечался межтеловой спондилодез (на уровне сетчатого имплантата и опорного аллотрансплантата), полная интеграция аллокостной крошки в области поствинтовых дефектов, признаков нестабильности металлоконструкции не было (рис. 6, б, в).

Анализ данных КТ после операции выявил важные неблагоприятные факты:

- наличие двух раздельных металлоконструкций на уровнях C_{5-6} — Th_{1-2} и $Th_{9-10-11}$ — L_{2-3-4} ;
- свободная нефиксированная зона Th_3 – Th_8 с углом кифоза 22° ;
- плотность костной ткани в позвонке Th $_8$ непосредственно над металлоконструкцией 78 HU.

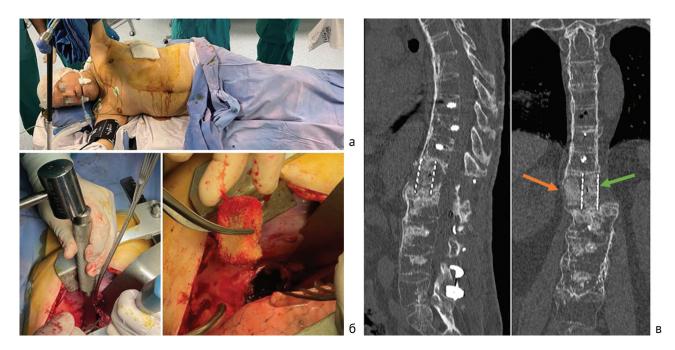


Рис. 5. Интраоперационные фотографии пациента и данные КТ, отражающие этапы трансплеврального корпородеза, направленного на восстановление опороспособности передней и средней колонны позвоночного столба: а — положение пациента на операционном столе на левом боку; б — имплантация титанового имплантата и смоделированного фрагмента аллокости; в — послеоперационное КТ в сагиттальной и фронтальной плоскостях, визуализируется межтеловой сетчатый имплантат (зеленая стрелка) и смоделированный фрагмент из аллокости (оранжевая стрелка)

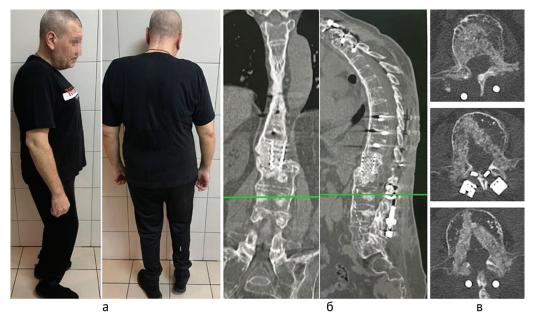


Рис. 6. Фото пациента и данные КТ шейного, грудного и поясничного отделов позвоночника через год после оперативного вмешательства: а — внешний вид пациента после выполнения этапных оперативных вмешательств; б — фронтальный и сагиттальный сканы грудного и поясничного отдела позвоночника с признаками спондилодеза; в — позвонки L_2 , L_3 , L_4 после остеопластики поствинтовых дефектов, с признаками полной интеграции имплантированной аллокостной крошки

Принимая во внимание данные особенности, был очевиден высокий риск возникновения проксимального переходного кифоза. В связи с этим совместно с пациентом было принято решение об оперативном вмешательстве в объеме:

- транспедикулярная фиксация Th_3 – Th_8 , и L_2 – L_4 (в области ранее выполненной остеопластики);
- монтаж одной единой металлоконструкции C_5 – L_4 без замены ранее установленных конструкций с соединением их с новыми элементами при помощи коннекторов и дополнительных стержней (рис. 7).

Рис. 7. Интраоперационное изображение раны, послеоперационная обзорная рентгенограмма и фото пациента: а — окончательный вид единой металлоконструкции C_5-L_4 без замены ранее установленных конструкций с соединением их с новыми элементами при помощи коннекторов и дополнительных стержней; б — рентген-топограмма после оперативного вмешательства, визуализируется единая гибридная металлоконструкция $C_5-Th_2-Th_8-L_2-L_4$ с четырехстержневой зоной на поясничном уровне; в — внешний вид пациента после завершающего этапа реконструкции позвоночного столба

Кроме того, мы планировали выполнение ассиметричной PSO C_7 с целью устранения правосторонней девиации шеи, однако из-за падения моторных потенциалов от этой идеи пришлось отказаться. Время оперативного вмешательства — 120 мин., кровопотеря — 500 мл.

РЕЗУЛЬТАТЫ

В послеоперационном периоде также продолжали активную и пассивную реабилитацию, физиотерапию, дыхательную гимнастику и сеансы ГБО, медикаментозную терапию. По данным неврологического осмотра, функции восстановлены до исходного уровня. Пациент выписан на 14-ые сутки после операции в удовлетворительном состоянии.

Катамнез от последней операции на момент написания статьи — более 12 мес. По данным КТ шейного, грудного и поясничного отделов позвоночника данных за нестабильность металлоконструкции нет, пациент чувствует себя хорошо, передвигается самостоятельно без дополнительных средств опоры, качество жизни значительно улучшилось. Болевой синдром по ВАШ — 1-2 балла.

ОБСУЖДЕНИЕ

АС относится к группе заболеваний, именуемых серонегативными спондилоартритами. Распространение АС в различных странах составляет от 0.03% до 2%. У 30% пациентов в течение жизни формируется кифотическая деформация позвоночника [3]. К одному из редких осложнений течения АС, отягощающему тяжесть деформации, относится асептическое воспаление, которое приводит к чрездисковому или чреспозвонковому «усталостному перелому», сегментарной нестабильности и выраженному болевому синдрому. Комплекс рентгенологических признаков (эрозии опорных площадок тел позвонков, окруженных реактивным склерозом, клиновидная деформация позвонков) в научной литературе называется спондилит Андерсена. Встречаемость спондилита Андерсена составляет 6.7-10% [4]. В представленном клиническом случае у пациента отмечалась выраженная трехплоскостная деформация вследствие спондилита Андерсена на уровне $Th_{12}-L_1$.

Коррекцию кифотической деформации при анкилозирующем спондилите выполняют по следующим показаниям:

- выраженное нарушение сна пациента из-за трудности находиться в положении лежа;
- снижение качества жизни из-за нарушения горизонтального взора;
- сдавление органов брюшной полости, особенно пищеварительной системы;
- ограничение дыхательных движений пациента;
- болевой синдром, не поддающийся консервативной терапии.

Для коррекции клинически значимой деформации в настоящее время выполняют различные остеотомии. При наличии ригидной кифотической деформации и/или вентрального костного блокирования позвонков в положении кифоза целесообразно применять остеотомий позвоночника 4, 5, 6 типов по Schwab [5, 6, 7].

Остеотомия BDBO (*англ.*: Bone – Disc – Bone Osteotomy) или остеотомия 4 типа по SRS – Schwab предназначены для устранения кифотической деформации путем удаления диска и прилегающих замыкательных пластин. Ее можно разделить на три типа, которые обеспечивают величину коррекции от 35° до 60° [8]. Показаниями к BDBO являются кифоз, сагиттальный дисбаланс, требующий коррекции, превышающей возможности PSO (3 тип). BDBO имеет коррекционный потенциал близкий к VCR (*англ.*: Vertebral Column Resection), но с меньшим количеством интраоперационных и послеоперационных осложнений [9].

По данным L.G. Lenke и S.I. Suk, VCR первого уровня или остеотомия пятого типа по SRS – Schwab могут обеспечить среднюю коррекцию деформации от 30° до 60° с удовлетворительными рентгенографическими и клиническими результатами [10, 11]. Вертебротомии пятого и шестого типов обладают максимальными возможностями коррекции деформации. Вместе с тем, это наиболее травматичные, «кровавые» и рискованные в плане развития неврологических осложнений операции. Их выбор при предоперационном планировании должен быть строго обоснован и оправдан только в тех случаях, когда менее инвазивные остеотомии не позволяют достичь необходимого клинического результата.

В нашей ситуации двойной перелом смежных позвонков с формированием трехплоскостной деформации и возникновением спонтанного блока предопределил выполнение вертебротомии шестого типа для максимальной коррекции и возможности восстановления опороспособности передней колонны с упором кейджа в тела неповрежденных позвонков.

Успех операций подобного объема зависит как от прецизионности самого вмешательства (предотвращение неврологического дефицита, минимизация кровопотери и травматичности, восстановление приемлемых анатомических взаимоотношений в оперированных сегментах), так и от обеспечения устойчивости фиксации задней и опороспособности передней колонн позвоночника.

В нашем случае первая задача в формате выполнения вертебротомии $Th_{12}-L_1$ шестого типа по Schwab позволила достичь планируемых результатов, однако второй компонент операции (надежная фиксация передней и задней колонны позвоночника), как показали ближайшие послеоперационные результаты, не был достигнут. Несмотря на то, что все винты были имплантированы корректно, межтеловой кейдж установлен адекватно, осуществлена компрессия, а механическая интраоперационная проба на устойчивость системы с покачиванием конструкции показала абсолютную стабильность системы, через 11 дней диагностирована ее нестабильность, что и привело к трансляции позвоночника.

Причинами нестабильности в представленном случае, на наш взгляд, явились две составляющие, которые так тесно переплетены между собой, что не позволяли определить, какая из указанных составляющих являлась основной. Неполная конгруэнтность межтелового имплантата с плоскостью замыкательных пластинок обусловливала микроподвижность в зоне спондилодеза, а сниженная МПКТ способствовала дестабилизации всех трех нижних пар винтов. По данным современных исследований, снижение плотности костной ткани (менее 120 HU по КТ) достоверно ассоциировано с высоким риском нестабильности имплантатов и расшатыванием винтов [12]. В представленном клиническом случае уровень HU в позвонках поясничного отдела (L_2-L_4) составил менее 100, что классифицируется как остеопенический уровень плотности. Обе указанные составляющие, безусловно, потенцировали друг друга и в сочетании с ранней активизацией пациента привели к закономерной дестабилизации системы. Кроме того, необходимо отметить наличие протяжённого рычага между головками винтов Th_{11} и L_2 .

После диагностики нестабильности и грубой сагиттальной трансляции вопрос целесообразности ревизионного хирургического вмешательства не стоял, однако вопросы объема операции, способа восстановления оси позвоночника и определения метода фиксации были весьма актуальными. После детального изучения КТ и МРТ сканов мы приняли решение о необходимости повторного выполнения предыдущего объема операции: обработки межтелового промежутка и замены опорного имплантата с фиксацией дистальной части позвоночника при помощи ламинарных крюков (по причине невозможности реимплантации транспедикулярных винтов ввиду наличия обширных зон остеолиза в местах их предыдущей установки). Вопрос устранения трансляции решали импровизированно по ходу операции. После определения невозможности коррекции при помощи укладки и одномоментной редукции с помощью инструментов была сконструирована система вывешивания и дозированного подтягивания дистальной части позвоночника, за счет установки фиксированной к столу рамки ретрактора Томпсона и лавсановых нитей № 5, проходящих через дополнительные перфорации в остистых отростках L₂, L₃, L₄ и L₅ позвонков. Таким образом, была восстановлена ось позвоночника, минимизирован риск развития неврологических осложнений и осуществлена имплантация четырех крюков.

Диагностированная через 10 дней очередная нестабильность в виде дислокации крюков и миграции межтелового кейджа показала прежнюю ситуацию, — недостаточную надежность фиксации и отсутствие жесткой опороспособности передней колонны позвоночника.

Анализируя оба случая нестабильности, мы пришли к заключению о том, что основной причиной проблем явилась неустойчивость установленного межтелового имплантата в сформированном ложе, которая вместе с недостаточной жесткостью дорзальных фиксаторов вызвали циркулярную нестабильность.

Принимая во внимание сформированное предположение о причинах неудач, в случае очередной ревизии мы решили отказаться от одномоментного межтелового спондилодеза из дорзального доступа. В ходе следующей операции по отработанной и описанной выше методике был выведен профиль позвоночника, установлены восемь крюков по принципу «клешня краба» и удален межтеловой имплантат. Кроме того, в эту же сессию была выполнена остеопластика поствинтовых дефектов в телах L_2 , L_3 и L_4 с целью создания точек фиксации в случае очередной дестабилизации металлоконструкции [13].

Отсроченный межтеловой трансплевральный спондилодез позволил окончательно решить проблему опороспособности передней колонны. Визуально широкий, прямой обзор упорных площадок позволил выявить их неровность, что, скорее всего, и являлось причиной неустойчивости имплантата после предыдущих операций. Примененный комбинированный корпородез при помощи сетчатого имплантата с костной стружкой и цельного опорного аллотрансплантата позволил не только полностью заполнить межтеловой промежуток, но и сформировать трансплантат и имплантат строго по существующим размерам. Именно такая тактика позволила обеспечить долговременный устойчивый спондилодез.

Завершающий этап всего цикла хирургического лечения (реимплантация винтов и соединение конструкций) имел профилактическую направленность и предупреждал формирование проксимального переходного кифоза и нестабильность в отдаленном периоде. Используя данный подход, нам удалось укрепить прочность металлоконструкции и предвосхитить грозное осложнение в виде РЈК/РЈF.

ЗАКЛЮЧЕНИЕ

Сочетание анкилозирующего спондилита с синдромом Андерсена и выраженным нарушением глобального сагиттального баланса представляет собой крайне сложный клинический сценарий, требующий высокой степени настороженности и комплексного подхода. Описанный клинический случай охватывает этапное лечение и наблюдение пациента в течение 2022–2023 гг., с катамнезом более 12 месяцев.

Первостепенное значение при планировании вмешательства имеет тщательная предоперационная оценка факторов риска нестабильности металлоконструкции, включая показатели минеральной плотности костной ткани, анатомические особенности зоны деформации, длину рычага между опорными сегментами. Эти факторы должны формировать основу индивидуализированной хирургической тактики ещё до первичного вмешательства.

Тем не менее, несмотря на технически корректную первичную фиксацию, в раннем послеоперационном периоде у пациента развилась нестабильность имплантатов. В связи с этим были реализованы хирургические меры, направленные на устранение данных последствий: удаление расшатанных винтов, установка ламинарных крюков, остеопластика поствинтовых дефектов, отсроченный трансплевральный корпородез с индивидуально сформированным опорным имплантатом и формирование единой протяжённой металлоконструкции.

Данный клинический случай демонстрирует необходимость продуманного и гибкого предоперационного планирования с учётом возможных осложнений. Только наличие заранее определённых альтернативных решений и готовность к адаптации тактики при возникновении интра- и послеоперационных осложнений позволяют добиться устойчивых анатомических и функциональных результатов при лечении пациентов с тяжёлыми деформациями позвоночника на фоне анкилозирующего спондилита.

Конфликт интересов. Не заявлен.

Источник финансирования. Не заявлен.

Этические нормы. Исследование проведено в соответствии с этическими стандартами Хельсинской декларации Всемирной медицинской ассоциации.

Информированное согласие. Все пациенты, участвующие в исследовании, добровольно подписали информированное согласие на публикацию персональной медицинской информации в обезличенной форме.

СПИСОК ИСТОЧНИКОВ

- 1. Tang ZL, Qian BP, Qiu Y, et al. Does the level of pedicle subtraction osteotomy affect the surgical outcomes in ankylosing spondylitis-related thoracolumbar kyphosis with the same curve pattern? *Global Spine J.* 2022;12(7):1392-1399. doi: 10.1177/2192568220980716.
- 2. Singh M, Muhamad Ariffin MH, Tan JA, et al. From looking at the floor to looking forward: a case of hyperkyphotic spine in an ankylosing spondylitis patient. *Cureus*. 2024;16(9):e70091. doi: 10.7759/cureus.70091.

- 3. Türk E, Yurdakul FG, Güler T, Bodur H. Posture, balance and gait in axial spondyloarthritis: a case-control study. *Rheumatol Int.* 2024;44(11):2527-2538. doi: 10.1007/s00296-024-05710-5.
- 4. Condé K, Salissou GM. Case study of Anderson's spondylodiscitis. Pan Afr Med J. 2020;36:332. (In French) doi: 10.11604/pamj.2020.36.332.19979.
- 5. De Gendt EEA, Schroeder GD, Joaquim A, et al. Spinal post-traumatic deformity: an international expert survey among AO Spine Knowledge Forum Members. *Clin Spine Surg.* 2023;36(2):E94-E100. doi: 10.1097/BSD.000000000001376.
- 6. Schwab F, Blondel B, Chay E, et al. The comprehensive anatomical spinal osteotomy classification. *Neurosurgery*. 2014;74(1):112-120; discussion 120. doi: 10.1227/NEU.000000000001820.
- 7. Филатов Е.Ю., Рябых С.О., Савин Д.М. Алгоритм лечения врожденных аномалий позвоночника. *Гений ортопедии*. 2021;27(6):717-726. doi: 10.18019/1028-4427-2021-27-6-717-726.
- 8. Song Z, Zhang Z, Yang X, et al. Posterior vertebral column resection for severe spinal deformity correction: comparison of pediatric, adolescent, and adult groups. *Comput Intell Neurosci*. 2022;2022:5730856. doi: 10.1155/2022/5730856.
- 9. Grabala P, Helenius IJ, Buchowski JM, Shah SA. The efficacy of a posterior approach to surgical correction for neglected idiopathic scoliosis: a comparative analysis according to health-related quality of life, pulmonary function, back pain and sexual function. *Children (Basel)*. 2023;10(2):299. doi: 10.3390/children10020299.
- 10. Lenke LG, Newton PO, Sucato DJ, et al. Complications after 147 consecutive vertebral column resections for severe pediatric spinal deformity: a multicenter analysis. *Spine (Phila Pa 1976)*. 2013;38(2):119-132. doi: 10.1097/BRS.0b013e318269fab1.
- 11. Suk SI, Kim JH, Lee SM, et al. Anterior-posterior surgery versus posterior closing wedge osteotomy in posttraumatic kyphosis with neurologic compromised osteoporotic fracture. *Spine (Phila Pa 1976)*. 2003;28(18):2170-2175. doi: 10.1097/01. BRS.0000090889.45158.5A.
- 12. Filley A, Baldwin A, Ben-Natan AR, et al. The influence of osteoporosis on mechanical complications in lumbar fusion surgery: a systematic review. *N Am Spine Soc J.* 2024;18:100327. doi: 10.1016/j.xnsj.2024.100327.
- 13. Басанкин И.В., Гюльзатян А.А., Гилевич И.В. и др. Остеопластика костных дефектов позвонка вследствие расшатывания транспедикулярных винтов с использованием ортобиологических подходов: пилотное исследование серии случаев. *Хирургия позвоночника*. 2023;20(3):86-95. doi: 10.14531/ss2023.3.86-95.

Статья поступила 18.07.2025; одобрена после рецензирования 11.08.2025; принята к публикации 25.08.2025.

The article was submitted 18.07.2025; approved after reviewing 11.08.2025; accepted for publication 25.08.2025.

Информация об авторах:

Игорь Вадимович Басанкин — доктор медицинских наук, заведующий отделением, basankin@rambler.ru, https://orcid.org/0000-0003-3549-0794;

Абрам Акопович Гюльзатян — кандидат медицинских наук, врач-нейрохирург, abramgulz@gmail.com, https://orcid.org/0000-0003-1260-4007;

Иван Евгеньевич Грицаев — врач-нейрохирург, felicio94@yandex.ru, https://orcid.org/0000-0001-7854-7741;

Карапет Карапетович Тахмазян — кандидат медицинских наук, врач-нейрохирург, drkarpo@gmail.com, https://orcid.org/0000-0002-4496-2709.

Information about the authors:

Igor V. Basankin — Doctor of Medical Sciences, Head of the Department, basankin@rambler.ru, https://orcid.org/0000-0003-3549-0794; Abram A. Giulzatyan — Candidate of Medical Sciences, neurosurgeon, abramgulz@gmail.com, https://orcid.org/0000-0003-1260-4007; Ivan E. Gritsaev — neurosurgeon, felicio94@yandex.ru, https://orcid.org/0000-0001-7854-7741;

Karapet K. Takhmazyan — Candidate of Medical Sciences, neurosurgeon, drkarpo@gmail.com, https://orcid.org/0000-0002-4496-2709.

Вклад авторов:

Басанкин И.В. — разработка дизайна исследования, анализ полученных данных, написание текста статьи.

Гюльзатян А.А. — разработка дизайна исследования, обзор публикаций по теме статьи, написание текста статьи, анализ полученных данных.

Грицаев И.Е. — получение данных для анализа.

Тахмазян К.К. — анализ полученных данных.

Review

https://doi.org/10.18019/1028-4427-2025-31-5-666-677

Management of Achilles tendon rupture: surgical versus conservative method

N.S.N. Wijaya^{1,2}, N.L.P.S.W. Putri¹, S. Mahadhana^{1,2}, C.G.O. Dharmayuda^{1,2}, I.G.N.W. Aryana^{1,2}, I.W.S. Dusak^{1,2}, I.W. Subawa^{1,2}

Corresponding author: Nyoman Satria Nakayoshi Wijaya, satrianakayoshi.sn@gmail.com

Abstract

Introduction Current therapy for managing achilles tendon rupture are classified into surgical and conservative method. Randomized controlled trials were performed in multiple healthcare facilities in multiple centers across the world yet functional outcomes, re-rupture rate and complications are still indecisive.

The **aim** of this study is to compare surgical versus conservative methods for the treatment of acute Achilles tendon rupture; including functional outcome, re-rupture rate, and complications to provide better guidance in selecting therapeutic method.

Materials and Methods We conducted a comprehensive electronic database. Original articles until November 2023 were screened, focusing on randomized controlled trials with at least 12 months follow up. Our protocol has been registered at PROSPERO ID (CRD42023486152).

Results and Discussion The initial search yielded 354 studies. Twelve randomized controlled trials study with a total of 1525 participants were assessed. Surgical treatment has better outcomes for preventing: re-rupture ($p \le 0.001$), abnormal ankle movement ($p \le 0.001$), and calf muscle atrophy (p = 0.005). Functional outcomes at 6 months follow-up were better for hopping ($p \le 0.001$), heel-rise height ($p \le 0.001$), and heel-rise work (p = 0.007) in surgical treatment. Functional outcomes at 12 months of follow-up were better only for heel-rise work test ($p \le 0.001$) in surgical treatment. However, incidence of sural nerve injury (p = 0.006) was found lower in the conservative group. Complications other than re-rupture (p = 0.08) had no significant difference between two groups. At 6-month follow-up, functional outcome tends to be better compared to conservative management of Achilles tendon rupture. At 12-month follow-up, functional outcomes was comparable between two groups. However, the risk of re-rupture rate is higher in the conservative management.

Conclusion Reduced rates of re-rupture and quicker functional recovery are benefits of surgical repair. Conservative treatment can yield good results in terms of functional outcomes and re-rupture rates in long-term follow up, particularly when combined with contemporary rehabilitation procedures. Conservative treatment eliminates the hazards associated with surgery, but it may have a slightly higher chance of re-rupture and a shorter initial recovery of some functional outcomes. Both of these treatment methods are good for treating Achilles tendon rupture.

Level of Evidence: I.

Keywords: Achilles Tendon Rupture, Surgical Management, Conservative Management, Functional Outcome, Re-rupture

Acknowledgements The authors acknowledge the contribution of the Department of Orthopaedic and Traumatology, Udayana University, Bali, Indonesia for the supports given.

For citation: Wijaya NSN, Putri NLPSW, Mahadhana S, Dharmayuda CGO, Aryana IGNW, Dusak IWS, Subawa IW. Management of Achilles tendon rupture: surgical versus conservative method. *Genij Ortopedii*. 2025;31(5):666-677. doi: 10.18019/1028-4427-2025-31-5-666-677.

Гений ортопедии. 2025;31(5)

¹ Udayana University, Bali, Indonesia

² Prof Ngoerah General Hospital, Bali, Indonesia

[©] Wijaya N.S.N., Putri N.L.P.S.W., Mahadhana S., Dharmayuda C.G.O., Aryana I.G.N.W., Dusak I.W.S., Subawa I.W., 2025

Обзорная статья

УДК [616.74-018.38-001.48]-08-035-089.168 https://doi.org/10.18019/1028-4427-2025-31-5-666-677

Лечение пациентов с разрывом ахиллова сухожилия: хирургический или консервативный метод

N.S.N. Wijaya^{1⊠}, N.L.P.S.W. Putri¹, S. Mahadhana^{1,2}, C.G.O. Dharmayuda^{1,2}, I.G.N.W. Aryana^{1,2}, I.W.S. Dusak^{1,2}, I.W. Subawa^{1,2}

- ¹ Udayana University, Bali, Indonesia
- ² Prof Ngoerah General Hospital, Bali, Indonesia

Автор, ответственный за переписку: Nyoman Satria Nakayoshi Wijaya, satrianakayoshi.sn@gmail.com

Аннотация

Введение. Современные методы лечения пациентов с разрывом ахиллова сухожилия подразделяют на хирургические и консервативные. Рандомизированные контролируемые исследования проведены во многих медицинских учреждениях по всему миру, однако до сих пор не определена зависимость функциональных результатов, повторных разрывов и осложнений от методов лечения.

Цель работы — сравнить функциональные результаты, частоту повторных разрывов и осложнений при хирургических и консервативных методах лечения пациентов с острым разрывом ахиллова сухожилия, сформулировать рекомендации по выбору метода лечения.

Материалы и методы. Отобраны оригинальные статьи, опубликованные до ноября 2023 года, включены рандомизированные контролируемые исследования с периодом наблюдения не менее 12 месяцев. Первоначальный поиск выявил 354 исследования. Оценено 12 рандомизированных контролируемых исследований с общим числом пациентов 1525. Протокол исследования зарегистрирован в PROSPERO ID (CRD42023486152).

Результаты и обсуждение. Хирургическое лечение имеет лучшие результаты для предотвращения повторного разрыва ($p \le 0,001$), аномальных движений в голеностопном суставе ($p \le 0,001$) и атрофии икроножных мышц (p = 0,005). Функциональные результаты через шесть месяцев были лучше после хирургического лечения: при прыжках ($p \le 0,001$), в высоте подъема пятки ($p \le 0,001$) и тесте подъема пятки (p = 0,007). Функциональные результаты через 12 месяцев после хирургического лечения были лучше только для теста подъема пятки ($p \le 0,001$). Частота повреждения малоберцового нерва (p = 0,006) была ниже в группе консервативного лечения. Частота других осложнений, кроме повторного разрыва (p = 0,08), существенно не различалась между группами. При наблюдении через шесть месяцев пациенты после хирургического лечения, как правило, демонстрировали лучший функциональный результат. Через 12 месяцев наблюдения функциональные результаты в группах были сопоставимы. Риск повторного разрыва был выше при консервативном лечении.

Заключение. Снижение частоты повторного разрыва и более быстрое восстановление функциональных результатов являются преимуществами хирургического лечения. Консервативное лечение демонстрирует хорошие функциональные результаты при долгосрочном наблюдении, особенно в сочетании с современными реабилитационными процедурами. Консервативное лечение устраняет риски, связанные с хирургическим вмешательством, но может иметь несколько более высокий риск повторного разрыва и более короткий начальный период восстановления некоторых функциональных результатов. Оба метода лечения эффективны при лечении разрыва ахиллова сухожилия.

Уровень доказательности: I.

Ключевые слова: разрыв ахиллова сухожилия, хирургическое лечение, консервативное лечение, функциональный результат, повторный разрыв

Благодарности. Авторы выражают благодарность кафедре ортопедии и травматологии Университета Удаяна (Бали, Индонезия) за оказанную поддержку.

Для цитирования: Wijaya N.S.N., Putri N.L.P.S.W., Mahadhana S., Dharmayuda C.G.O., Aryana I.G.N.W., Dusak I.W.S., Subawa I.W. Лечение пациентов с разрывом ахиллова сухожилия: хирургический или консервативный метод. *Гений ортопедии*. 2025;31(5):666-677. doi: 10.18019/1028-4427-2025-31-5-666-677.

[©] Wijaya N.S.N., Putri N.L.P.S.W., Mahadhana S., Dharmayuda C.G.O., Aryana I.G.N.W., Dusak I.W.S., Subawa I.W., 2025

INTRODUCTION

Achilles tendon is the strongest and largest tendon in the human body. This tendon plays an important role of supporting heel movement. Its rupture often occurs during sport activities and excessive exercise [1]. The rupture of this tendon is associated with inability of lifting the heel and decreased range of movement of the knee. The rupture of this tendon also causes severe pain that decreases one's quality of life [2]. Hence, proper, and adequate management of Achilles tendon rupture is needed.

Rupture of the Achilles tendon is commonly found in the adult population. The rising incidence of Achilles tendon rupture can be linked to increased number of sport activities throughout the years. Annually, up to 40 out of 100.000 population reported incidence of Achilles tendon rupture. Seventy three percent of Achilles tendon rupture was reported in recreational sport and 18 % was reported in athletes [3].

Randomized controlled trials were performed in numerous healthcare facilities across the world, yet functional outcomes and complications rate are still indecisive. Although the surgical method of its management results in better outcomes such as lower risk of re-rupture as compared to the conservative method, complications that follow were also higher in surgical management [4, 5, 6]. Hence, we conducted a systematic review and meta-analysis to compare surgical versus conservative methods for the treatment of acute Achilles tendon rupture; including re-rupture rate, complications and functional outcomes to provide better guidance in selecting the therapeutic method.

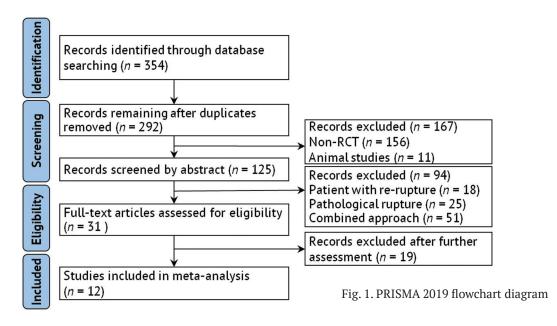
MATERIALS AND METHODS

Inclusion and Exclusion Criteria

We conducted this systematic review following the PRISMA and Cochrane handbook guidelines for conducting a systematic review of interventions. Our protocol has been registered at PROSPERO ID (CRD42023486152). This research includes a direct comparative study between surgical and conservative method for managing Achilles tendon rupture in adult population. We included original clinical studies which were written in English and available in full text. Systematic reviews, meta-analyses, case reports, expert opinions, abstract conferences, book chapters, letters to editor, summaries of meetings, study protocols, technical reports, narrative reviews, studies with incomplete data, experimental studies on animals, and cadavers, laboratory (*in vitro*), duplication of publications, and computational studies are not included in this research. The population used in this study was adults diagnosed with Achilles tendon rupture who underwent either surgical or conservative treatment. Randomized Controlled Trials (RCTs) with at least 1 year follow-up comparing surgical intervention with conservative method were assessed. The exclusion criteria include patients with re-rupture, rupture caused by pathological aspect, research with insufficient primary outcome data, and research using combined approaches. Re-rupture rate, complications, functional outcome were assessed.

Search Strategy

We conducted a comprehensive electronic database search until November 2023 in PubMed, MEDLINE, and ScienceDirect using the keywords "Surgical versus Nonsurgical" OR "Operative versus Nonoperative" OR "Surgical versus Conservative" OR "Operative versus Conservative" AND "Achilles Tendon Rupture" OR "Rupture Tendon Achilles". Based on the PICO (Patient, Intervention, Comparison, Outcome) concept, our research strategy concept is as follows:


- P = Adults aged above 16 years old diagnosed with Achilles tendon rupture who underwent surgical or conservative treatment;
- I = Surgical and conservative methods;
- C = Surgical versus conservative method;
- O = Re-rupture rate, complications, functional outcome, pain score.

Study Selection

The literature selection was performed by 2 reviewers (NSNW and NLPSWP) independently using the standardized study selection forms. A third reviewer (IWS) would be consulted, and a decision would be made through discussion if there was any disagreement between the first two reviewers. Our literature search identified a total of 354 studies, and after excluding irrelevant and duplicate reports, the remaining 125 articles were assessed using eligibility criteria after reading the full text. Finally, 12 eligible RCTs were included in our meta-analysis [6-17]. A PRISMA flow chart of the article selection steps is shown in Figure 1.

Data Extraction

Two authors (NSNW and SM) independently extracted data from eligible studies by completing a pre-designed data form, with discrepancies being arbitrated by a third reviewer (CGOD, IGNWA, IWSD, IWS). The primary outcomes extracted from each study included the re-rupture rate, complications, and functional outcome.

Methodological Assesment

Bias analysis was carried out by 2 reviewers (NSNW and NLPSWP) using the risk of bias tools formulated by the Cochrane group. For Randomized Controlled Trial (RCT) studies, we used the second version of the Cochrane tool, Risk of Bias (ROB). Potential causes of bias were assessed with signaling questions to detect biases caused by the randomization process, deviation from initial intervention intent, missing data, measurement of outcomes, and reporting of selective bias. Disagreements were resolved by consulting the third reviewer (IWS). The Cochrane risk of bias consists of 6 items (randomization generation, allocation concealment, blinding of participant and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting). Based on the analysis performed, it revealed that most studies showed a low risk of bias in the majority of domains (Fig. 2).

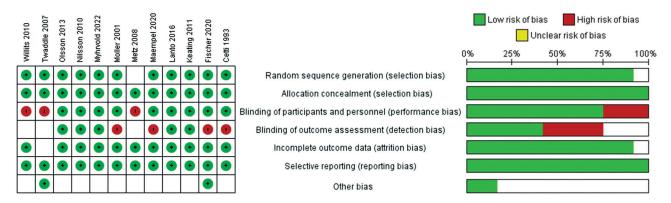


Fig. 2. Risk of bias summary and graph

Statistical Analysis

Odds ratios (ORs) were assessed with a 95 % confidence interval (CI) for the data. Heterogeneity (inconsistency) was analyzed using the Chi² and I² tests. A low p-value result (p < 0.1) of the Chi² test indicates significant heterogeneity. Because the Chi² test has a low detection ability in a small sample of data, we also used the I² test to assess heterogeneity. An I² test score of more than 50 % has significant heterogeneity. Statistical analyses were performed using the Review Manager (RevMan)® version 5.4.1. If the heterogeneity test results showed no significant heterogeneity, we planned to use the fixed-effect models. Otherwise, the researchers used random-effect models to process the data.

RESULTS

Study Characteristics

Twelve studies were qualified and are included to inclusion criteria. A total of six studies were multicenter and the other six were single-center studies. The total number of patients in those studies was 1.525 patients. Of the twelve studies included in this study, it was found that 1.215 patients (79.7%) were male, and 310 patients (20.3%) were female. Further details are elaborated in Table 1 and Table 2. Table 3 presents a summary of the findings from this study.

Table 1

Characteristics of selected studies

Name of study, Year	Center(s); Country	Follow-up Duration	Type of Surgery	Type of Conservative Method
I. Lantto et al., 2016 [6]	Single, Finland	18	Open repair	Plaster Cast and orthosis
R. Cetti et al., 1993 [7]	Multi, Denmark	30	Open repair	Plaster Cast
S. Fischer et al. 2020 [8]	Single, Germany	24	Open repair and Minimally Invasive Surgery	Plaster Cast and orthosis
J.F. Keating et al., 2011 [9]	Single, England	12	Open repair	Plaster Cast
J.F. Maempel et al., 2020 [10]	Single, United Kingdom	188	Open repair	Plaster Cast
R. Metz et al., 2008 [11]	Multi, Netherlands	12	Minimally Invasive Surgery	Plaster Cast and tape bandage
M. Moller et al., 2001 [12]	Multi, Sweden	24	Open repair	Plaster Cast and orthosis
S.B. Myhrvold et al., 2022 [13]	Multi, Norway	12	Open repair and Minimally Invasive Surgery	Plaster Cast and orthosis
K. Nilsson-Helander et al., 2010 [14]	Single, Sweden	12	Open repair	Plaster Cast and orthosis
N. Olsson et al., 2013 [15]	Single, Sweden	12	Open repair	Orthosis
B.C. Twaddle et al., 2007 [16]	Multi, New Zealand	12	Open repair	Plaster Cast and orthosis
K. Willits et al., 2010 [17]	Multi, Canada	12	Open repair	Plaster Cast and orthosis

Table 2

Characteristics of patients

Name of Study Voor	Total	Male		Female		Age	
Name of Study, Year	Patients	Surgical	Conservative	Surgical	Conservative	Surgical	Conservative
I. Lantto et al., 2016 [6]	60	30	25	2	3	40 (27-57)	39 (28-60)
R. Cetti et al., 1993 [7]	111	47	45	9	10	37.2 (21-62)	37.8 (21–65)
S. Fischer et al. 2020 [8]	90	54	27	6	3	39.3 (7.9)	45.2 (9.5)
J.F. Keating et al., 2011 [9]	80	28	32	11	9	41.2 (27–59)	39.5 (21–58)
J.F. Maempel et al., 2020 [10]	80	28	32	11	9	41.2 (27–59)	39.5 (21–58)
R. Metz et al., 2008 [11]	83	31	35	11	6	40 (23-63)	41 (25-62)
M. Moller et al., 2001 [12]	112	51	48	8	5	39.6 (21–63)	38.5 (26-59)
S.B. Myhrvold et al., 2022 [13]	526	255	136	93	42	39.9 (8.9)	39.9 (8.1)
K. Nilsson-Helander et al., 2010 [14]	97	40	39	9	9	40.9 (24-59)	41.2 (23-63)
N. Olsson et al., 2013 [15]	100	39	47	10	4	39.8 (8.9)	39.5 (9.7)
B.C. Twaddle et al., 2007 [16]	42	14	14	6	8	41.8 (27–59)	40.3 (18-50)
K. Willits et al., 2010 [17]	144	59	59	13	13	39.7 (11.0)	41.1 (8.0)

Table 3

Forest plots summary

Parameters	Number of Studies	Odds Ratio / Mean Difference [95 % CI]	р					
Functional outcome at 6 months follow-up								
Hopping test	3	SMD 0.36 [0.17, 0.56]	< 0.001*					
Heel-rise height	3	SMD 0.65 [0.29, 1.01]	< 0.001*					
Heel-rise work	3	SMD 0.33 [0.09, 0.57]	0.007*					
Drop counter movement jump	3	SMD 0.13 [-0.14, 0.41]	0.33					
Concentric power	3	SMD 0.29 [-0.05, 0.64]	0.1					
Eccentric power	3	SMD -0.10 [-0.66, 0.46]	0.73					
Functional outcome at 12 month	Functional outcome at 12 months follow-up							
Hopping test	3	SMD -0.06 [-0.88, 0.76]	0.88					
Heel-rise height	3	SMD 0.38 [-0.00, 0.76]	0.05					
Heel-rise work	3	SMD 0.40 [0.20, 0.60]	< 0.001*					
Drop counter movement jump	3	SMD -0.02 [-0.96, 0.92]	0.97					
Concentric power	3	SMD 0.03 [-0.35, 0.41]	0.88					
Eccentric power	3	SMD -0.13 [-0.84, 0.58]	0.72					

Table 3 (continuation)

Forest plots summary

Parameters	Number of Studies	Odds Ratio / Mean Difference [95 % CI]	р
Calf muscle atrophy	3	OR 0.46 [0.27, 0.79]	0.005*
Abnormal ankle movement	3	OR 0.34 [0.20, 0.60]	< 0.001*
Chronic pain	3	OR 0.85 [0.42, 1.72]	0.65
Re-rupture rate	10	OR 0.34 [0.20, 0.58]	< 0.001*
Complications			
Superficial infection	7	OR 0.88 [0.42, 1.83]	0.73
Deep infection	7	OR 2.52 [0.88, 7.24]	0.09
Deep vein thrombosis	6	OR 0.64 [0.22, 1.85]	0.41
Sural nerve injury	4	OR 5.07 [1.60, 16.07]	0.006*
Total	10	OR 1.35 [0.96, 1.90]	0.08

Our initial electronic search results yielded 354 studies that matched the search keyword algorithm in the three major databases. The duplication removal process resulted in a total of 292 studies. The remaining studies were then screened by title and abstracts that had conformity to the inclusion and exclusion criteria. Twelve studies qualified and are included in the meta-analysis (Fig. 1).

The assessment risk of bias was done according to Cochrane risk of bias tool by conducting data of each included study to the RevMan 5.4.1 computer program. Out of the 12 studies, seven were found to have a high risk of bias due to various reasons. Three studies were found with a high risk of performance bias where these studies were not double-blinded. Furthermore, four studies were found with a high risk of detection bias where blinding of outcome was failed to be performed or was not mentioned in the study. Unclear risk was found mostly on other bias (Fig. 2).

Figure 3 explains the publication bias depicted through the funnel plot.

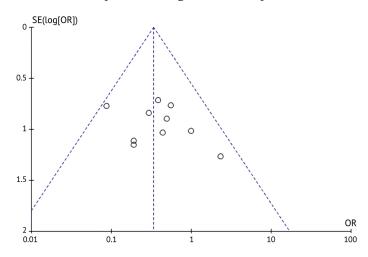


Fig. 3. Funnel plot re-rupture rate illustrating the publication bias

Functional outcome at 6 months follow-up

Hopping test at 6 months of follow-up (SMD 0.36; 95 % CI: 0.17 to 0.56; $p \le 0.001$), heel-rise height test (SMD 0.65; 95 % CI: 0.29 to 1.01; $p \le 0.001$), heel-rise work test (SMD 0.33; 95 % CI: 0.09 to 0.57; p = 0.007, were significantly higher in the surgical group compared to conservative group. Drop counter movement jump test (SMD 0.13; 95 % CI: -0.14 to 0.41; p = 0.33), concentric power test (SMD 0.29; 95 % CI: -0.55 to 0.64; p = 0.1) and eccentric power test (SMD -0.10; 95 % CI: -0.66 to 0.46; p = 0.73) at 6-month follow-up showed non-significant difference between the two groups (Fig. 4).

Functional outcome at 12 months follow-up

Heel-rise work test (SMD 0.40; 95 % CI: 0.20 to 0.40; $p \le 0.001$) was found significantly higher in the surgical group compared to the conservative group. Hopping (SMD 0.06; 95 % CI: -0.88 to 0.76; p = 0.88), heel-rise height (SMD 0.38; 95 % CI: -0.00 to 0.76; p = 0.05), drop counter movement jump (SMD -0.02; 95 % CI: -0.96 to 0.92; p = 0.97), concentric power (SMD 0.33; 95 % CI: -0.35 to 0.41; p = 0.88), and eccentric power (MD -0.13; 95 % CI: -0.84 to 0.58; p = 0.72) test on the other hand showed no significant difference between the two groups (Fig. 5).

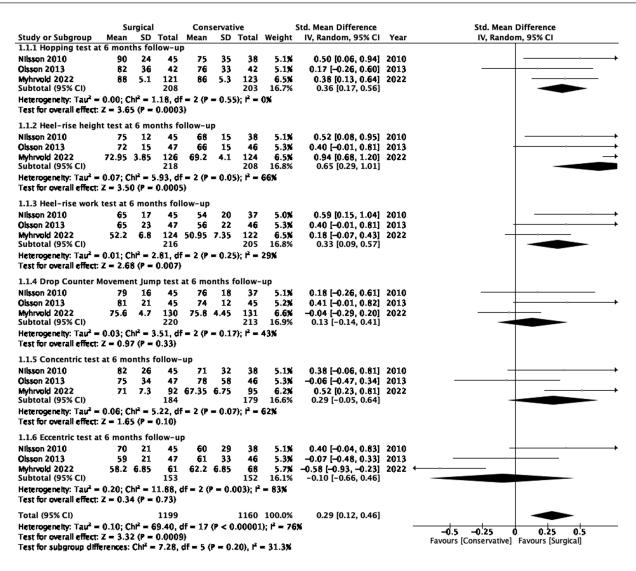


Fig. 4. Comparison of functional outcome after 6 months in surgical versus conservative group

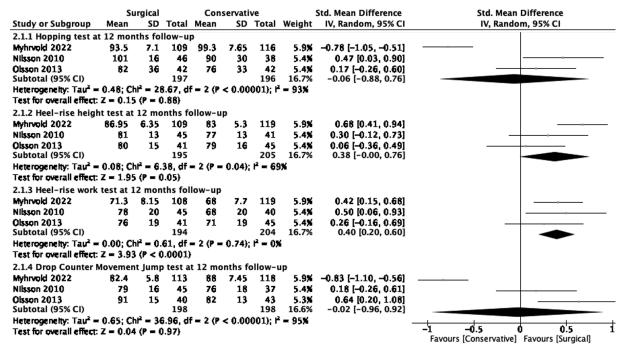


Fig. 5. Comparison of functional outcome after 12 month in surgical versus conservative group

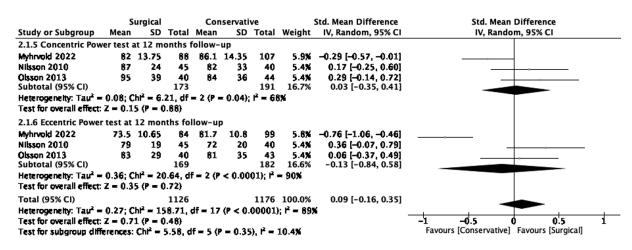


Fig. 5 (continuation). Comparison of functional outcome after 12 month in surgical versus conservative group

Calf muscle atrophy

Results showed calf muscle atrophy (OR 0.46; 95 % CI: 0.27 to 0.79; p = 0.005) was significantly higher in the conservative group compared to the surgical group (Fig. 6).

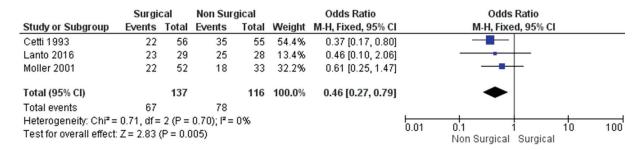


Fig. 6. Comparison of calf muscle atrophy in surgical versus conservative group

Re-rupture rate

Results showed re-rupture rate (OR 0.34; 95 % CI: 0.20 to 0.58; $p \le 0.001$) was significantly higher in the conservative group compared to the surgical group (Fig. 7).

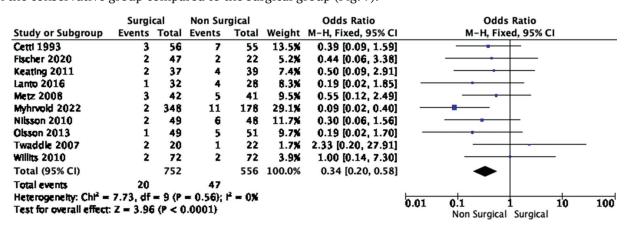


Fig. 7. Comparison of re-rupture rate in surgical versus conservative group

General complications

General complications (OR 1.35; 95 % CI: 0.96 to 1.90; p = 0.08) were not significantly different between the two groups (Fig. 8).

Complications other than general complications

Sural nerve injury rate (OR 5.07; 95 % CI: 1.60 to 16.07; p = 0.006) was found significantly higher in the surgical group compared to the conservative group. Neither superficial infection (OR 0.88; 95 % CI: 0.42 to 1.83; p = 0.73), deep infection (OR 2.52; 95 % CI: 0.88 to 7.24; p = 0.09), deep vein thrombosis rate (OR 0.64; 95 % CI: 0.22 to 1.85; p = 0.41) (Fig. 9).

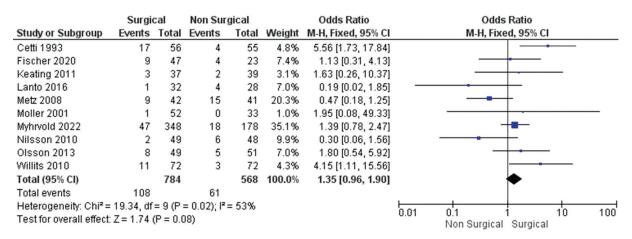


Fig. 8. Comparison of general complications other than re-rupture in surgical versus conservative group

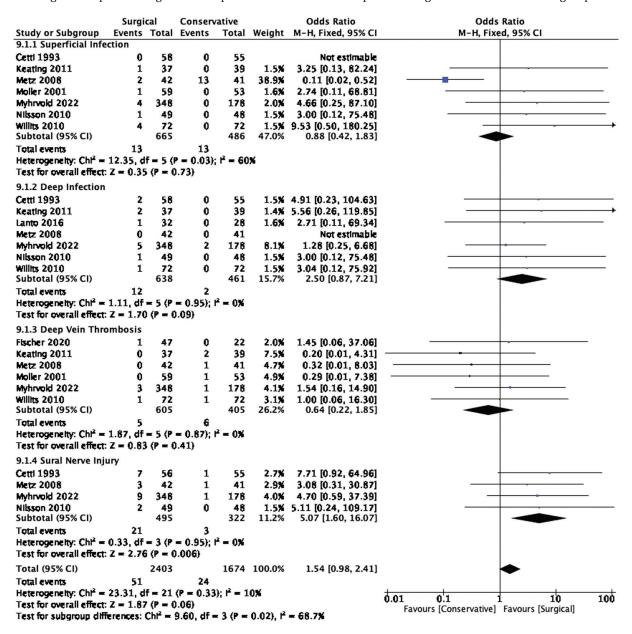


Fig. 9. Comparison of complications other than general complications in surgical versus conservative group

DISCUSSION

Assessing functional outcomes such as hopping tests, heel rise height and work, drop counter movement jump, and power measurements (concentric and eccentric) are important for evaluating recovery and performance following Achilles tendon rupture treatment.

Our study found that functional outcomes at 6-month follow-up were better in patients who underwent surgery compared with conservative treatment. However, there was no significant difference in functional outcomes after 12 months of follow-up between surgical and conservative groups. In line with previous study [18] which found strength, calf circumference, and functional result did not differ between surgical and conservative interventions.

Based on the results of our study, it can be seen that the functional outcome at 6-month follow-up was significantly better in the surgical group compared to the conservative group in several tests such as hopping test, heel rise height, heel rise work, and concentric power. However, the functional outcome at 12-month follow-up was only heel rise work with significantly better results for the surgical compared to the conservative method. This shows that conservative treatment is no less good than surgical treatment.

Compared to patients treated conservatively, surgical patients frequently restore hopping, heel rise height, heel rise work, drop counter movement jump, concentric and eccentric power more rapidly. Because surgery can more successfully repair tendon integrity, those who have it frequently perform better on early weight-bearing after recovering. Surgical treatment also allows for faster restoration of explosive power in the lower extremity. This benefit is frequently brought about by the tendon's direct mechanical healing, which might offer more rapid stability [19].

Research suggests that when early and adequate rehabilitation protocols are followed, both surgical and conservative treatments can produce comparable functional outcomes. In patients receiving conservative treatment, there was no statistically significant difference in re-rupture, return to employment, or return to sports between early and late weight-bearing [20].

When early functional rehabilitation was applied in both groups, a thorough meta-analysis revealed no discernible difference in hopping, heel rise height, heel rise work, drop counter movement jump, concentric and eccentric power test performance one year after injury between surgically and conservatively treated individuals [5, 19]. While surgical repair initially improved hopping, heel rise work, heel rise height, and concentric performance, a study by K. Nilsson-Helander et al. [14]. N. Olsson et al. [15] found that at long-term follow-up, there were no significant differences between the surgical and conservative groups; the heel rise work test was the only area where there was a significant difference, indicating that similar functional results can be obtained from both methods.

The re-rupture rate in this study was significantly higher in the conservative group compared to the surgical group. Comparatively speaking, conservative therapy for an Achilles tendon rupture is often linked to a higher risk of re-rupture. Through stronger healing and a lower chance of re-rupture, the surgical technique seeks to restore the tendon's anatomical continuity. Surgery considerably decreased the re-rupture rate when compared to conservative treatment [18, 21–24]. Less re-rupture rates were also noted in the surgical group, according to a study conducted by A. Soroceanu et al. [25].

Choosing early or later rehabilitation following either conservative or surgical treatment had no effect on the outcome [24, 26]. Not in line with previous studies [23] that reduced risk of rupture during conservative treatment as opposed to surgical treatment if both types of treatment included a functional rehabilitation plan that included early range of motion. Re-rupture rates from the surgical method may range from 1% to 5%, according to the overall trend of various researchers.

While conservative treatment avoids the dangers associated with surgery, it may result in a higher rate of re-ruptures. In conservative treatment, functional bracing is becoming more popular since it can enhance results and possibly lower the rate of re-ruptures. When deciding between conservative and surgical method treatment patient's age, degree of activity, and coexisting conditions should all be taken into account.

In this study, general complications other than re-rupture were higher in the surgical group compared to the conservative group, but not significantly. General complications such as skin necrosis, deep infection, tendon lengthening, adhesion, superficial infection, disturbances of sensibility, suture granuloma, and delayed wound healing were encountered. In line with previous research, the results of complications were higher in the surgical group compared to the conservative group [18, 22, 23]. However, general complications other than re-rupture in this study were not significant as the previous studies discovered [26].

Superficial infection in this study was higher in the conservative group compared to the surgical group, but not significantly. D. Seow et al. [24], A. Soroceanu et al. [25] found that the complication that was more frequently linked to surgical repair of Achilles tendon ruptures was superficial infection. After surgical

repair, superficial infections are a common consequence that usually arises at the site of the surgical incision. Because conservative treatment involves no surgical incision, the risk of surface infection is typically avoided.

Deep infections in this study were higher in the surgical group compared to the conservative group, but not significantly. Deep infections, which can happen in the tissue around the Achilles tendon after surgery, are more dangerous. Deep infection can occur during surgical repair and have a significant influence on overall recovery and function [27].

Deep vein thrombosis in this study was higher in the conservative group compared to the surgical group but not significantly, in line with previous meta-analysis [21]. During the early stages of recuperation following surgery, immobility may result, which raises the risk of DVT. Often, preventative actions are done to lessen this risk. Prolonged immobility following conservative therapy, especially with casting, may also raise the risk of DVT.

Sural nerve injury in this study was significantly higher in the surgical group compared to the conservative group. Deficits in senses may result from complications related to injury to the sural nerve sustained after surgery or immobilization. When compared to certain less invasive methods, open repair approaches often carry a lower risk of sural nerve injury. This is mainly because the surgical area is more exposed and directly visible, which makes it easier for surgeons to avoid the nerve [13, 28]. In conservative treatment, sural nerve injury can occur because the sural nerve is proximal to the Achilles tendon. When using functional bracing or casting in a non-anatomical position it can put pressure on the sural nerve. Inadequate bracing or misalignment can further raise the risk of nerve damage [28, 29].

The limitations of this study are that the demographics of participants in various studies can also cause bias. In addition, the surgical and conservative techniques used are diverse. Finally, the duration of follow-up in various studies can also cause bias.

CONCLUSION

Reduced rates of re-rupture, possibly quicker recovery for functional outcomes like hopping, heel rise tests are some benefits of surgical repair. Conversely, conservative treatment can yield good results in terms of functional outcomes and re-rupture rates in long-term follow-up, particularly when combined with contemporary rehabilitation procedures that include functional bracing and early mobilization. Conservative treatment eliminates the hazards associated with surgery, such as nerve damage, but it may have a slightly higher chance of re-rupture and a shorter initial recovery of some functional outcomes. Both treatment methods are good for Achilles tendon rupture repair.

Conflicts of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding The authors did not receive any grant or funding for this research.

Ethics approval PROSPERO ID CRD42023486152.

REFERENCES

- 1. Holm C, Kjaer M, Eliasson P. Achilles tendon rupture--treatment and complications: a systematic review. <u>Scand J Med Sci Sports</u>. 2015;25(1):e1-10. doi: 10.1111/sms.12209.
- 2. Yasui Y, Tonogai I, Rosenbaum AJ, et al. The Risk of Achilles Tendon Rupture in the Patients with Achilles Tendinopathy: Healthcare Database Analysis in the United States. *Biomed Res Int.* 2017;2017:7021862. doi: 10.1155/2017/7021862.
- 3. Meulenkamp B, Stacey D, Fergusson D, et al. Protocol for treatment of Achilles tendon ruptures; a systematic review with network meta-analysis. *Syst Rev.* 2018;7(1):247. doi: 10.1186/s13643-018-0912-5.
- 4. Carmont MR, Rossi R, Scheffler S, et al. Percutaneous & Mini Invasive Achilles tendon repair. *Sports Med Arthrosc Rehabil Ther Technol*. 2011;3:28. doi: 10.1186/1758-2555-3-28.
- 5. Ochen Y, Beks RB, van Heijl M, et al. Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis. *BMJ*. 2019 Jan 7;364:k5120. doi: 10.1136/bmj.k5120.
- 6. Lantto I, Heikkinen J, Flinkkila T, et al. A Prospective Randomized Trial Comparing Surgical and Nonsurgical Treatments of Acute Achilles Tendon Ruptures. *Am J Sports Med*. 2016 Sep;44(9):2406-2414. doi: 10.1177/0363546516651060.
- 7. Cetti R, Christensen SE, Ejsted R, et al. Operative versus nonoperative treatment of Achilles tendon rupture. A prospective randomized study and review of the literature. *Am J Sports Med.* 1993;21(6):791-799. doi: 10.1177/036354659302100606.
- 8. Fischer S, Colcuc C, Gramlich Y, et al. Prospective randomized clinical trial of open operative, minimally invasive and conservative treatments of acute Achilles tendon tear. *Arch Orthop Trauma Surg.* 2021;141(5):751-760. doi: 10.1007/s00402-020-03461-z.
- 9. Keating JF, Will EM. Operative versus non-operative treatment of acute rupture of tendo Achillis: a prospective randomised evaluation of functional outcome. *J Bone Joint Surg Br.* 2011;93(8):1071-1078. doi: 10.1302/0301-620X.93B8.25998.
- 10. Maempel JF, Clement ND, Wickramasinghe NR, et alF. Operative repair of acute Achilles tendon rupture does not give superior patient-reported outcomes to nonoperative management. *Bone Joint J.* 2020;102-B(7):933-940. doi: 10.1302/0301-620X.102B7.BJJ-2019-0783.R3.
- 11. Metz R, Verleisdonk EJ, van der Heijden GJ, et al. Acute Achilles tendon rupture: minimally invasive surgery versus nonoperative treatment with immediate full weightbearing--a randomized controlled trial. *Am J Sports Med.* 2008;36(9):1688-1694. doi: 10.1177/0363546508319312.
- 12. Möller M, Movin T, Granhed H, et al. Acute rupture of tendon Achillis. A prospective randomised study of comparison between surgical and non-surgical treatment. *J Bone Joint Surg Br.* 2001;83(6):843-848. doi: 10.1302/0301-620x.83b6.11676.

- 13. Myhrvold SB, Brouwer EF, Andresen TKM, et al. Nonoperative or Surgical Treatment of Acute Achilles' Tendon Rupture. N Engl J Med. 2022;386(15):1409-1420. doi: 10.1056/NEJMoa2108447.
- 14. Nilsson-Helander K, Silbernagel KG, Thomeé R, et al. Acute achilles tendon rupture: a randomized, controlled study comparing surgical and nonsurgical treatments using validated outcome measures. Am J Sports Med. 2010;38(11):2186-2193. doi: 10.1177/0363546510376052.
- 15. Olsson N, Silbernagel KG, Eriksson BI, et al. Stable surgical repair with accelerated rehabilitation versus nonsurgical treatment for acute Achilles tendon ruptures: a randomized controlled study. Am J Sports Med. 2013;41(12):2867-2876. doi: 10.1177/0363546513503282.
- 16. Twaddle BC, Poon P. Early motion for Achilles tendon ruptures: is surgery important? A randomized, prospective study. Am J Sports Med. 2007;35(12):2033-2038. doi: 10.1177/0363546507307503.
- 17. Willits K, Amendola A, Bryant D, et al. Operative versus nonoperative treatment of acute Achilles tendon ruptures: a multicenter randomized trial using accelerated functional rehabilitation. J Bone Joint Surg Am. 2010;92(17):2767-2775. doi: 10.2106/JBJS.I.01401.
- 18. Zhang H, Tang H, He Q, et al. Surgical Versus Conservative Intervention for Acute Achilles Tendon Rupture: A PRISMA-Compliant Systematic Review of Overlapping Meta-Analyses. Medicine (Baltimore). 2015;94(45):e1951. doi: 10.1097/MD.0000000000001951.
- 19. She G, Teng Q, Li J, et al. Comparing Surgical and Conservative Treatment on Achilles Tendon Rupture: A Comprehensive Meta-Analysis of RCTs. Front Surg. 2021;8:607743. doi: 10.3389/fsurg.2021.607743.
- 20. El-Akkawi AI, Joanroy R, Barfod KW, et al. Effect of Early Versus Late Weightbearing in Conservatively Treated Acute Achilles Tendon Rupture: A Meta-Analysis. J Foot Ankle Surg. 2018;57(2):346-352. doi: 10.1053/j.jfas.2017.06.006.
- 21. Deng S, Sun Z, Zhang C, et al. Surgical Treatment Versus Conservative Management for Acute Achilles Tendon Rupture: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *J Foot Ankle Surg*. 2017;56(6):1236-1243. doi: 10.1053/j.jfas.2017.05.036. 22. Khan RJ, Fick D, Keogh A, et al. Treatment of acute achilles tendon ruptures. A meta-analysis of randomized, controlled trials. *J Bone*
- Joint Surg Am. 2005;87(10):2202-2210. doi: 10.2106/JBJS.D.03049.
- 23. Zhou K, Song L, Zhang P, et al. Surgical Versus Non-Surgical Methods for Acute Achilles Tendon Rupture: A Meta-Analysis of Randomized Controlled Trials. J Foot Ankle Surg. 2018;57(6):1191-1199. doi: 10.1053/j.jfas.2018.05.007.
- 24. Seow D, Yasui Y, Calder JDF, et al. Treatment of Acute Achilles Tendon Ruptures: A Systematic Review and Meta-analysis of Complication Rates With Best- and Worst-Case Analyses for Rerupture Rates. *Am J Sports Med.* 2021;49(13):3728-3748. doi: 10.1177/0363546521998284
- 25. Soroceanu A, Sidhwa F, Aarabi S, et al. Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials. J Bone Joint Surg Am. 2012;94(23):2136-2143. doi: 10.2106/JBJS.K.00917.
- 26. van der Eng DM, Schepers T, Goslings JC, Schep NW. Rerupture rate after early weightbearing in operative versus conservative treatment of Achilles tendon ruptures: a meta-analysis. J Foot Ankle Surg. 2013;52(5):622-628. doi: 10.1053/j.jfas.2013.03.027.
- 27. Westin O, Sjögren T, Svedman S, et al. Treatment of acute Achilles tendon rupture a multicentre, non-inferiority analysis. BMC Musculoskelet Disord. 2020;21(1):358. doi: 10.1186/s12891-020-03320-3.
- 28. Yang X, Meng H, Quan Q, et al. Management of acute Achilles tendon ruptures: A review. Bone Joint Res. 2018;7(10):561-569. doi: 10.1302/2046-3758.710.BJR-2018-0004.R2.
- 29. Metz R, Kerkhoffs GM, Verleisdonk EJ, van der Heijden GJ. Acute Achilles tendon rupture: minimally invasive surgery versus non operative treatment, with immediate full weight bearing. Design of a randomized controlled trial. BMC Musculoskelet Disord. 2007;8:108. doi: 10.1186/1471-2474-8-108.
- 30. Wallace RG, Heyes GJ, Michael AL. The non-operative functional management of patients with a rupture of the tendo Achillis leads to low rates of re-rupture. *J Bone Joint Surg Br.* 2011;93(10):1362-1366. doi: 10.1302/0301-620X.93B10.26187.

 31. Del Buono A, Volpin A, Maffulli N. Minimally invasive versus open surgery for acute Achilles tendon rupture: a systematic review.
- Br Med Bull. 2014;109:45-54. doi: 10.1093/bmb/ldt029.
- 32. Li Y, Jiang Q, Chen H, et al. Comparison of mini-open repair system and percutaneous repair for acute Achilles tendon rupture. BMC Musculoskelet Disord. 2021;22(1):914. doi: 10.1186/s12891-021-04802-8.

The article was submitted 15.04.2025; approved after reviewing 13.05.2025; accepted for publication 25.08.2025.

Статья поступила 15.04.2025; одобрена после рецензирования 13.05.2025; принята к публикации 25.08.2025.

Information about the authors:

Nyoman Satria Nakayoshi Wijaya — Dr., satrianakayoshi.sn@gmail.com, https://orcid.org/0009-0006-0941-253X;

Ni Luh Putu Saswatasya Widha Putri — Bachelor of medicine;

Sri Mahadhana − Dr.;

Cokorda Gde Oka Dharmayuda — Hip and Knee Consultant;

Gusti Ngurah Wien Aryana — Sports and Arthroscopy Consultant;

Wayan Suryanto Dusak — Professor, Hip and Knee Consultant;

Wayan Subawa — Foot and Ankle Consultant.

Contribution of the authors:

Wijaya N.S.N. — acquisition of data, analysis and interpretation of data, wrote the first draft, study supervision, is the guarantor.

Putri N.L.P.S.W. — analysis and interpretation of data, wrote the first draft.

Mahadhana S., Dharmayuda C.G.O., Aryana I.G.N.W., Dusak I.W.S. — critical revision of manuscript for intellectual content.

Subawa I.W. — study concept and design, critical revision of manuscript for intellectual content.

Обзорная статья

УДК [616.728.2+616.728.3]:616.71-089.843-06:616.022.1-036.8(048.8) https://doi.org/10.18019/1028-4427-2025-31-5-678-689

Анализ результатов лечения пациентов с культура-негативной перипротезной инфекцией тазобедренного и коленного суставов в зависимости от подхода к ее определению

Ю.В. Олейник $^{\bowtie}$, С.А. Божкова

Национальный медицинский исследовательский центр травматологии и ортопедии имени Р.Р. Вредена, Санкт-Петербург, Россия

Автор, ответственный за переписку: Юлия Владимировна Олейник, hamster715@gmail.com

Аннотация

Введение. Одним из наиболее частых и разрушительных осложнений после тотального эндопротезирования тазобедренного сустава является перипротезная инфекция (ППИ). Эффективность лечебного процесса определяет рациональный выбор хирургической операции и возможность назначения этиотропной антибактериальной терапии в послеоперационном периоде. В 5–30 % случаев имеет место культура-негативная инфекция (КНИ), при которой этиология инфекционного процесса остается неустановленной на протяжении всего периода лечения. На сегодняшний день в профессиональном сообществе отсутствует единый подход к определению изучаемого феномена.

Цель работы — оценить результаты лечения пациентов с культура-негативной перипротезной инфекцией тазобедренного и коленного суставов в зависимости от подхода к ее определению, а также сформулировать возможные пути снижения частоты встречаемости данной патологии.

Материалы и методы. Поиск литературных источников осуществляли в электронных базах данных eLIBRARY, PubMed (MEDLINE), ScienceDirect, Google Scholar согласно рекомендациям PRISMA. В исследование включены оригинальные статьи и серии случаев на русском и английском языках, посвященные лечению хронической культура-негативной ППИ тазобедренного и/или коленного суставов у пациентов старше 18 лет с применением любых хирургических операций, в которых имелся хотя бы один показатель эффективности лечения. Проанализированы существующие подходы к определению перипротезной КНИ коленного и тазобедренного суставов и исходы лечения пациентов с данной патологией, а также сформулированы возможные пути снижения доли пациентов с неизвестной этиологией инфекционного процесса.

Результаты и обсуждение. Проведенный анализ научных публикаций не позволил сделать вывод об очевидной разнице эффективности купирования инфекции в зависимости от подхода к определению культура-негативной ППИ. Впервые эффективность лечения больных с КНИ рассмотрена в зависимости от подхода к определению данной патологии. Выявлена значительная неоднородность как в трактовках КНИ, так и в выборе хирургических методик. Высокая доля благоприятных исходов указывает на важность корректного выбора препаратов для эмпирической антибиотикотерапии (АБТ) и регулярного мониторинга спектра внутрибольничных возбудителей. Предложены возможные пути снижения частоты встречаемости отрицательных результатов микробиологических исследований.

Заключение. Значимые различия в эффективности лечения пациентов с КНИ в зависимости от подхода к определению данного термина не были обнаружены. Пути снижения частоты встречаемости данной патологии направлены на модификацию факторов, которые обуславливают отрицательные результаты МБИ образцов биоматериалов и удаленных конструкций.

Ключевые слова: хроническая перипротезная инфекция, дооперационное обследование, микробиологическое исследование, ревизионное эндопротезирование

Для цитирования: Олейник Ю.В., Божкова С.А. Анализ результатов лечения пациентов с культура-негативной перипротезной инфекцией тазобедренного и коленного суставов в зависимости от подхода к ее определению. *Гений ортопедии*. 2025;31(5):678-689. doi: 10.18019/1028-4427-2025-31-5-678-689.

_

[©] Олейник Ю.В., Божкова С.А., 2025

Review article

https://doi.org/10.18019/1028-4427-2025-31-5-678-689

Analysis of existing approaches to determine culture-negative periprosthetic infection of the hip and knee joints and assessment of its treatment outcomes

Yu.V. Oleinik[™], S.A. Bozhkova

Vreden National Medical Research Center of Traumatology and Orthopedics, Saint Petersburg, Russian Federation

Corresponding author: Yuliya V. Oleinik, hamster715@gmail.com

Abstract

Introduction Periprosthetic infection is one of the most frequent and devastating complications after total hip replacement. The effectiveness of infection management depends on possibility of prescribing etiotropic antibiotics after the operation and the rational choice of a surgical technique. In 5–30 % of all patients the etiology of the infectious process remains unknown throughout the entire treatment period. Such cases are described by the term "culture-negative periprosthetic joint infection". Nowaday, there is no single definition for culture-negative PJI in the professional community.

The **aim** of this study is to evaluate the treatment results of patients with culture-negative periprosthetic infection, depending on the approach to its detection, as well as formulate possible ways to reduce its rates.

Methods Literature search was performed in electronic databases eLIBRARY, PubMed (MEDLINE), ScienceDirect, Google Scholar according to PRISMA recommendations. The study included articles in Russian and English, original articles and case series on the treatment of chronic culture-negative periprosthetic infection of the hip joint and/or knee joints in patients over 18 years of age using any surgical operations and in which there was at least one indicator of treatment effectiveness. The existing approaches to detection of culture-negative periprosthetic joint infection of the knee and hip and the outcomes of treatment of patients with this pathology were analyzed, as well as possible ways to reduce the number of patients with an unknown etiology of the infectious process were formulated.

Results and Discussion Our analysis of scientific publications revealed no clear difference in the effectiveness of infection control depending on the approach to detection of culture-negative PJI. For the first time, the effectiveness of treatment for patients with culture-negative PJI is examined depending on the approach to detection of this pathology. Significant heterogeneity was identified in both the interpretation of culture-negative PJI and the choice of surgical techniques. The high rate of successful outcomes indicates the importance of appropriate selection of drugs for empirical antibiotic therapy (ABT) and regular monitoring of the spectrum of nosocomial pathogens. Potential ways to reduce the incidence of negative microbiological test results are proposed.

Conclusion The efficacy of treatment of culture-negative PJI did not differ significantly depending on the interpretation of this term. Ways to reduce the incidence of this pathology are aimed at modifying the factors that cause negative results of MBI of biomaterial samples and removed structures.

Keywords: chronic periprosthetic infection, pre-operative examination, microbiological test, revision arthroplasty

For citation: Oleinik YuV, Bozhkova SA. Analysis of existing approaches to determine culture-negative periprosthetic infection of the hip and knee joints and assessment of its treatment outcomes. *Genij Ortopedii*. 2025;31(5):678-689. doi: 10.18019/1028-4427-2025-31-5-678-689.

[©] Oleinik Yu.V., Bozhkova S.A., 2025

[©] Translator Tatyana A. Malkova, 2025

ВВЕДЕНИЕ

Перипротезную инфекцию (ППИ) справедливо называют одним из наиболее разрушительных осложнений после тотального эндопротезирования тазобедренного сустава (ТБС), ухудшающего качество и общую продолжительность жизни пациентов [1, 2]. Инфекционные осложнения в эндопротезировании ложатся тяжелым социально-экономическим бременем на систему здравоохранения [3, 4], при этом риск неудач остается достаточно высоким, находясь в пределах 10–29 % при выполнении операции двухэтапного ревизионного эндопротезирования, которую до настоящего времени считают «золотым стандартом» [5, 6].

Одним из ключевых факторов, значимо влияющих на эффективность лечения, является этиология инфекционного процесса, — вид микробного возбудителя и его антибиотикочувствительность [7]. Повсеместно увеличивается доля больных, у которых микробиологический диагноз не был поставлен по результатам дооперационных исследований, а в некоторых случаях и по результатам интраоперационных посевов. Данный феномен известен как культура-негативная ППИ, частота которой достигает 5–30 % [8, 9]. В качестве основных причин культура-негативной ППИ часто указывают прием антимикробных препаратов менее чем за две недели до выполнения микробиологических исследований, наличие низковирулентных или труднокультивируемых возбудителей ППИ [10], а также особенности патогенеза инфекционного процесса, ассоциированного с ортопедическими имплантатами (наличие в организме пациента депо бактерий, к которым относят биопленки, внутриклеточно расположенные бактерии и колонизированные остеоцитарно-лакунарные канальцы) [11]. Все эти факторы делают практически невозможным рутинное назначение этиотропной антибиотикотерапии (АБТ) на момент выполнения санирующей операции пациенту с ППИ.

В профессиональном сообществе отсутствует единство взглядов в отношении данного феномена. Некоторые авторы под культура-негативной ППИ понимают отсутствие роста возбудителя по данным дооперационных микробиологических исследований (МБИ), при этом возбудитель может быть обнаружен в интраоперационно взятых материалах [12–17]. Другие авторы под этим термином понимают полное отсутствие данных о патогене [18–22]. Описанные различия обуславливают разброс частоты встречаемости данной патологии, и, как следствие, невозможность разработки единых рекомендаций по лечению профильных пациентов.

Цель работы — оценить результаты лечения пациентов с культура-негативной перипротезной инфекцией тазобедренного и коленного суставов в зависимости от подхода к ее определению, а также сформулировать возможные пути снижения частоты встречаемости данной патологии.

МАТЕРИАЛЫ И МЕТОДЫ

Систематический обзор выполнен в соответствии с международными требованиями PRISMA (англ.: Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [23].

Поиск литературных источников осуществлен в электронных базах данных eLIBRARY, PubMed (MEDLINE), ScienceDirect, Google Scholar.

Запрос для поиска в базах данных PubMed (MEDLINE), ScienceDirect, Google Scholar, Ovid, на основании рекомендаций E. Aromataris, D. Riitano [24], включал комбинацию ключевых слов: ("periprosthetic joint infection" or "prosthetic joint infection" or PJI) and ("single-stage" or "one-stage" or "two-stage" or "2-stage" or "revision" or "revisions") and ("culture negative" or "negative") and ("culture positive").

Запрос для поиска в базе данных eLIBRARY включал следующую комбинацию ключевых слов: «культуронегативная инфекция», «культуронегативная перипротезная инфекция», «культуронегативная перипротезная инфекция», «хроническая перипротезная инфекция тазобедренного сустава ИЛИ хроническая перипротезная инфекция коленного сустава». Ретроспективно поиск не был ограничен, дата последнего запроса — 04.02.2025. Поисковые запросы в перечисленных базах данных использовали в различных комбинациях в качестве предварительной возможности.

На первом этапе определены критерии включения и исключения статей в исследование.

Критерии включения:

- статьи на русском и английском языках;
- оригинальные статьи и серии случаев, включающие пять и более наблюдений, посвященные лечению хронической культура-негативной перипротезной инфекции тазобедренного и/или коленного суставов, инфекционных осложнений после эндопротезирования тазобедренного и/или коленного суставов;
- возраст пациентов старше 18 лет;

- наличие хотя бы одного показателя эффективности лечения (доли благоприятных, неблагоприятных исходов, уровень выживаемости);
- любые хирургические операции по поводу ППИ.

Критерии невключения:

- статьи по ветеринарии;
- работы, посвященные последствиям кокситов;
- обзоры литературы, метаанализы, учебники, главы книг, письма, мнения экспертов;
- статьи, посвященные лечению исключительно острой ППИ;
- статьи, посвященные диагностике ППИ;
- клинические случаи;
- отсутствие в исследовании групп сравнения (культура-негативной и культура-позитивной групп);
- отсутствие четко описанного определения культура-негативной ППИ в публикации.

В обнаруженных статьях проведен ручной поиск ссылок для обнаружения дополнительных публикаций, которые могли быть включены в исследование. Далее проверены резюме публикаций на предмет соответствия критериям включения и невключения, осуществлен поиск дублирующих работ с целью их элиминации. На заключительном этапе изучены полнотекстовые статьи.

В ходе анализа включенных работ оценены следующие показатели:

- общая информация об исследовании (авторы, страна и год публикации, тип и длительность исследования, длительность наблюдения, диагностические критерии, численность клинических групп, вовлеченные суставы, типы хирургических вмешательств и антибиотикотерапия);
- результаты исследования, включающие уровень благоприятных и неблагоприятных исходов лечения.

Под рецидивом инфекции понимали наличие общих или системных признаков ППИ, повторные санирующие операции на том же суставе по поводу инфекционного процесса, летальный исход, развившийся вследствие ППИ. Для определения благоприятного исхода лечения пациентов с ППИ использовали международные рекомендации, основанные на методе Делфи (англ.: Delphi-based international multidisciplinary consensus) [25].

Дизайн исследования

В ходе первоначального поиска выявлено 850 публикаций, из которых 640 (комментарии, главы из книг, статьи, неподходящие по тематике, дубликаты) исключены. После анализа названий и рефератов на соответствие тематике поиска отобрано 50 публикаций. После проверки наличия полных текстов статей в открытом доступе, а также их соответствия критериям включения и исключения в окончательную выборку вошли 26 исследований (рис. 1).

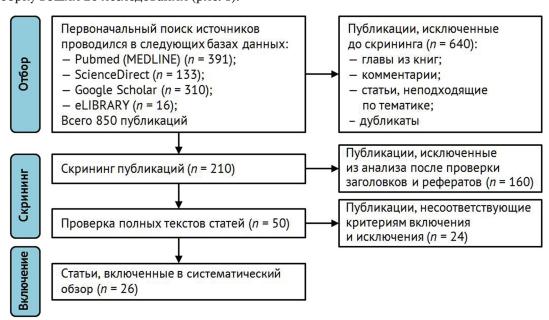
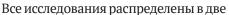


Рис. 1. Блок-схема включения статей в исследование с использованием предпочтительных элементов отчетности (протокол PRISMA)


Отобранные исследования опубликованы в период 2007–2024 гг., включают 7 713 случаев ППИ. Длительность наблюдения составляла от 12 до 120 месяцев. Для диагностики ППИ критерии MSIS (англ.: Musculoskeletal Infection Society) [26] использованы в 17 исследованиях, критерии ICM (англ.: International Consensus Meeting) [27] — в пяти исследованиях, критерии IDSA (англ.: Infectious Diseases Society of America) [28] — в одном исследовании, критерии EBJIS (англ.: European Bone and Joint Infection Society) [29] — в одном исследовании. В четырех исследованиях использованы критерии, разработанные отдельными авторами, еще в трех публикациях данные отсутствовали.

Риск систематической ошибки

Проведена методологическая оценка качества каждого исследования в соответствии с критериями СЕВМ (англ.: Oxford Center for Evidence-Based Medicine) с целью определения уровня доказательности исследования. Как для анализа серий случаев, так и для когортных исследований применен чек-лист ЈВІ (англ.: Joanna Briggs Institute Critical Appraisal tools), состоящий из 11 вопросов (рис. 2).

Статистический анализ

В статистический анализ включены данные всех 26 статей. Анализ проводили с использованием программы IBM SPSS Statistics v.26 (IBM Corporation). Для описания количественных показателей применена проверка на нормальность распределения по критериям Шапиро – Уилка и Колмогорова – Смирнова. Для описания количественных переменных использовали медиану (Ме), в качестве мер рассеяния — нижний (О1) и верхний (Q3) квартили (25-75% МКИ). Сравнение в исследуемых группах осуществляли по критерию Манна – Уитни. Различия между группами считали статистически значимыми при p < 0.05.

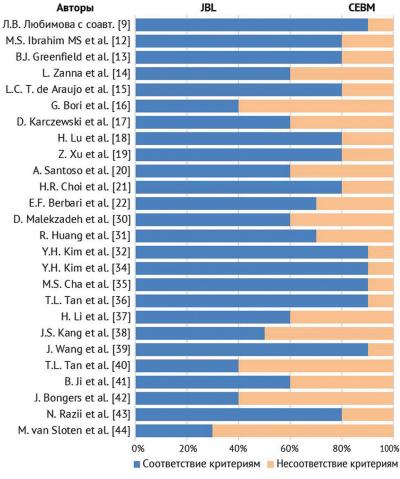


Рис. 2. Результаты методологической оценки качества включенных в исследование статей

группы в зависимости от подхода к определению КНИ. В первую группу, в которой авторы рассматривали КНИ как отсутствие роста возбудителя во всех образцах, включены 20 публикаций. Во вторую группу, в которой учитывали отсутствие роста микроорганизмов только в дооперационных исследованиях, включены шесть публикаций. Для каждого исследования учтена доля благоприятных исходов лечения КНИ. Далее рассчитывали средний уровень купирования инфекции в каждой группе (Ме, МКИ). С применением критерия Манна – Уитни выполнена проверка наличия статистически значимых различий между группами.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изучение результатов лечения больных в зависимости от подхода к определению культура-негативной ППИ не позволяет сделать вывод об очевидной разнице в эффективности купирования инфекции. Так, в первой группе (КНИ как отсутствие роста возбудителя во всех образцах) эрадикация инфекции достигнута в среднем в 91,5 % случаев (МКИ = 78,0-95,5 %), распределение данных не было нормальным (p=0,03). Во второй группе (отсутствие роста микроорганизмов только в дооперационных исследованиях) доля благоприятных исходов лечения КНИ в среднем составила 92,0 % наблюдений (МКИ = 86,0-97,0 %), распределение результатов не отличалось от нормального (p=0,326).

Между двумя группами исследований не обнаружено статистически значимой разницы в эффективности лечения ППИ (p = 0.582). Обращает на себя внимание факт, что исследования, в которых авторы описывали КНИ как отсутствие роста возбудителя только до операции, включают малое число наблю-

дений и не во всех случаях имеют группу сравнения, а в ряде публикаций не указано, какие критерии использовали авторы для подтверждения диагноза перипротезной инфекции (табл. 1). Все анализируемые исследования были ретроспективными.

Таблица 1 Характеристики исследований, посвященных лечению пациентов с культура-негативной ППИ, в зависимости от подхода к ее определению

Авторы	Суста	ав, %	Анализ.	V	Определение	Всего	Kŀ	ΗИ	0
[№ источника]	KC	ТБС	период	Критерии ППИ	кни	случаев	абс.	%	Операции
Л.В. Любимова с соавт. [9]	100		2017–2021	ICM (2018)	До + интра	103	30	29,1	2э реЭП
M.S. Ibrahim MS et al. [12]		100	2007–2012	Berbari EF et al. [22]	До + интра	100	50	50	2э реЭП
B.J. Greenfield et al. [13]		100	2006-2015	MSIS (2011)	До	105	28	26,7	1э реЭП
L. Zanna et al. [14]	45,5	54,5	2016-2018	НД	До	640	22	3,4	1э реЭП
L.C. T. de Araujo et al. [15]	50,0	50,0	2003-2020	ICM (2018)	До + интра	53	6	11,1	DAIR, 2э реЭП, 1э реЭП, PA, ампутация, экзартикуляция, артродез
G. Bori et al. [16]	100		1998-2007	НД	До	24	6	15,8	1э реЭП
D. Karczewski et al. [17]		100	2011-2021	EBJIS (2021)	До	30	10	33,3	1э реЭП
H. Lu et al. [18]	34,5	65,5	2008-2020	MSIS (2013)	До + интра	87	24	27,6	2э реЭП
Z. Xu et al. [19]	41,6	58,4	2012-2017	ICM (2018), MSIS (2011)	До + интра	77	24	31,2	DAIR, 2э реЭП, 1э реЭП
A. Santoso et al. [20]		100	2010-2015	MSIS (2011)	До + интра	84	27	32,1	2э реЭП
H.R. Choi et al. [21]	50,0	50,0	2000-2009	MSIS (2013)	До + интра	175	40	23	2э реЭП
E.F. Berbari et al. [22]	55,0	45,0	1990-1999	НД	До + интра	897	60	7	DAIR, 2∋ peЭΠ, PA
D. Malekzadeh et al. [30]	50,0	50,0	1985-2000	нд	До + интра	270	135	50	DAIR, 2э реЭП, 1э реЭП, РА, ампутация
R. Huang et al. [31]	44,0	56,0	2000-2007	MSIS (2011)	До + интра	250	48	19,2	DAIR, 2э реЭП
Y.H. Kim et al. [32]	100		1991-2008	McPherson et al. [33]	До + интра	191	51	26,7	DAIR, 2э реЭП
Y.H. Kim et al. [34]	100		2001-2008	MSIS (2011)	До + интра	242	102	42,1	DAIR, 2э реЭП
M.S. Cha et al. [35]	100		1998-2011	MSIS (2011)	До + интра	76	22	29,0	2э реЭП
T.L. Tan et al. [36]	62,9	37,1	2000-2014	MSIS (2013)	До + интра	1045	159	15,2	2э реЭП
H. Li et al. [37]	100		2003-2014	MSIS (2011)	До + интра	129	18	13,9	1э реЭП, 2э реЭП
J.S. Kang et al. [38]		100	1996-2015	MSIS (2011)	До + интра	85	15	17,6	2э реЭП
J. Wang et al. [39]		100	2003-2006	MSIS (2011)	До + интра	58	19	32,7	2э реЭП
T.L. Tan et al. [40]	37,0	63,0	2000-2014	MSIS (2013)	До + интра	996	219	22	DAIR, 2э реЭП, 1э реЭП
B. Ji et al. [41]		100	2009–2016	McPherson et al. [33], MSIS (2011)	До + интра	243	51	21	1э реЭП
J. Bongers et al. [42]	100		2003-2013	MSIS (2013)	До	113	53	46,9	2э реЭП
N. Razii et al. [43]	100		2006-2016	MSIS (2011), IDSA, ICM (2013, 2018)	До	84	16	19	1э реЭП
M. van Sloten et al. [44]	74,3	25,7	2013-2018	EBJIS (2021), ICM (2018), MSIS (2013)	До + интра	1556	70	4,5	DAIR, 2э реЭП, 1э реЭП

Примечание: 1э — одноэтапное; 2э — двухэтапное; реЭП — реэндопротезирование; DAIR — обработка раны, антибиотики и фиксация имплантата; PA — резекционная артропластика

Существующие подходы к определению культура-негативной ППИ

На данный момент в сообществе травматологов-ортопедов отсутствует единое мнение о том, в каком именно случае перипротезная инфекция может быть названа культура-негативной. Впервые термин "culture-negative PJI" был описан Е.F. Berbari et al., как отсутствие роста аэробных или анаэробных возбудителей при микробиологическом исследовании образцов тканей, окружающих эндопротез. Авторы перечисляли следующие диагностические критерии: наличие гноя в области эндопротеза, увеличение количества лейкоцитов (> 1,7 × 10³/мл) и/или доли полиморфоноядерных нейтрофилов (> 65 %) в синовиальной жидкости, наличие острого воспаления по данным гистологического исследования, наличие свищевого хода, сообщающегося с эндопротезом [22]. Частота встречаемости культура-негативной ППИ в данном исследовании составила 7 % (60/897), при этом более чем у половины (53 %) пациентов в анамнезе имелись указания на предшествующий прием антибактериальных препаратов. J. Palan et al. указывают на необходимость дифференцировки «истинно-негативного» результата предоперационного МБИ (7–15 % наблюдений), когда речь, скорее, идет об асептическом расшатывании, и «ложно-негативного», когда по ряду причин невозможно выделить возбудитель инфекционного процесса, однако

его наличие не вызывает сомнений [45]. В соответствии с этим все случаи предполагаемой культуранегативной ППИ могут быть разделены на две большие группы. В первую группу включены пациенты с достоверной перипротезной инфекцией, этиология которой в данный момент не может быть установлена. Ко второй группе авторы предлагают отнести пациентов с предполагаемой перипротезной инфекцией, когда результаты МБИ тканей из области пораженного сустава отрицательны, и отсутствуют однозначные признаки инфекции (видимое нагноение или наличие функционирующего свищевого хода). Описанная клиническая картина может указывать на наличие низковирулентных или атипичных возбудителей, например грибов или бактерий рода Mycobacterium spp., Propionibacterium spp. и др. Такое разделение представляется обоснованным и целесообразным, так как пациенты обеих групп значительно отличаются по степени выраженности симптомов и по х рактеру течения инфекции. Необходимо отметить, что не во всех публикациях, посвященных культура-негативной ППИ, четко прописаны критерии КНИ для включения пациентов в исследование.

Чаще всего под термином "culture-negative PII" понимают отсутствие роста аэробных и анаэробных возбудителей во всех образцах, взятых как в дооперационном периоде, так и в ходе оперативного вмешательства [9, 17–22]. В публикациях, в которых авторы использовали описанный подход, частота встречаемости культура-негативной ППИ составляет 7–30,8 % случаев. Так, в исследовании H. Lu et al. доля пациентов с неизвестной этиологией инфекции составила 27,6 %, при этом в 25,0 % наблюдений описан функционирующий свищевой ход, в 91,7 % случаев наличие воспаления подтверждено данными гистопатологического исследования, в 70,8 % случаев в ходе операции обнаружен гной в области эндопротеза [19]. В работе Л.В. Любимовой с соавт. доля пациентов без роста патогена составила 29,1 %, при этом только у 76,6 % пациентов инфекционный процесс подтвержден согласно критериям ІСМ (2018), тогда как в группе культура-позитивной ППИ данный показатель составил 98,6% (p=0,0006) [9]. И хотя клиническая картина в группах была сопоставима, в предоперационном периоде показатели СОЭ, СРБ крови, а также уровень лейкоцитов в синовиальной жидкости были значимо выше в группе, где возбудитель ППИ был идентифицирован (p < 0.05). С этими данными соотносятся результаты H.R. Choi et al., согласно которым доля больных с КНИ составила 23 % в анализируемой выборке. при этом показатели СОЭ у них были значимо ниже, чем в группе пациентов с положительными культурами [19]. Предшествующее госпитализации лечение антибактериальными препаратами значительно чаще встречалось в группе без роста возбудителя (p = 0.005).

В ряде научных работ можно встретить иной подход, когда термин "culture-negative" применяют в тех случаях, когда рост возбудителя отсутствует только в предоперационном периоде. Так, M.S. Ibrahim et al., основываясь на наличии или отсутствии роста до выполнения хирургического вмешательства, выделили две равные группы пациентов, наличие перипротезной инфекции было подтверждено критериями Е.F. Berbari et al. [18]. В то же время авторы указывают, что результаты МБИ образцов биоматериалов от пациентов с культура-негативной ППИ были отрицательны на всех этапах лечения. По мнению авторов, наибольшее влияние на увеличение вероятности отсутствия роста возбудителя оказывал прием антибактериальных препаратов в предоперационном периоде (p = 0,003, OR 4.1), а также предшествующее лечение перипротезной инфекции в других стационарах (p = 0,001, OR 3.1).

В.Ј. Greenfield et al. оценивали степень влияния наличия данных о возбудителе в дооперационном периоде на эффективность применения одноэтапного реэндопротезирования. Необходимо отметить, что авторы не вводили понятие культура-негативной инфекции как таковое, а разделяли пациентов на две группы в зависимости от того, был результат МБИ до операции положительным или отрицательным [13]. Так, этиология ППИ на момент оперативного вмешательства была известна всего в 27 % наблюдений.

Иной подход к вопросу расширения показаний для одноэтапной методики продемонстрирован в работе L. Zanna et al., — в изучаемую выборку включены те пациенты, у которых результаты МБИ были отрицательными только в дооперационном периоде, их доля составила 3,4 % [14]. Отсутствием роста возбудителя авторы считали отрицательные результаты двух микробиологических исследований синовиальной жидкости и одной открытой биопсии. Примечательно, что в половине наблюдений, включенных в исследование, из интраоперационно взятых тканевых биоптатов выделены микробные ассоциации. G. Bori et al. при изучении эффективности одноэтапного реэндопротезирования с применением бедренных компонентов бесцементной фиксации установили, что у шести (15,8 %) пациентов отсутствовали данные о возбудителе на момент хирургического вмешательства [16]. Однако в последующем в пяти случаях из интраоперационно взятых биоптатов был получен рост коагулазо-негативных стафилококков и в одном наблюдении — рост *Peptostreptococcus spp*.

Группа ученых из клиники Charité в Берлине выдвинула в своем исследовании более радикальную гипотезу о том, что определение патогена перед выполнением одноэтапного реэндопротезирования не является обязательным [17]. По мнению авторов, применение одноэтапной методики может в боль-

шей степени зависеть от состояния мягких тканей и кости, соматического статуса пациента и анамнеза заболевания, чем от данных о возбудителе инфекционного процесса. Необходимо подчеркнуть, что авторы не вводят понятие "culture-negative PJI", однако в ходе обсуждения неоднократно ссылаются на работы, посвященные данной патологии.

Существующие подходы к лечению пациентов с культура-негативной ППИ

На данный момент в профессиональном сообществе травматологов-ортопедов накоплен определенный опыт лечения пациентов с культура-негативной ППИ, позволяющий анализировать исходы применения различных методик хирургического лечения, в том числе в сравнении с результатами лечения пациентов с культура-позитивной инфекцией. По результатам метаанализа Ү. H. Lai et al., включающего 11 исследований, в среднем у 32,5 % пациентов (9,9-73,3 %) этиология инфекционного процесса не установлена [46]. При этом исходы лечения культура-негативной и культура-позитивной ППИ значимо не различались (OR = 1,20, 95 % ДИ: 0,84-1,70). Эффективность двухэтапного реэндопротезирования составила 82,5 % в каждой из групп, эффективность одноэтапного реэндопротезирования — 90,6 % и 94,5 % соответственно. Обращает на себя внимание, что в метаанализ включены исследования, посвященные лечению пациентов с острой ППИ [32; 47], что предполагает проведение периоперационной антибиотикопрофилактики, которая может повлиять на результаты МБИ суставной жидкости. В частности, в работе Ү.Н. Кіm et al. более половины (51 %) наблюдений в культура-негативной группе классифицированы как острая (ранняя) инфекция [32]. Кроме того, нельзя исключить влияние антибиотико-содержащего костного цемента, который применяли для фиксации компонентов эндопротеза. Помимо указанных факторов, к ограничениям этого исследования относят преимущественно ретроспективный характер включенных работ, использование в них различных диагностических критериев как самой перипротезной инфекции, так и понятий рецидива и реинфекции, а также включение в изучаемые выборки пациентов с патологией как коленного, так и тазобедренного суставов.

С приведенными данными соотносятся результаты другого метаанализа 30 исследований, посвященных сравнению эффективности лечения пациентов с ППИ известной и неизвестной этиологий [48]. Исходы лечения пациентов с хронической ППИ после выполнения двухэтапного реэндопротезирования были значимо лучше у пациентов с неизвестным возбудителем инфекции, чем в случаях с идентифицированным патогеном, — купирование инфекции достигнуто в 83,9 % и 79,6 % соответственно (p = 0,002). Эффективность одноэтапного реэндопротезирования не имела значимых отличий между сравниваемыми группами, — 88,5 % и 92,4 % соответственно (p = 0,23). Примечательно, что авторы не дают однозначного определения термину "culture-negative" и не проводят отбор публикаций по данному принципу, что может негативно сказываться на достоверности полученных результатов. Несмотря на целый ряд ограничений, данный метаанализ представляет собой одну из наиболее масштабных работ по данной теме.

Необходимо отметить, что отсутствие данных о возбудителе длительное время считалось противопоказанием для применения одноэтапной методики, так как в таком случае возможность назначения этиотропной АБТ сразу после операции исключена [49]. В то же время данное вмешательство является крайне привлекательным как для врача, так и для пациента, позволяя избежать повторной госпитализации, операции, а значит и повторных курсов АБТ, сократить период реабилитации, что позволит пациенту скорее вернуться к привычному образу жизни. В связи с этим в последнее время появляется все больше работ, посвященных успешному расширению показаний к данному вмешательству [19, 41, 50 51]. Большинство авторов сообщают о сопоставимых результатах применения одноэтапной методики в группах культура-негативной и культура-позитивной ППИ [17, 19, 41, 50, 51]. Крайне высокая эффективность продемонстрирована при сочетании одноэтапного реэндопротезирования с внутрисуставным введением ванкомицина пациентам с неизвестной этиологией ППИ, — в 90,2 % случаев инфекция была купирована [50]. Как утверждают авторы, внутрисуставное введение антимикробных препаратов позволяет добиться высоких концентраций в очаге инфекции при отсутствии системных токсических эффектов, которые характерны для классической системной высокодозной терапии [52]. В то же время Z. Xu et al. сообщают о меньшей эффективности одноэтапной методики у пациентов в культура-негативной группе, нежели в культура-позитивной, при этом частота развития осложнений системной антибиотикотерапии значимо отличается, — 58,3 % и 11,3 % соответственно (р < 0,05) [19]. Пациенты из группы КНИ получали в послеоперационном периоде комбинацию ванкомицина с цефалоспорином третьего поколения или карбапенемом, длительность внутривенной АБТ составляла две-четыре недели. И хотя авторы не указывают режим дозирования антимикробных препаратов, можно предположить, что столь высокий процент осложнений связан с назначением значительно больших доз антибиотиков, чем у пациентов культура-позитивной группы.

Двухэтапное ревизионное эндопротезирование считается «золотым стандартом» лечения пациентов с культура-негативной ППИ, так как назначение этиотропной АБТ в таких случаях невозможно, а вероятность обнаружения в интраоперационных биоптатах трудных для эрадикации возбудителей всегда

сохраняется. Кроме того, преимуществами этапного лечения является возможность подготовки мягких тканей и кости к последующей реимплантации эндопротеза, возможность повторной установки спейсера с длительным курсом АБТ в случае развития рецидива инфекции. Многие публикации, посвященные данной теме, сообщают о хороших и даже отличных результатах применения двухэтапной методики у пациентов с неустановленной этиологией инфекционного процесса, при этом эффективность лечения сопоставима, а в некоторых случаях даже значимо выше таковой у пациентов с идентифицированным возбудителем [12, 18, 20, 21, 53]. Так, в исследовании H.R. Choi et al. неблагоприятные исходы отмечены в 15 % случаев у пациентов без роста патогена, тогда как в группе с идентифицированным возбудителем данный показатель составил 39 % (p = 0,006), однако в первом случае значимо чаще в ходе лечения применяли «операции отчаяния» (например, артродез тазобедренного сустава) (p = 0,003) [21].

В ходе данного исследования мы уделили пристальное внимание существующим подходам к определению культура-негативной ППИ. Результаты лечения больных с данной патологией изучены в разрезе трактовки термина "culture-negative PJI". Так, доля благоприятных исходов лечения больных как в группе, где были учтены только результаты дооперационных МБИ, так и в группе, где учитывали и до-, и интраоперационные посевы, превышала $90\,\%$ и не имела статистически значимых отличий (p=0.582). Необходимо отметить, что столь высокая эффективность купирования инфекции достигнута при отсутствии возможности назначения этиотропной АБТ в раннем послеоперационном периоде, что указывает на важность своевременного и регулярного мониторинга спектра внутрибольничных возбудителей для корректного выбора препаратов для эмпирической АБТ. Таким образом, уменьшение доли пациентов с КНИ может быть достигнуто за счет модификации факторов, предопределяющих отрицательные результаты МБИ.

Возможные пути снижения доли пациентов с неизвестной этиологией перипротезной инфекции

Лечение больных с инфекционными осложнениями после эндопротезирования крупных суставов нижней конечности является трудоемкой задачей, для решения которой необходимо участие мультидисциплинарной бригады специалистов. Лечебный процесс можно условно разделить на два больших блока, первый из которых включает предоперационный период и само хирургическое вмешательство, а второй — послеоперационный период.

Результаты МБИ биоматериалов, взятых до операции, оказывают значительное влияние на выбор того или иного вмешательства, при этом в большинстве случаев пациенты в раннем послеоперационном периоде получают эмпирическую АБТ, тогда как результаты МБИ образцов, взятых интраоперационно, определяют характер этиотропной антибиотикотерапии, которая будет продолжена после выписки больного на амбулаторный этап лечения. Соответственно, можно выделить ряд факторов, модификация которых способствовала бы снижению частоты встречаемости отрицательных результатов посевов (рис. 3).

Рис. 3. Факторы, влияющие на идентификацию возбудителя ППИ, и пути их модификации

Рекомендации в отношении микробиологической диагностики при лечении имплантат-ассоциированной инфекции подробно описаны и обобщены L. Drago et al. [54]. Так, в предоперационном периоде ключевая роль отводится отмене АБТ перед выполнением диагностических исследований, а также увеличению срока культивирования посевов в случаях, когда предполагаемыми возбудителями являются низковирулентные или редкие бактерии. При проведении чрескожной биопсии рекомендовано использование УЗ-навигации, так как вероятность обнаружения патогена неодинакова в разных ана-

томических областях. По данным L.C. Walker et al., для тазобедренного сустава предпочтительными локализациями взятия образцов тканей являются суставная сумка (специфичность — 100 %) и капсула сустава (чувствительность — 68 %), а предпочтительными типами тканей — синовиальная оболочка (специфичность -93%) и гной (чувствительность -83%) [55]. При наличии у больного свищевого хода, ведущего в полость сустава, не рекомендуется отправлять на исследование свищевое отделяемое из-за его контаминации кожной микрофлорой. Группой отечественных ученых разработана и запатентована методика взятия биоптатов из глубины свищевого хода (RU 2 698 175 C1), позволяющая в значительной степени повысить эффективность дооперационных МБИ. В ходе оперативного вмешательства рекомендовано брать ткани, прилежащие к эндопротезу, или ткани с макроскопическими признаками инфицирования, для взятия образцов использовать чистый стерильный инструментарий, избегая контактов с кожными покровами, при этом объем биоптата должен быть не менее 1 см³. Также и при экстракции компонентов эндопротеза рекомендовано использовать щадящие хирургические техники, избегать контактов с кожей, помещать каждый компонент в отдельную емкость. В случае если доставка материалов в лабораторию происходит не сразу, а в отложенном порядке, то хранить тканевые биоптаты и металлоконструкции нужно при температуре 4 °С, для синовиальной жидкости допустимо хранение в специализированных флаконах при комнатной температуре не дольше 48 час. Значительно повышает эффективность микробиологических исследований использование соникации [56, 57], а при отсутствии такой возможности — в качестве альтернативы использование ДТТ (англ.: dithiothreitol, DTT) [58].

Молекулярные методы, такие как полимеразная цепная реакция и секвенирование нового поколения (англ.: next-generation sequencing; NGS), показаны в случаях, когда определение возбудителя привычными методами неэффективно (например, при инфекции, вызванной Abiotrophia defectiva, Granulicatella adiacens), клиническая картина неочевидна, и диагноз перипротезной инфекции ставится под вопросом. Согласно данным литературы, у 4–13 % пациентов с асептическим расшатыванием применение молекулярных методов позволило идентифицировать патоген [59]. Во многих публикациях, посвященных NGS, продемонстрирована крайне высокая чувствительность метода в сравнении со стандартными культуральными исследованиями [60–63]. По данным М. Tarabichi et al., в 82 % случаев культура-негативной ППИ использование секвенирования нового поколения позволяет установить этиологию инфекционного процесса [63].

К ограничениям данного систематического обзора относится ретроспективный характер, а также дизайн включенных статей (случай-контроль или когортные исследования), отсутствие рандомизированных контролируемых исследований. В различных публикациях использованы отличные критерии ППИ, рецидива и купирования инфекции, также в ряде публикаций не указан ряд клинических параметров, таких как продолжительность хирургического вмешательства, объем интраоперационной кровопотери, длительность антибиотикотерапии и др. Кроме того, существенным ограничением является малочисленность и значительная разнородность исследований, в которых учтены только результаты дооперационных посевов. По этим причинам авторы решили отказаться от выполнения метаанализа. Таким образом, полученные результаты будут иметь лишь ограниченное практическое применение, однако увеличение числа исследований, посвященных данной теме, позволит разработать универсальные рекомендации лечения профильных пациентов.

ЗАКЛЮЧЕНИЕ

Согласно полученным данным, значимые различия в эффективности лечения пациентов с КНИ в зависимости от подхода к определению данного термина не были обнаружены. Наибольшие затруднения при лечении профильных больных вызывает невозможность назначения этиотропной АБТ в раннем послеоперационном периоде, что может оказывать негативное влияние на течение всего лечебного процесса. Предложенные пути снижения частоты встречаемости КНИ направлены на модификацию факторов, которые обуславливают отрицательные результаты МБИ образцов биоматериалов и удаленных конструкций.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Источник финансирования. Государственное бюджетное финансирование.

СПИСОК ИСТОЧНИКОВ

- Kurtz SM, Lau EC, Son MS, et al. Are we winning or losing the battle with periprosthetic joint infection: trends in periprosthetic joint infection and mortality risk for the medicare population. *J Arthroplasty*. 2018;33(10):3238-3245. doi: 10.1016/j.arth.2018.05.042.
 Wildeman P, Rolfson O, Söderquist B, et al. What are the long-term outcomes of mortality, quality of life, and hip function after
- Wildeman P, Rolfson O, Söderquist B, et al. What are the long-term outcomes of mortality, quality of life, and hip function after prosthetic joint infection of the hip? A 10-year Follow-up from Sweden. Clin Orthop Relat Res. 2021;479(10):2203-2213. doi: 10.1097/ CORR.00000000001838.
- 3. Premkumar A, Kolin DA, Farley KX, et al. Projected economic burden of periprosthetic joint infection of the hip and knee in the United States. *J Arthroplasty*. 2021;36(5):1484-1489.e3. doi: 10.1016/j.arth.2020.12.005.
- 4. Божкова С.А., Тихилов Р.М., Артюх В.А. Перипротезная инфекция суставов как социально-экономическая проблема современной ортопедии. Вестник Российской академии медицинских наук. 2023;78(6):601-608. doi:10.15690/vramn8370.

- 5. Chen AF, Nana AD, Nelson SB, McLaren A. What's new in musculoskeletal infection: update across orthopaedic subspecialties. *J Bone Joint Surg Am.* 2017;99(14):1232-1243. doi: 10.2106/JBJS.17.00421.
- 6. Lange J, Troelsen A, Thomsen RW, Søballe K. Chronic infections in hip arthroplasties: comparing risk of reinfection following one-stage and two-stage revision: a systematic review and meta-analysis. *Clin Epidemiol*. 2012;4:57-73. doi: 10.2147/CLEP.S29025.
- 7. Ascione T, Pagliano P, Balato G, et al. Oral rherapy, microbiological findings, and comorbidity influence the outcome of prosthetic joint infections undergoing 2-stage exchange. *J Arthroplasty*. 2017;32(7):2239-2243. doi: 10.1016/j.arth.2017.02.057.
- 8. Tai DBG, Patel R, Abdel MP, et al. Microbiology of hip and knee periprosthetic joint infections: a database study. *Clin Microbiol Infect*. 2022;28(2):255-259. doi: 10.1016/j.cmi.2021.06.006.
- 9. Любимова Л.В., Божкова С.А., Пчелова Н.Н. и др. Роль культуронегативной инфекции в структуре инфекционных осложнений после эндопротезирования коленных суставов. Гений ортопедии. 2023;29(4):402-409. doi: 10.18019/1028-4427-2023-29-4-402-409.
- 10. Goh GS, Parvizi J. Diagnosis and treatment of culture-negative periprosthetic joint infection. *J Arthroplasty*. 2022;37(8):1488-1493. doi: 10.1016/j.arth.2022.01.061.
- 11. Gimza BD, Cassat JE. Mechanisms of antibiotic failure during Staphylococcus aureus osteomyelitis. *Front Immunol.* 2021;12:638085. doi: 10.3389/fimmu.2021.638085.
- 12. Ibrahim MS, Twaij H, Haddad FS. Two-stage revision for the culture-negative infected total hip arthroplasty: a comparative study. *Bone Joint J.* 2018;100-B(1 Supple A):3-8. doi: 10.1302/0301-620X.100B1.BJJ-2017-0626.R1.
- 13. Greenfield BJ, Wynn Jones H, Siney PD, et al. Is Preoperative identification of the infecting organism essential before single-stage revision hip arthroplasty for periprosthetic infection? *J Arthroplasty*. 2021;36(2):705-710. doi: 10.1016/j.arth.2020.08.010.
- 14. Zanna L, Sangaletti R, Lausmann C, et al. Successful eradication rate following one-stage septic knee and hip exchange in selected pre-operative culture-negative periprosthetic joint infections. *Int Orthop.* 2023;47(3):659-666. doi: 10.1007/s00264-022-05677-7.
- 15. de Araujo LCT, Westerholt A, Sandiford AN, et al. Periprosthetic joint infections in patients with rheumatoid arthritis are associated with higher complication and mortality rates. *Arch Orthop Trauma Surg.* 2024;144(12):5101-5109. doi: 10.1007/s00402-024-05248-y.
- 16. Bori G, Muñoz-Mahamud E, Cuñé J, et al. One-stage revision arthroplasty using cementless stem for infected hip arthroplasties. *J Arthroplasty*. 2014;29(5):1076-1081. doi: 10.1016/j.arth.2013.11.005.
- 17. Karczewski D, Seutz Y, Hipfl C, et al. Is a preoperative pathogen detection a prerequisite before undergoing one-stage exchange for prosthetic joint infection of the hip? *Arch Orthop Trauma Surg.* 2023;143(6):2823-2830. doi: 10.1007/s00402-022-04459-5.
- 18. Lu H, Wang W, Xu H, et al. Efficacy and safety of two-stage revision for patients with culture-negative versus culture-positive periprosthetic joint infection: a single-center retrospective study. *BMC Musculoskelet Disord*. 2024;25(1):160. doi: 10.1186/s12891-024-07259-7
- 19. Xu Z, Huang C, Lin Y, et al. Clinical Outcomes of Culture-Negative and Culture-Positive Periprosthetic Joint Infection: Similar Success Rate, Different Incidence of Complications. *Orthop Surg.* 2022;14(7):1420-1427. doi: 10.1111/os.13333.
- 20. Santoso A, Park KS, Shin YR, et al. Two-stage revision for periprosthetic joint infection of the hip: Culture-negative versus culture-positive infection. *J Orthop*. 2018;15(2):391-395. doi: 10.1016/j.jor.2018.03.002.
- 21. Choi HR, Kwon YM, Freiberg AA, et al. Periprosthetic joint infection with negative culture results: clinical characteristics and treatment outcome. *J Arthroplasty*. 2013;28(6):899-903. doi: 10.1016/j.arth.2012.10.022.
- 22. Berbari EF, Marculescu C, Sia I, et al. Culture-negative prosthetic joint infection. *Clin Infect Dis.* 2007;45(9):1113-1119. doi: 10.1086/522184.
- 23. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. doi: 10.1136/bmj.n71.
- 24. Aromataris E, Riitano D. Constructing a search strategy and searching for evidence. A guide to the literature search for a systematic review. *Am J Nurs*. 2014;114(5):49-56. doi: 10.1097/01.NAJ.0000446779.99522.f6.
- 25. Diaz-Ledezma C, Higuera CA, Parvizi J. Success after treatment of periprosthetic joint infection: a Delphi-based international multidisciplinary consensus. *Clin Orthop Relat Res*. 2013;471(7):2374-2382. doi: 10.1007/s11999-013-2866-1.
- 26. Parvizi J, Zmistowski B, Berbari EF, et al. New definition for periprosthetic joint infection: from the workgroup of the musculoskeletal infection dociety. *Clin Orthop Relat Res.* 2011;469(11):2992-2994. doi: 10.1007/s11999-011-2102-9.
- 27. Parvizi J, Gehrke T, Chen AF. Proceedings of the International Consensus on Periprosthetic Joint Infection. *Bone Joint J*. 2013;95–B(11):1450-1452. doi: 10.1302/0301-620X.95B11.33135.
- 28. Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. *Clin Infect Dis.* 2013;56(1):e1-e25. doi: 10.1093/cid/cis803.
- 29. McNally M, Sousa R, Wouthuyzen-Bakker M, et al. Infographic: The EBJIS definition of periprosthetic joint infection. *Bone Joint J*. 2021;103-B(1):16-17. doi: 10.1302/0301-620X.103B1.BJJ-2020-2417.
- 30. Malekzadeh D, Osmon DR, Lahr BD, et al. Prior use of antimicrobial therapy is a risk factor for culture-negative prosthetic joint infection. *Clin Orthop Relat Res.* 2010;468(8):2039-2045. doi: 10.1007/s11999-010-1338-0.
- 31. Huang R, Hu CC, Adeli B, et al. Culture-negative periprosthetic joint infection does not preclude infection control. *Clin Orthop Relat Res.* 2012;470(10):2717-2723. doi: 10.1007/s11999-012-2434-0.
- 32. Kim YH, Kulkarni SS, Park JW, et al. Comparison of infection control rates and clinical outcomes in culture-positive and culture-negative infected total-knee arthroplasty. *J Orthop.* 2015;12(Suppl 1):S37-S43. doi: 10.1016/j.jor.2015.01.020.
- 33. McPherson EJ, Woodson C, Holtom P, et al. Periprosthetic total hip infection: outcomes using a staging system. *Clin Orthop Relat Res.* 2002;(403):8-15.
- 34. Kim YH, Park JW, Kim JS, Kim DJ. The outcome of infected total knee arthroplasty: culture-positive versus culture-negative. *Arch Orthop Trauma Surg.* 2015;135(10):1459-1467. doi: 10.1007/s00402-015-2286-7.
- 35. Cha MS, Cho SH, Kim DH, et al. Two-stage total knee arthroplasty for prosthetic joint infection. *Knee Surg Relat Res.* 2015;27(2):82-89. doi: 10.5792/ksrr.2015.27.2.82.
- 36. Tan TL, Kheir MM, Tan DD, Parvizi J. Polymicrobial periprosthetic joint Infections: outcome of treatment and identification of risk factors. *J Bone Joint Surg Am.* 2016;98(24):2082-2088. doi: 10.2106/JBJS.15.01450.
- 37. Li H, Ni M, Li X, et al. Two-stage revisions for culture-negative infected total knee arthroplasties: A five-year outcome in comparison with one-stage and two-stage revisions for culture-positive cases. *J Orthop Sci.* 2017;22(2):306-312. doi: 10.1016/j.jos.2016.11.008.
- 38. Kang JS, Shin EH, Roh TH, et al. Long-term clinical outcome of two-stage revision surgery for infected hip arthroplasty using cement spacer: Culture negative versus culture positive. *J Orthop Surg (Hong Kong)*. 2018;26(1):2309499017754095. doi: 10.1177/2309499017754095.
- 39. Wang J, Wang Q, Shen H, Zhang X. Comparable outcome of culture-negative and culture-positive periprosthetic hip joint infection for patients undergoing two-stage revision. *Int Orthop.* 2018;42(3):469-477. doi: 10.1007/s00264-018-3783-4.
- 40. Tan TL, Kheir MM, Shohat N, et al. Culture-Negative Periprosthetic Joint Infection: An Update on What to Expect. *JB JS Open Access*. 2018;3(3):e0060. doi: 10.2106/JBJS.OA.17.00060.
- 41. Ji B, Wahafu T, Li G, et al. Single-stage treatment of chronically infected total hip arthroplasty with cementless reconstruction: results in 126 patients with broad inclusion criteria. *Bone Joint J.* 2019;101-B(4):396-402. doi: 10.1302/0301-620X.101B4.BJJ-2018-1109.R1.
- 42. Bongers J, Jacobs AME, Smulders K, et al. Reinfection and re-revision rates of 113 two-stage revisions in infected TKA. *J Bone Jt Infect*. 2020;5(3):137-144. doi: 10.7150/jbji.43705.

- 43. Razii N, Clutton JM, Kakar R, Morgan-Jones R. Single-stage revision for the infected total knee arthroplasty: the Cardiff experience. *Bone Jt Open.* 2021;2(5):305-313. doi: 10.1302/2633-1462.25.BJO-2020-0185.R1.
- 44. van Sloten M, Gómez-Junyent J, Ferry T, et al. Should all patients with a culture-negative periprosthetic joint infection be treated with antibiotics? : a multicentre observational study. *Bone Joint J.* 2022;104-B(1):183-188. doi: 10.1302/0301-620X.104B1.BJJ-2021-0693.R2
- 45. Palan J, Nolan C, Sarantos K, et al. Culture-negative periprosthetic joint infections. *EFORT Open Rev.* 2019;4(10):585-594. doi: 10.1302/2058-5241.4.180067.
- 46. Lai YH, Xu H, Li XY, et al. Outcomes of culture-negative or -positive periprosthetic joint infections: A systematic review and meta-analysis. *Jt Dis Relat Surg.* 2024;35(1):231-241. doi: 10.52312/jdrs.2023.1437.
- 47. Tirumala V, Smith E, Box H, et al. Outcome of Debridement, Antibiotics, and Implant Retention With Modular Component Exchange in Acute Culture-Negative Periprosthetic Joint Infections. *J Arthroplasty*. 2021;36(3):1087-1093. doi: 10.1016/j.arth.2020.08.065.
- 48. Li F, Qiao Y, Zhang H, et al. Comparable clinical outcomes of culture-negative and culture-positive periprosthetic joint infections: a systematic review and meta-analysis. *J Orthop Surg Res*. 2023;18(1):210. doi: 10.1186/s13018-023-03692-x.
- 49. Thakrar RR, Horriat S, Kayani B, Haddad FS. Indications for a single-stage exchange arthroplasty for chronic prosthetic joint infection: a systematic review. *Bone Joint J.* 2019;101-B(1_Supple_A):19-24. doi: 10.1302/0301-620X.101B1.BJJ-2018-0374.R1.
- 50. Ji B, Wahafu T, Li G, et al. Single-stage treatment of chronically infected total hip arthroplasty with cementless reconstruction: results in 126 patients with broad inclusion criteria. *Bone Joint J.* 2019;101-B(4):396-402. doi: 10.1302/0301-620X.101B4.BJJ-2018-1109.R1.
- 51. Артюх В.А., Божкова С.А., Бояров А.А. м др. Эффективность одноэтапного ревизионного эндопротезирования при свищевой форме хронической перипротезной инфекции тазобедренного сустава. *Травматология и ортопедия России*. 2021:27(2):9-22. doi: 10.21823/2311-2905-2021-27-2-9-22.
- 52. Gaffney K, Ledingham J, Perry JD. Intra-articular triamcinolone hexacetonide in knee osteoarthritis: factors influencing the clinical response. *Ann Rheum Dis.* 1995;54(5):379-381. doi: 10.1136/ard.54.5.379.
- 53. Божкова С.А., Олейник Ю.В., Артюх В.А. и др. Санирующий этап лечения пациентов с хронической перипротезной инфекцией тазобедренного сустава: от чего зависит результат? *Травматология и ортопедия России*. 2024;30(2):5-15. doi:10.17816/2311-2905-17518
- 54. Drago L, Clerici P, Morelli I, et al. The World Association against Infection in Orthopaedics and Trauma (WAIOT) procedures for microbiological sampling and processing for periprosthetic joint infections (PJIs) and other implant-related infections. *J Clin Med.* 2019;8(7):933. doi: 10.3390/jcm8070933.
- 55. Walker LC, Clement ND, Wilson I, et al. The importance of multi-site intra-operative tissue sampling in the diagnosis of hip and knee periprosthetic joint infection results from single centrestudy. *J Bone Jt Infect*. 2020;5(3):151-159. doi: 10.7150/jbji.39499.
- 56. Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. *Clin Infect Dis.* 2013;56(1):e1-e25. doi: 10.1093/cid/cis803.
- 57. Оболенский В.Н., Семенистый А.А., Степаненко С.М., Бурсюк З.М. Использование метода соникации в диагностике периимплантной инфекции. *Клиническая и экспериментальная хирургия*. 2016;(2):104-109.
- 58. Drago L, Signori V, De Vecchi E, et al. Use of dithiothreitol to improve the diagnosis of prosthetic joint infections. *J Orthop Res.* 2013;31(11):1694-1699. doi: 10.1002/jor.22423.
- 59. Moojen DJ, van Hellemondt G, Vogely HC, et al. Incidence of low-grade infection in aseptic loosening of total hip arthroplasty. *Acta Orthop.* 2010;81(6):667-673. doi: 10.3109/17453674.2010.525201.
- 60. Tarabichi M, Alvand A, Shohat N, et al. Diagnosis of Streptococcus canis periprosthetic joint infection: the utility of next-generation sequencing. *Arthroplast Today*. 2017;4(1):20-23. doi: 10.1016/j.artd.2017.08.005.
- 61. Street TL, Sanderson ND, Atkins BL, et al. Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing. *J Clin Microbiol*. 2017;55(8):2334-2347. doi: 10.1128/JCM.00462-17.
- 62. Thoendel MJ, Jeraldo PR, Greenwood-Quaintance KE, et al. Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach. *Clin Infect Dis.* 2018;67(9):1333-1338. doi: 10.1093/cid/ciy303.
- 63. Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing. *J Bone Joint Surg Am*. 2018;100(2):147-154. doi: 10.2106/JBJS.17.00434.

Статья поступила 24.04.2025; одобрена после рецензирования 23.05.2025; принята к публикации 25.08.2025.

The article was submitted 24.04.2025; approved after reviewing 23.05.2025; accepted for publication 25.08.2025.

Информация об авторах:

Юлия Владимировна Олейник — врач — травматолог-ортопед, hamster715@gmail.com, https://orcid.org/0009-0001-1654-1536; Светлана Анатольевна Божкова — доктор медицинских наук, профессор, руководитель научного отделения, заведующая отделением, профессор кафедры, clinpharm-rniito@yandex.ru, https://orcid.org/0000-0002-2083-2424.

Information about the authors:

Yuliya V. Oleinik — orthopaedic surgeon, hamster715@gmail.com, https://orcid.org/0009-0001-1654-1536;

Svetlana A. Bozhkova — Doctor of Medical Sciences, Professor, Head of the Research Department, Head of the Clinical Department, clinpharm-rniito@yandex.ru, https://orcid.org/0000-0002-2083-2424.

Вклал авторов:

Олейник Ю.В. — сбор и обработка материала, подготовка текста.

Божкова С.А. — разработка концепции и дизайна публикации, редактирование.

Главный редактор А.В. Бурцев

Компьютерная верстка М.А. Беляева

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций ПИ № ФС77-68207 от 30 декабря 2016 года

Территория распространения: Российская Федерация, зарубежные страны

Подписано в печать 17.10.2025. Дата выхода 27.10.2025 Формат 60 × 84 1/8. Усл. печ. л. 16,74 Тираж 75 экз. Заказ № 17176. Свободная цена

Адрес издателя, редакции журнала «Гений ортопедии» 640014, Россия, г. Курган, ул. М. Ульяновой, 6 http://ilizarov-journal.com

Отпечатано в Типографии «Эталон». 198097, г. Санкт-Петербург, ул. Трефолева, 2 литера БН, помещение 3-H, офис 1

ilizarov-journal.com