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Dear colleagues,
We present to your attention a special issue of the journal Genij Ortopedii. The articles selected for this issue 

unite the authors from various countries and institutions with a very important topic. They are devoted to various 
aspects of the development of bioactive implants and to biological process control in orthopedics. This direction is 
now being actively developed by scientists and researchers from all over the world. Russia does not lag behind, and 
even surpasses them in some developments. Universities, institutes, medical and research centers are joining their 
efforts to build a domestic market for high-tech medical products.

The issue contains articles written by authors from Russia, Serbia, France, Switzerland, the USA, Hungary, and 
India. Several studies were prepared in collaboration with colleagues from the Ilizarov Center.

The articles present both theoretical and experimental developments, as well as original research on the practical 
application of innovative technologies and literature reviews on the topic. It is noteworthy that out of 13 articles 
in the issue, seven studies are devoted to the study of bioresorbable materials and implants that are in demand 
in contemporary medicine. Thus, Pierre Lascombes, Pierre Journeau and Dmitry Popkov present their own 
experience of using resorbable implants in pediatric orthopaedics and traumatology. Seven children with long bone 
fractures were treated using resorbable screws (ActivaScrew™). In the immediate postoperative period, no cases 
of excessive swelling, hyperemia or other pathological reaction from the soft tissues were detected. In all cases, pain 
disappeared by the seventh postoperative day. Restoration of weight-bearing ability, the possibility of full weight 
bearing on the operated limb, and normal physical activity was noted within a standard term for such injuries. 
The colleagues conclude that the main indications for the use of resorbable implants in children remain fractures and 
osteotomies that need to be fixed with screws, while the development of the production of plates and elastic screws 
from resorbable materials will expand the indications for their use.

Authors from Hungary (Gergő Jozsa, Tamas Kassai, Marcell Varga) share their results of using resorbable elastic 
intramedullary nails for fractures of the forearm bones in 4 patients. Bone union without secondary displacement 
along with anatomical and functional recovery was observed 5-7 months after surgery in each case. It is claimed that 
the resorbable osteosynthesis material provides reliable stability and similar results as when using metal nails. The obvious 
advantage of resorbable implants is that there is no need to remove them. Irritation of soft tissues by the protruding 
end of the nail is also excluded, since according to the technology it is cut off at the level of the bone. Thus, surgical 
treatment of forearm fractures using resorbable implants is a reasonable alternative to metal intramedullary nails.

The results of tibial lengthening using an intramedullary degradable implant are presented by authors from Kurgan 
(Popkov AV, Gorbach ES, Mamedov UF, Stepanov RV). For the first time in clinical practice, a case of surgical 
lengthening of the tibia with the Ilizarov apparatus and an intramedullary degradable implant made of polycaprolactone 
(PCL) saturated with hydroxyapatite was used in a 10-year-old patient to stimulate reparative regeneration of the 
tibia. The process of lengthening the tibia was accompanied by a pronounced formation of a bone “coupling” around 
the implant, which was directly connected to the endosteum of the tibia. It is concluded that the implant used is 
not inferior in characteristics to titanium wires coated with hydroxyapatite in terms of osteoinduction and does not 
require a repeated surgical intervention for removal.

The use of bioactive biodegradable implants made of polycaprolactone for the treatment of osteochondral defects 
was the topic of the study by Popkov AV, Gorbach ES, Gorbach EN , Kononovich NA , Kireeva EA , Popkov DA. 
Specialists from the Ilizarov Center conducted a comparative study on 76 Wistar rats, divided into 2 groups, in which an 
osteochondral defect of the medial femoral condyle was modeled. In the experimental group, the defect was treated with 
a biodegradable bioactive membrane made of polycaprolactone with hydroxyapatite. In the control group, the simulated 
defect was not managed. Results were assessed over a one-year period using clinical, anatomical, histological, 
biomechanical and statistical methods. The range of motion in the knee joint in the animals of the experimental group 
at all stages of the experiment was significantly better than in the control group. The implant ensured the integrity and 
congruence of the articular surface. On the 180th day, at the site of the defect filled with the implant, a newly formed area 
of the articular surface of an organotypic structure was observed with the subchondral bone being replenished with bone 
tissue, and the articular surface with cartilaginous tissue. The authors conclude that a bioresorbable polycaprolactone 
implant impregnated with hydroxyapatite particles is effective for healing osteochondral defects.

Experimental work on the production of bioresorbable implants and the study of their properties is presented 
in three studies.

Scientists from Tomsk Polytechnic University and their co-authors from Kurgan propose a method for applying 
hydroxyapatite to the surface of three-dimensional scaffolds made of ε-polycaprolactone by processing in a “good/
bad” solvent mixture. The proposed processing method ensures uniform coverage of the external and internal 
surfaces of polycaprolactone scaffolds manufactured by 3D printing with a layer of hydroxyapatite particles, while 
maintaining their porous structure. The presence of a bioactive layer on the surface of bioresorbable polymer 
scaffolds can expand their use in clinical practice for surgical treatment of bone defects.

Stogov MV and co-authors (Kurgan, Tomsk) presented the results of studying the rate of degradation of a material 
with a polylactide (PLLA)/hydroxyapatite (HA) composition depending on the crystallinity of the polymer 
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structure. The study showed that the crystallinity of PLLA influenced the kinetics of HA release from the samples 
of the studied materials. As crystallinity increases, the rate of HA hydrolysis increases. This observation can be 
explained by the fact that the polymer in the crystalline phase underwent hydrolysis faster than in the amorphous 
state. The authors show that changing the HA content and the PLLA crystallinity enables to control the biological 
characteristics of PLLA/HA composite materials.

An in vitro study of the bactericidal activity of implants made of biodegradable material (polycaprolactone) 
impregnated with hydroxyapatite and an antibiotic is the topic of the study by Popkov DA et al. (Tomsk, Moscow). 
The authors demonstrated that porous implants made from PCL and impregnated with an antibiotic have significant 
antimicrobial activity against the most common gram-negative and gram-positive bacteria that cause purulent 
complications in surgical practice. Nanostructured hydroxyapatite on the surface of the implant does not decrease 
bactericidal activity. The proposed implants will help stimulate bone regeneration and simultaneously provide 
an antimicrobial effect.

The experience of using customized implants is of great interest. Thus, Korytkin AA et al. (Tsivyan Novosibirsk 
Research Institute of Traumatology and Orthopedics, Novosibirsk) in in vitro experiments and clinical studies 
investigated the biological fixation of customized implants in managing post-traumatic deformities of the acetabulum. 
The results of the experiment to study the penetration of living fibroblasts into the porous structure of implants with 
different pore sizes showed that metal structures with a pore size of 400-499 microns can be distinguished from 
all others, since at a given pore size the penetration of living fibroblasts into the structure of the implant surface 
is the greatest. Management of bone tissue defects in the acetabulum area using customized implants with a mesh 
porous structure surface (400-499 microns) showed signs of biological fixation in the bone tissue surrounding 
the customized implant in the study group after 12 months.

Issues of new treatment methods are discussed in four publications. Leonchuk SS and his co-author from India 
present a literature review and clinical case of a new surgical approach to the treatment of aneurysmal bone cyst 
(ABC) of the medial cuneiform bone. A 47-year-old woman with a 10-month history of pain and swelling in her 
right foot underwent en-bloc resection (complete removal of the medial cuneiform bone remnant), the defect was 
filled with a fibula graft from the right leg, and an allograft ("Bio-Ost"®) was placed along with the autograft. 
The postoperative period was uneventful with complete healing of the bone defect without relapse after 12 months 
of follow-up. The AOFAS score increased significantly from 34 points preoperatively to 92 points at a 1-year 
follow-up. Based on their work, the authors conclude that the use of a combination of Ilizarov external fixation and 
bone grafting provided favorable conditions for foot bone defect healing in this ABC case without complications, 
maintaining the patient’s mobility and early axial load.

The use of combined osteosynthesis in the treatment of diaphyseal fractures of the tibia is discussed in the article 
by Popkov AV et al. (Kurgan), which assessed the effectiveness of a combination of transosseous osteosynthesis 
with intramedullary reinforcement with elastic titanium nails coated with hydroxyapatite (HA-coated nails) 
in the treatment of fractures of long bones. It has been shown that the advantages of the combined method contribute 
to reducing the time of external fixation, reducing the number of wires and half-pins in the external fixation apparatus, 
stimulating the formation of callus and preventing secondary displacement of bone fragments.

A mini-review of current concepts of mechanical methods of distraction regenerate stimulation is presented 
by Cherkashin A (Texas Scottish Rite Hospital for Children). It is proposed to define axial dynamization as the ability 
to provide axial load on the bone regenerate with minimal displacement or bending forces. Axial dynamization 
can be carried out through direct stimulation of the regenerate by axial cyclic loads and the exclusion of bending 
and displacement forces. The author concludes that axial dynamization, together with other non-invasive methods 
of mechanical stimulation of the distraction regenerate, should become a mandatory element in limb lengthening.

Popkov AV and Popkov DA aimed to identify new directions in the study, production and clinical use of bioactive 
implants for indications similar to autografts. The authors conclude that the main current trends in orthopedic 
bioengineering are 3D-printed implants that provide deterministic cell migration, proliferation and differentiation 
and maintain sufficient mechanical strength of their structure for the required time. The combination of biodegradable 
implants with impregnation with bone morphogenetic protein stimulates the regeneration of the reconstructed bone. 
Programmed and controlled resorption of implants along with filling the tissue with new bone is the main vector 
in the development of bone tissue engineering.

We are confident that this thematic issue will be interesting and useful to specialists and will acquaint the expert 
community not only with the current state of the field, but also outline promising projects for future cooperation.

Have a nice and useful reading!
D.A. Popkov
Professor of the Russian Academy of Sciences, 
corresponding member of French Academy of Medical Sciences
S.I. Tverdokhlebov
Candidate of Physical and Mathematical Sciences
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Solvent/non-solvent treatment as a method for surface coating of poly(ε-caprolactone) 
3D-printed scaffolds with hydroxyapatite

V.S. Bocharov1, G.E. Dubinenko1, D.A. Popkov2, A.V. Popkov2, S.I. Tverdokhlebov1
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Corresponding author: Sergey I. Tverdokhlebov, tverd@tpu.ru

Abstract
Introduction Over the last decades numerous new materials and techniques for bone tissue engineering have been developed. The use 
of bioresorbable polymeric scaffolds is one of the most promising techniques for surgical management of bone defects. However, the lack 
of bioactive properties of biodegradable polymers restricts the area of their application for bone tissue engineering. The aim of study was 
to apply solvent/non-solvent treatment to coat the surface of 3D-printed bioresorbable poly(ε-caprolactone) scaffolds with bioactive 
hydroxyapatite particles and report on the physicochemical properties of the resulting materials. Material and Methods In the present 
study, biomimetic poly(ε-caprolactone) scaffolds were 3D-printed via fused deposition modeling technology and their surface was 
treated with the solvent/non-solvent method for coating with bioactive particles of hydroxyapatite. Results It has been found that 
treatment in the mixture of toluene and ethanol is suitable for the coating of poly(ε-caprolactone) scaffolds with hydroxyapatite. 
The scaffolds maintain porous structure after treatment while hydroxyapatite particles form homogeneous coating. The amount 
of hydroxyapatite on the treated scaffolds was 5.7 ± 0.8 wt. %. Discussion The proposed method ensures a homogeneous coating 
of outer and inner surfaces of the poly(ε-caprolactone) scaffolds with hydroxyapatite without a significant impact on the structure 
of a scaffold. Fourier-transform infrared spectroscopy confirmed that the solvent/non-solvent treatment has no effect on the chemical 
structure of PCL scaffolds. Conclusion Coating of biomimetic 3D-printed PCL scaffolds with bioactive hydroxyapatite by the solvent/
non-solvent treatment has been successfully carried out. Upon coating, scaffolds retained their shape and interconnected porous 
structure and adsorbed hydroxyapatite particles that were uniformly distributed on the surface of the scaffold.
Keywords: bone tissue engineering, scaffolds, polycaprolactone, hydroxyapatite

Acknowledgement: this research was supported by the Ministry of Science and Higher Education of the Russian Federation, project 
Nauka FSWW-2023-0007.
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INTRODUCTION
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The development of new functional materials 
for the fabrication of biodegradable tissue engineering 
scaffolds is an important task in medical materials 
science [1-3]. Two-dimensional and three-dimensional 
scaffolds made from natural and synthetic polymers 
have found applications in the regeneration of biological 
tissues and the restoration of tissue defects. One of the 
widely studied biodegradable materials used for tissue 
defect replacement is poly(ε-caprolactone) (PCL) [4]. 
However, PCL, like most biodegradable polyesters, lacks 
functional properties, making its use without bioactive 
additives not effective [5-8]. Hydroxyapatite (HAP), 
a mineral that supports the proliferation and differentiation 
of mesenchymal stem cells in the osteogenic direction 
and stimulates the mineralization of bone regenerate, 
is frequently used for bone tissue regeneration 
in medicine [9-12]. The main methods for combining 
biodegradable polymers and bioactive hydroxyapatite 
are the fabrication of polymer composites and the 

deposition of coatings on the surface of polymer 
scaffolds [13-16]. Composites have demonstrated their 
effectiveness for bone defect management in a number 
of studies [17-19]. However, an important drawback 
of composites is the lack of bioavailable hydroxyapatite 
on the surface of the fabricated composite scaffold. 
Hydroxyapatite in the subsurface layer of the composite 
scaffold is covered by a thin layer of polymer, which 
hinders the contact of the hydroxyapatite particles with 
the surrounding tissues during the first weeks after 
implantation.

Currently, there are two main methods for forming 
a layer of bioavailable hydroxyapatite on the surface 
of biodegradable polymer scaffolds: etching composite 
polymer/hydroxyapatite scaffolds in alkaline solutions 
to exposure bioactive particles on the surface, and 
in situ precipitation of hydroxyapatite on the surface 
of polymer scaffold [11, 16, 20]. The disadvantage 
of the first method is the initiation of the hydrolysis 
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process of polymer chains in the surface layers 
of the scaffold, which often leads to the loss 
of the mechanical properties of the scaffold and 
changes in its degradation profile. On the other 
hand, in situ mineralization results in the formation 
of a relatively thick continuous layer of hydroxyapatite 
on the surface of the scaffold, which isolates 
the polymer from the surrounding environment and 
hinders the degradation process of the polymer matrix.

A promising approach for modifying the surface 
of PCL involves treatment of the polymer with a mixture 
of organic solvents to partially swell its surface [21]. 
The swelled surface layer of the polymer can adsorb 
biologically active molecules and particles from 
the contacting medium. However, this technique has not 
yet been applied to the relevant task of fabrication bioactive 

coatings on the surface of 3D-printed porous scaffolds. 
In this study, we report on the application of a solvent/
non-solvent treatment to coat the surface of 3D-printed 
PCL scaffolds with bioactive hydroxyapatite particles 
and on the physicochemical properties of the resulting 
materials.

The main objective of this study was to investigate 
the application of solvent/non-solvent treatment as 
a method for surface coating of PCL 3D-printed 
scaffolds with HAP. The study proposes a method 
for applying dispersed HAP particles onto the surface 
of PCL scaffolds using a mixture of a solvent toluene, 
and a non-solvent ethanol. Based on the Design 
of Experiments (DOE), optimal coating parameters 
and the optimal ratio of solvent” and non-solvent were 
determined.

MATERIALS AND METHODS

Poly(ε-caprolactone) (PCL; Mn 80000 g·mol-1) 
was purchased from Sigma-Aldrich (Sigma-Aldrich, 
Gillingham, United Kingdom), hydroxyapatite (HAP; 
nanoXIM•HAP203, average particle size 10.0 ± 5.0 μm) 
was purchased from Fluidinova (Fluidinova S.A., Maia, 
Portugal), toluene (anhydrous, 99.8%) was purchased 
from EKOS-1 (EKOS-1, Moscow, Russia), ethanol 
(≥ 99.5 %, water ≤ 0.20 %) was purchased from Merck 
(Merck KGaA, Darmstadt, Germany).

3D printing of polycaprolactone scaffolds
PCL pellets were melted and extruded with the use 

of Filabot EX2 (Filabot HQ, Barre, Vermont, USA) single 
screw extruder to fabricate filament of 2.8 ± 0.15 mm 
in diameter. The temperature of extrusion was 80 ± 3 °C 
and the rate of extrusion was 2 m·min-1. Extruded 
filament was used for the 3D printing of scaffolds 
with a commercial FDM 3D printer Ultimaker S5 
(Ultimaker B.V., Utrecht, Netherlands). The temperature 
of the glass substrate was 35 °C and 200 °C for the printer 
nozzle. The printing was performed at a printing rate 
of 6 mm·s-1. Scaffolds had a shape of porous cylinders 
with the diameter of 10 mm and the height of 3 mm. 
Internal porous structure of scaffolds was printed with 
the gyroid infill with the infill struts distance of 1 mm.

Hydroxyapatite coating
Solvent/non-solvent treatment of scaffolds was 

performed in the mixture of toluene and ethanol 
at 3:7 v/v ratio. HAP was mixed with the toluene/ethanol 
mixture at 10% w/w and stirred with the use of magnetic 
stirrer for 30 minutes to obtain suspension. Scaffolds 

were dipped into the suspension for 2 minutes at room 
temperature under continuous stirring. Coated scaffolds 
were washed with ethanol and dried for 24 hours under 
vacuum (1 mbar) at room temperature.

Scaffolds characterization
Investigations of the surface of the scaffolds and 

dispersion of HAP coating on the scaffolds were performed 
by the scanning electron microscopy (SEM) on a JEOL 
JCM-6000 (JEOL Ltd., Tokyo, Japan). All SEM imaging 
processes were performed in low vacuum at 15 kV 
accelerating voltage. The scaffolds were sputter-coated 
with gold on a JEOL Smart Coater (JEOL Ltd., Tokyo, 
Japan) prior to SEM examinations.

The chemical composition of the scaffolds was 
investigated by attenuated total reflectance (ATR) 
Fourier-transform infrared spectroscopy (FTIR) on 
Tensor 27 (Bruker Optik GmbH, Ettlingen, Germany) 
with a Miracle™ single reflection ATR attachment 
(PIKE Technologies, Madison, Wisconsin, USA). 
The measurements were performed with a ZnSe crystal at 
an incident angle of 45°. All FTIR spectra were recorded 
in the spectral range of 530-4000 cm-1 with a resolution 
of 4 cm−1.

Thermal stability of the scaffolds and solid inorganic 
residue from HAP were studied by the thermogravimetric 
analysis (TG) in an inert atmosphere on a simultaneous 
thermal analyzer SDTQ 600 (Artisan TG, Champaign, 
Illinois, USA) in the range of 40-800 °C with 10 °C·min-1 
heating rate. For the TG analysis 20 mg samples were 
cut from the middle porous part of the coated scaffolds.

RESULTS

The 3D-printed scaffolds had the appearance 
of porous cylinders with a smooth glossy surface. After 
surface treatment, the translucent glossy scaffolds 

changed their appearance to the matte white color of HAP. 
Surface analysis of the scaffolds by scanning electron 
microscopy demonstrated a change in the morphology 
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of the struts. After treatment of the scaffolds 
in a mixture of solvents, the struts became thicker 
and had a smoother and more rounded morphology 
(Fig. 1, top row). Despite the visual decrease in the size 
of the pores, the scaffolds retained its internal 
interconnected pore structure and full permeability. The 
surface of the scaffold treated in the solvent mixture 
was uniformly coated with segregate particles of HAP 
(white particles in Figure 1, middle row). It should be 
noted that there were no agglomerates or HAP particles 
(Fig. 1, middle and bottom rows). The coating was 
observed both on the top layers of the scaffold and in its 
depth within the pores.

Fig. 1 Microscopic appearance of the PCL scaffold surface 
at different magnifications: 3D-printed gyroid PCL scaffold 
on the left; 3D-printed PCL gyroid scaffold with HAP coating 
on the right

FTIR spectra of the scaffolds are shown in Figure 2. 
The PCL scaffold spectrum is characterized 
by the following main bands: 2945 cm-1 (νasCH2), 
2868 cm-1 (νsCH2), 1724 cm-1 (νC = O), 1294 cm-1 
(νsC-O, νsC-C), 1240 cm-1 (νasC-O-C) and 1168 cm-1 
(νsC-O-C) [22]. In the coated scaffold spectrum, there 
are also HAP-related bands at 1042 cm-1 (νPO), 958 cm-1 
(δPO), 730 cm-1 (δPO), 706 cm-1 (δPO) present. There 

are no significant differences in the shape, width and 
wavenumber position of PCL bands both in spectrum 
of the 3D-printed and coated scaffolds. It is important 
to note that the presence of hydrophilic HAP on the surface 
of the scaffold increases the oxidative reaction of PCL 
and introduces hydroxyl groups into the polymer 
backbone [23]. However, there is no evidence for active 
oxidative degradation of the PCL scaffolds, which is 
usually indicated by a broadening of the carbonyl peak 
of the ester groups of polyesters at 1724 cm-1.

Fig. 2 Chemical characterization of the scaffolds by FTIR

Results of the thermogravimetric analysis (TG) 
are shown in Figure 3. HAP coating decreased the 
temperature of the beginning of PCL decomposition 
from 265 ± 11 °C for PCL scaffold to 190 ± 19 °C 
for PCL-HAP coated scaffold. After the decomposition 
and loss of the organic components of the scaffolds, 
the amount of nonorganic residual from HAP was 
5.7 ± 0.8 wt. %. Considering that the samples for TG 
analysis were cut from the middle porous part 
of the scaffolds, the amount of HAP confirms successful 
fabrication of the coating on the inner surfaces.

Fig. 3 Thermogravimetric analysis of the scaffolds with 
indicated solid inorganic residue from HAP
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Over the last decades, biomedical scaffolds made 
from bioresorbable polymers for the application 
in orthopaedics have been gaining interest due 
to the disadvantages of traditional implants made 
of metal alloys: the need for their surgical removal 
from the body, exemption to use in children and 
adolescents, difficulty to examine bone regeneration 
in radiography and magnetic resonance imaging due 
to overlapping, possible mechanical stress at the bone 
and metal interface. Bioresorbable polymers change 
their macromolecular structure and physicochemical 
properties upon contact with the biological environment 
but do not produce a harmful effect during their 
resorption [24]. Such polymers contain hydrolytically 
unstable functional groups which degrade as a result 
of hydrolysis, and their by-products are removed 
through normal cellular metabolism [24-26]. Moreover, 
biodegradable polymers are known for they X-ray 
transparency, mechanical properties in the range 
of biological tissues properties. However, the  bsence 
of metal implant shortcoming does not make the use 
of bioresorbable polymer scaffolds justified. To increase 
efficiency of treatment with biodegradable polymeric 
scaffolds, new requirements are imposed on them: 
osteoinductivity, osteoconductivity, biocompatibility 
and biodegradation.

Various substances have the ability to induce 
early bone formation. Thus, calcium phosphates have 
excellent osteoinductivity and osteoconductivity 
for maintaining the proliferation and differentiation 
of osteoblasts, and also prevent encapsulation 
of the implant by fibrous tissues [27, 28]. The application 
of such materials to the surface of bioresorbable 
scaffolds can significantly improve their biological 
properties as the scaffolds’ surface interacts with 
body fluids and tissues and, therefore, plays a key role 
in osseointegration. Several methods to expose HAP 

on the surface of bioresorbable scaffolds are available: 
biomimetic method which imitates the natural process 
of bone growth [29, 30], sol-gel method which consists 
of treatment the surface with colloidal suspension and 
condensation of calcium phosphate precursors [31], 
surface etching of the composite scaffold made 
of bioresorbable polymer and HAP [32]. Despite the 
fact that the described methods are suitable for scaffold 
coating with HAP, such techniques could damage porous 
scaffold structure due to aggressive long-term treatment. 
The present study proposes a technically simple and 
inexpensive method for depositing hydroxyapatite 
particles onto polycaprolactone scaffolds.

During the pilot study, a series of experiments 
were conducted according to design of experiment 
(DOE) approach. The influence of the solvents ratio, 
temperature, immersion time, and HAP concentration 
in the suspension on the quality of the formed coating 
was evaluated. The optimal parameters were selected 
to obtain a uniform coating of the scaffold surface with 
HAP particles while maintaining the original scaffold 
structure. When the immersion time, temperature, 
and content of the “good” solvent in the mixture were 
increased, the scaffold lost its original structure due 
to partial dissolution. On the contrary, when these factors 
were decreased, a coating was not formed on the scaffold 
surface. An important consideration for a coated scaffold 
is that it should maintain initial structure of the polymer 
matrix and improve its’ functional properties. HAP coated 
scaffolds in this study show high level of conformity 
to the pristine PCL scaffold. Coating with HAP only 
slightly decreased sizes of the pores of gyroid infill and 
ensured corresponding physico-chemical properties 
of the scaffolds. Thereby, the optimized parameters 
of coating ensured homogeneous absorbance of HAP 
particles on the PCL scaffold surface without significant 
damage to the scaffold structure.

CONCLUSION

DISCUSSION

The development of new functional materials 
for the fabrication of bioresorbable tissue engineering 
scaffolds is an urgent task of biomedical materials 
science. Scaffolds made of natural and synthetic 
polymers find their application in the research on 
regeneration of biological tissues and restoration of 
tissue defects. However, they should possess specific 
bioactive properties to have an advantage over 
traditional implants. In the present study, the method 
of coating biomimetic 3D-printed PCL scaffolds with 
bioactive hydroxyapatite by the solvent/non-solvent 
treatment has been successfully used. It could show that 
the proposed method ensures a homogeneous coating of 
outer and inner surfaces of the PCL scaffolds with HAP 
without a significant impact on the scaffold structure 

a according to the findings of scanning electron 
microscopy. Fourier-transform infrared spectroscopy 
confirmed that the solvent/non-solvent treatment did 
not affect the chemical structure of PCL scaffolds and 
the thermogravimetric analysis revealed 5.7 ± 0.8 wt. % 
of HAP related to the whole mass of coated sample. 
The uniformly distributed HAP that is potentially 
beneficial for osteogenic differentiation of osteoblasts 
adhered to the surface of coated scaffolds. However, 
further studies are required to investigate calcium 
and phosphorous ions release from the coating under 
the hydrolytic degradation conditions together with 
an in vitro investigation of osteogenic differentiation 
of osteoblasts on the coated scaffolds to confirm their 
bioactive properties.
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Abstract

Introduction Assessment of biological characteristics of polylactide/hydroxyapatite (PLLA/HA) biodegradable materials is requiered 
to specify indications for the use of PLLA/HA composite implants in clinical practice. The present study was aimed to measure 
the kinetics of calcium and phosphate release from PLLA and its dependence on polymer structure crystallinity. Material and methods 
Four types of biodegradable materials were studied in vitro. Samples of type 1 and type 3 made of crystalline PLLA after annealing 
contained 25 % and 50 % of HA mass fraction, respectively. Samples of type 2 and type 4 made of amorphous PLLA (without 
annealing) contained 25 % and 50 % of HA mass fraction, respectively. In every group, 6 samples were tested. The samples were 
incubated in an aqueous medium at 37 °C for 52 weeks. The rate of PLLA degradation was assessed by the accumulation of lactate 
monomer in the hydrolysate. The concentrations of calcium ions and phosphate ions were determined for assessment the HA hydrolysis 
rate. The degree of crystallinity of the polymer matrix was evaluated by scanning calorimetry. Results The hydrolysis of PLLA and 
HA in the samples was not simultaneous. The PLLA was hydrolyzed first followed by HA hydrolysis. By the moment of complete 
hydrolysis of PLLA, there was only 15 % of hydrolyzed HA. The release of calcium ions occurred from the sixth week of incubation 
for all tested samples, that of phosphate ions from the third week. The total amount of the released calcium ions and phosphate ions 
decreased in the line: material 3 > material 4 > material 1 > material 2. Calcium ions in the hydrolysates were detected up to 42 weeks 
of incubation, phosphate ions up to the 52nd week. Conclusion Higher crystallinity of PLLA achieved by annealing results in increased 
rate of hydrolysis of HA from PLLA matrix. Biological activity of PLLA/HA implants can be determined by degree of polymer 
crystallinity and saturation with HA.
Keywords: biodegradable implant, polylactide (PLLA), hydroxyapatite (НА), crystallinity, hydrolytic degradation

For citation: Stogov MV, Kireeva EA, Dubinenko GE, Tverdokhlebov SI. The influence of polylactide/hydroxyapatite composite implant 
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INTRODUCTION
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Recently developed biomaterials are designed 
to stimulate regeneration of host tissues providing 
the surgeon with new options for restoring shape 
and function. Medical devices made of polymeric 
biodegradable materials based on polylactide (PLLA) 
with inclusions of hydroxyapatite (HA) are promising 
for clinical practice [1-4]. The hydroxyapatite 
in the polymer content provides osteoinductive 
and osteoconductive characteristics of the products 
based on PLLA [5]. It was demonstrated that 
osteoinductive properties of the material amplify along 
by increasing the saturation of HA in PLLA due to 
greater elimination of calcium and phosphate from its 
composition [6]. However, an increase in the content 
of HA in the polymer decreases its biomechanical 

properties. Therefore, to date, along with an increase 
in the osteogenic properties of PLLA-based materials, 
their porosity and mechanical resistance are important 
and required characteristics [7, 8]. Numerous studies 
have demonstrated the role of crystallinity of PLLA 
for mechanical stability and resistance of PLLA to 
hydrolysis [9-11]. It can provide even greater potential for 
the use of structured PLLA for bioengineering purposes, 
such as artificial bones and tissue scaffolds [12]. 
Thereby, the assessment of the relationship between the 
rate of hydrolysis of PLLA/HA composite materials and 
their crystallinity presents a problem of relevance.

Our study evaluates the kinetics of calcium and 
phosphate release from PLLA and its dependence 
on crystallinity of the polymer structure.

MATERIALS AND METHODS

Product samples were extruded from PLLA-based 
composite filled with 25 % HA and 50 % mass fractions 
(wt. %). To increase the crystallinity of PLLA, one part 
of samples was annealed at the temperature of 110 °C. 
The samples had cylindrical shape and were 1 cm long 
and 2 mm in diameter.

Four types of materials were studied. Samples 
of materials 1 and 3 made of crystallized PLLAc 
(by annealing) contained 25 % and 50 % of mass 
fractions of HA, respectively. Samples of materials 2 
and 4 based on amorphous PLLAa (without annealing) 
contained 25 % and 50 % of mass fractions of HA, 
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respectively. In each material group, 6 samples were 
examined.

The differential scanning calorimetry (NETZSCH 
DSC 204 F1 Phoenix apparatus, Germany) was applied 
to measure the crystallinity of PLLA polymer matrix 
in the groups of samples (Table 1).

Table 1
Crystallinity of the tested samples

Material Degree of crystallinity, %
Material 1 – PLLAc/HA25 % 46.1 ± 3.0
Material 2 – PLLAa/HA25 % 34.3 ± 2.7
Material 3 – PLLAc/HA50 % 17.6 ± 3.2
Material 4 – PLLAa/HA50 % 12.4 ± 1.8

Each sample was placed in a separate measuring 
cell filled with distilled water, the volume of which was 
determined at the rate of 4 ml per 1 cm2 of the sample 
surface. Next, the samples were incubated in a thermostat 

at the temperature of 37 °C. After a week of incubation, 
the medium was changed. A new solution was poured in. 
The hydrolysate was subjected to chemical analysis 
for lactate, calcium ions and inorganic phosphate. The rate 
of PLLA degradation was assessed by the accumulation 
of its monomer in the hydrolysate. The concentration 
of calcium ions and phosphate ions reflected the progress 
of HA hydrolysis. The duration of incubation 
of the samples of all the materials was 52 weeks. 
The reagents of BioSystems (Spain) on Hitachi 902 
biochemical analyzer (Hitachi Ltd., Japan) were used 
for analysis of lactate, calcium, and phosphate.

The arithmetic mean (M) and standard deviation 
(SD) were determined for quantitative parameters. 
The reliability of intergroup differences was assessed 
using the Kruskal-Wallis H-test. Differences were 
considered statistically significant at p ˂ 0.05. Statistical 
analysis was performed using AtteStat 13.1 for Excel.

RESULTS
The hydrolysis of PLLA in material 1 (crystalline 

phase, HA content of 25 wt. %) increased during the first 
and the second week of incubation. In contrast to that, 
the samples of group 3 (PLLAc/HA 50 % sample) had 
an increased hydrolysis only the first week (Table 2). 

The hydrolysis of amorphous PLLA samples (HA content 
of 25 wt. %, material 2 and PLLAa/HA 50 %, material 4) 
was significant throughout the first three weeks.

The dynamics of the release of calcium ions and 
phosphate ions is shown in Figure 1.

Table 2
PLLA hydrolysis progression; % of total lactate formed as a result of hydrolysis

Week(s) of incubation Material 1  
PLLAc/HA 25 %

Material 2  
PLLAa/HA 25 %

Material 3  
PLLAc/HA 50 %

Material 4  
PLLAa/HA 50 %

1 47.9 ± 5,5 47.4 ± 6.0 90.2 ± 8.2 67.0 ± 4.7
2 20.9 ± 3.2 15.0 ± 3.3 3.3 ± 1.1 10.8 ± 3.6
3 7.5 ± 1.1 19.7 ± 4.9 3.0 ± 0.7 16.2 ± 2.0
4 9.5 ± 2.0 10.9 ± 3.0 3.5 ± 1.8 3.4 ± 0.9
5 7.2 ± 1.4 7.9 ± 2.0 0 1.3 ± 0.5
6 4.2 ± 0.9 4.7 ± 1.8 0 1.2 ± 0.3
7 2.7 ± 0.8 3.9 ± 0.6 0 0
8 0 2.2 ± 0.7 0 0

10 0 5.9 ± 1.0 0 0
11 0 0 0 0

Total duration of hydrolysis (weeks) 7 10 4 6

Fig. 1 Diagram of accumulation: a – calcium ions released from the samples during incubation; b – released inorganic phosphate ions from the 
samples during incubation. OX axis – weeks of incubation; OY axis – the number of ions (µmol/cm2)
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We stated that significant release of calcium ions began 
from the sixth week of incubation for all the samples while 
that of phosphate ions occurred from the third week. There 
was at the same time, the total number of released calcium 
ions and phosphate ions decreased in the line: material 3 > 
material 4 > material 1 > material 2. 

Calcium ions in the hydrolysates of the samples of all 
materials were detected up to 42 weeks of incubation, 
phosphate ions – up to the 52nd week. The total amount of the 
released calcium and phosphate is presented in the Table 3. 

We noticed higher release of ions from the samples with high 
content of HA (samples 3 and 4) (p < 0.05). The accessibility 
of these ions from the crystalline polymers was higher 
relative to the samples of amorphous PLLA phase.

The comparison of kinetics in hydrolysis of PLLA and 
HA are presented in Table 4. During the period of PLLA 
of degradation (the duration of hydrolysis is shown 
in Table 1), no more than 15 % out of the total released 
calcium and from 40.9 % to 61.1 % of phosphate were 
released

Table 3
Total amount of released calcium and phosphate from the studied materials

Ion Material 1 Material 2 Material 3 Material 4
Са, µmol/cm2 2.83 ± 0.342,3,4 1.03 ± 0.211,3,4 4.38 ± 0.821,2 3.79 ± 0.461,2

Р, µmol/cm2 6.18 ± 0.682,3,4 3.92 ± 0.231,3,4 14.31 ± 0.491,2,4 11.55 ± 1.061,2,3

Notes: superscript – the material relative to which there were significant differences at p < 0.05.

Table 4
Percentage of released calcium and phosphate for the period of complete decay of PLLA

Ion Material 1 Material 2 Material 3 Material 4
Са, % 11.03 ± 1.523,4 15.12 ± 1.813,4 5.46 ± 0.621,2 5.75 ± 0.691,2

Р, % 40.9 ± 2.82 61.1 ± 4.11,3,4 41.6 ± 3.02 48.2 ± 2.52

Notes: superscript – the material relative to which there were significant differences at p < 0.05.

DISCUSSION

Our studies revealed that the degree of PLLA 
crystallinity had an impact on the kinetics of HA release 
from the samples. In particular, the progression of HA 
hydrolysis correlates with the crystallinity of PLLA. 
This finding can be explained by the fact that the 
polymer in the crystalline phase underwent hydrolysis 
faster than in the amorphous one.

A typical feature of the hydrolysis kinetics found 
in the study is that the hydrolysis of PLLA and HA occurred 
stepwise. The polymer hydrolyzed earlier than HA. This 
is confirmed by the fact is that at the time of complete 
PLLA hydrolysis, the hydrolyzed HA was no more than 
15 %. In general, such a sequence of the breakdown 
process of PLLA and filler (HA) degradation represents 
an important feature of the material for practical 
application. This fact implies a delayed release of calcium 
ions into host tissue environment after implantation.

We found that the saturation of crystalline PLLA with 
hydroxyapatite might be a promising option for production 
of materials designed for orthopedics. Although the 
issue of optimal amount of HA in PLLA remains open. 
On the one hand, the biological efficiency of materials 
containing both a small amount of HA (up to 10 wt. %) 
and its significant portion (up to 80 wt. % HA) was 
demonstrated [13, 14]. On the other hand, the osteogenic 
activity of the materials based on PLLA improves with 
an increase HA amount in the polymer composition [6].

Findings of our study are consistent with the study 
of study of Zhang et al. [15]: the crystallinity 
of the polymer saturated with HA determines its 
degradability and consequently the biological 

characteristics of the PLLA/HA material. That is why 
the PLLA crystallinity and its saturation with HA are the 
main characteristics of the PLLA/HA material, which 
determine its effectiveness and indications for use.

Based on the results of the analysis performed, it is 
not correct to speak about the exceptional superiority 
of any of the materials we studied. We believe that all 
the studied materials and products based on them could be 
used in clinical practice. It all depends on the indications 
for their use. The clinical experience in the use of products 
made from the PLLA/HA material shows that the choice 
of a biodegradable product should be made after 
considering the nature of degradation of its polymer [16].

In this regard, we believe that the indications 
for the use of PLLA products saturated with HA by more 
than 50 wt. %, might be cases of large defect management 
as the HA in the polymer actually becomes a calcium 
reserve for local bone tissue formation [17]. An additional 
advantage of PLLA/HA implants saturated with HA is 
their ability to reduce development of biofilms formed 
by S. aureus and P. aeruginosa on the surface of PLLA 
materials [18]. Less HA-saturated materials (< 25 wt. %) 
might address small bone defects [19].

Obviously, varying the content of HA and 
the Obviously, varying the content of HA and 
the degree of PLLA crystallinity may ensure 
options for using PLLA/HA materials for creating 
customized implants [14, 20, 21]. The material might 
be also promising for creation of scaffolds providing 
controllable degradation rate to compliment cell/tissue 
in-growth and maturation [22, 23].
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Nevertheless, we should mention potential risks 
of the materials with high HA saturation for clinical 
use. The accelerated PLLA/Ha degradation results in 

the risks of early mechanical instability of implanted 
devices. The risk of heterotopic ossification should 
not be negligible either.

CONCLUSION
Thus, the performed study showed that increased 

crystallinity of PLLA treated by annealing increases 
the rate of hydrolysis of HA included in the PLLA matrix. 
Changes in the HA content and in PLLA crystallinity allow 

control over the biological characteristics (mechanical 
stability, calcium release, osteogenic properties) 
of the PLLA/HA composite materials. This also expands 
the indications for their possible clinical use.
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Abstract
Introduction The problem of implant-associated infections is far from being solved in arthroplasty, osteosynthesis of fractures, and spinal 
pathology. The development of biodegradable implants with bioactive properties is a promising direction. The purpose of this study 
was to evaluate the in vitro bactericidal activity of implants made from a degradable material polycaprolactone (PCL) impregnated 
with hydroxyapatite and an antibiotic. Material and methods To study antibiotic availability, antibiotic-impregnated PCL cylindrical 
samples (n = 6) were incubated in distilled water at 37 °C. To evaluate the antibacterial properties, samples in the form of porous 
disks were used: control samples from PCL; 1) PCL samples coated with antibiotic and hydroxyapatite; 2) PCL samples coated only 
with antibiotic; 3) PCL samples coated only with hydroxyapatite; (n = 6 for each type of tested samples). The disk diffusion method 
was used to determine the sensitivity of microorganisms to antibiotics. The microbial strains used were S. aureus ATCC 25923, 
P. aeruginosa ATCC 27853 and E. coli ATCC 25922. Test microorganisms were cultivated on beef peptone agar (MPA) at 37 °C 
for 24 hours. Quantitative data were subjected to statistical processing. Results It was determined that 82.6 % of the antibiotic was 
released during the first day of incubation and 8.2 % on the second day. Control samples did not show a bactericidal effect. Samples 
3 showed an antibacterial effect against E. coli culture. Samples 1 and 2 equally demonstrated significant inhibition of the growth 
of S. aureus, P. aeruginosa, and E. coli. Discussion Most of the antibiotic is released into the hydrolyzate during the first two days 
of incubation. Porous implants made of PCL and impregnated with an antibiotic have pronounced antimicrobial activity against 
the most common gram-negative and gram-positive bacteria that cause purulent complications in surgical practice. Nanostructured 
hydroxyapatite on the surface of the implant does not reduce bactericidal activity. Conclusions Porous polycaprolactone implants 
filled with hydroxyapatite and antibiotics are targeted to stimulate bone regeneration and simultaneously ensure antimicrobial activity. 
Nanostructured hydroxyapatite on the implant surface does not decrease bactericidal activity.
Keywords: bioactive implant, polycaprolactone, hydroxyapatite, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, 
antimicrobial activity, hydrolytic degradation
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Over the last ten years remarkable progress has 
been made in the development of surgical techniques 
for bone reconstruction using bioresorbable implants 
having osteoinductive activity. The first fixation devices 
fabricated from biodegradable materials have become 
available since the early 1980s [1, 2]. They are still used 
in traumatology as pins and screws and do not need 
surgery for their removal [3-7]. Such pins are mostly 
made of polylactic acid and have no osteogenic activity; 
therefore fracture healing occurs in the usual terms [4, 8].

The risks of septic complications following 
internal osteosynthesis should not be negligible. The 
studies aimed at enhancing the bioactivity of polymer 
implants filled with antibiotics (Biomatrix, Allomatrix-
implant, Osteomatrix, CollaPan G, CollaPan L) [9, 10] 

demonstrated efficiency of such approach. However, 
the matrix of such implants is shaped as a fine-grained 
material or a thin fibrous film. Thus, they do not enable 
stable osteosynthesis. Fused deposition modeling [11] 
for printing of implants with 3D-structure currently 
uses a filament made of linear bioresorbable polyesters, 
such as polylactic acid (PLLA), polycaprolactone 
(PCL), polyglycolic acid (PGA) and their copolymers. 
Saturation of these implants with antibiotics could 
provide antimicrobial activity associated with structural 
integrity and controlled resorption of an implant.

The aim of this study was to study the in vitro 
accessibility of antibiotics during hydrolytic degradation 
of polycaprolactone (PCL) products and bactericidal 
activity.
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MATERIAL AND METHODS

Two types of implant samples were studied in vitro. 
Type 1 was shaped as a nail used in orthopedic surgery 
(cylindrical PCL samples, 10.0 mm long and 2.4 mm wide). 
The accessibility of antibiotics was assessed. To study 
bactericidal activity, disks made from polycaprolactone 
(PCL) using 3D printing technology, 10 mm in diameter 
and 1 mm thick, were used. The disks had cells with 
a diameter of 1-1.5 mm, limited by crossbars of 1 mm 
(like implants designed to treat bone defects). The surface 
of all implants was impregnated with cefotaxime, 
a broad-spectrum antibiotic.

The implants were designed and manufactured 
at Tomsk Polytechnic University. The components 
for the preparation of composite materials were 
ε-polycaprolactone (Sigma-Aldrich, United States; 
Mn 80000) and hydroxyapatite (Fluidinova, Portugal; 
10 ± 5 μm). For preparation of the composite, PCL was 
dissolved in high purity acetone (EKOS-1, Russia) with 
a concentration of 15 wt %. Hydroxyapatite (HA) was 
pre-ground in a ball mill in a ceramic chamber with 
ceramic grinding media with the addition of acetone 
in a mass ratio of 1.5: 1 at a rotation speed of 72 rpm 
for 12 hours. After HA grinding, the PCL solution 
was added to the chamber and mixed in the ball mill. 
After drying, the obtained composite was crushed 
in a low-speed polymer crusher (Shini SG-1621N, 
Taiwan). The ground composites were extruded using 
a Filabot EX2 single screw extruder (Filabot, USA) 
to obtain 4-mm filaments. Additionally, HA particles 
were applied to the implant surface by dipping into 
a suspension of HA powder and antibiotic cefotaxime 
in a solvent, and then dried to remove residual solvent.

To study hydrolytic degradation, each cylindrical 
PCL sample (n = 6), impregnated with an antibiotic, was 
placed in a separate measuring cell filled with distilled 
water, the volume of which was determined at 4 ml 
per 1 cm2 of the sample surface. Next, the samples 
were incubated in a thermostat at a temperature 
of 37 °C. The incubation medium was changed daily. 
The hydrolysate was subjected to a chemical analysis 
for the content of the antibiotic, which was determined 
on a spectrophotometer by the absorption intensity 
at a wavelength of 243 nm, relative to the standard 
calibration curve. The duration of incubation was 7 days.

The disk-diffusion method for determining 
the antibiotic sensitivity of microorganisms was applied 
to reveal the bactericidal activity [12].

The following strains of microbes were used 
to evaluate the antibacterial properties: Staphylococcus 
aureus ATCC 25923 (gram-positive bacteria), 
Pseudomonas aeruginosa ATCC 27853 (gram-negative 
bacteria) and Escherichia coli, E. Coli АТСС 25922 
(intestinal bacteria). 

Conditions for cultivating test microorganisms. 
Test microorganisms were cultivated on beef-peptone 
agar (MPA) at 37°C for 24 hours. A working 
suspension of test cultures was prepared from a culture 
of this test strain grown on dense nutrient medium 
(MPA) at 37 °C for 24 hours. Nutrient medium 
for evaluating the bactericidal properties of products 
was Muller – Hinton agar. The method of direct 
suspension in a sterile isotonic solution of colonies 
of a pure 18-24-hour culture of bacteria grown 
on a dense non-selective nutrient medium (MPA) was 
used for the preparation of the inoculum. The density 
of the suspension is 0.5 McFarland turbidity standard.

The discs of the test products were applied on a day-old 
fresh medium of microbial test culture. The time between 
the preparation of the microbial culture lawn and 
the application of disks on it was no more than 15 minutes.

Four types of products were studied for antibacterial 
activity. Discs without calcium phosphate coating and 
without antibiotics served as control. The other types were 
discs coated with hydroxyapatite and antibiotic (1), discs 
coated only with antibiotic without hydroxyapatite (2), 
discs coated only with hydroxyapatite (3).

Incubation after application of the discs was 
performed at 35 ± 1 °C, and lasted for 18 hours. A total 
of 36 studied tests were conducted (n = 6 for each type 
of tested samples).

The bactericidal activity of the implant was 
assessed by the zone of growth inhibition of the tested 
microorganisms around the disks. The checking 
was carried out in reflected light. For measuring 
the zone of growth inhibition, we were guided 
by the zone of complete suppression of visible growth. 
The bactericidal activity of the products was considered 
significant if the zone of growth inhibition around 
the disks was more than 1 mm.

Statistical analysis was performed using AtteStat 13.1 
program (Russia): median values (Me), standard 
deviation (SD) and the lower and upper quartiles 
(Q1-Q3). The evaluation of the normal distribution 
of samples was performed using the Shapiro-Wilk test.

RESULTS

The study showed that 82.6 % of the antibiotic was 
released on the first day of incubation (Table 1). During 
that period, the mass of the samples increased slightly 
what can be explained by the absorption of water 

by the polymer. On the remaining days of the observation 
period, there was no significant change in the sample 
weight. The integrity of all samples was maintained 
throughout the entire incubation period.
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Table 1
Average values of cefotaxime in hydrolysate and average weight of samples

Days of incubation CANT, mg/cm2, 
М ± SD Release of antibiotic*; % Weight, mg % of weight change 

from initial level
0 0 0 66.2 ± 2.9 0
1 0.534 ± 0.074 82.6 66.5 ± 3.0 100.5
2 0.044 ± 0.009 8.2 66.4 ± 2.8 99.8
3 0.019 ± 0.012 3.6 66.3 ± 2.9 99.8
4 0.022 ± 0.008 4.0 66.0 ± 3.0 99.6
5 0.004 ± 0.001 0.8 66.0 ± 3.0 99.6
6 0.002 ± 0.001 0.4 65.9 ± 3.0 99.6
7 0.002 ± 0.001 0.4 65.5 ± 2.9 99.3

Total for 7 days 0.627 ± 0.050 100 – –
Notes: CANT – is the concentration of the antibiotic in the hydrolysate; * – % release of antibiotic relative to the final value.

Control discs applied to lawns against all types 
of bacteria did not show a bactericidal effect. 
A continuous growth of microbial cultures was 
observed around the disks (Fig. 1). In all samples, 
the zone of growth inhibition around the discs was 
not determined (Table 2). This series confirmed that 
the implant matrix of pure polycaprolactone does not 
have a bactericidal effect.

Disks of product 3, coated only with hydroxyapatite 
(without antibiotic), showed a bactericidal effect 
only against the Escherichia coli culture (Fig. 2 c). 
The average zone of growth retardation in these samples 
exceeded 4 mm (Table 2).

Discs with antibiotic or antibiotic combined with 
hydroxyapatite demonstrated significant inhibition 
of bacterial growth (Fig. 3).

This experimental study revealed high activity 
of the products with the antibiotic against P. aeruginosa, 
S. aureus and E. coli cultures. The zone of complete 
inhibition of bacterial growth was 15.5-23.0 mm 
in sample 2 and 15.8-25.7 mm in sample 1 (Table 2). 
It should be emphasized that the application 
of a nanostructured hydroxyapatite on the surface 
(product 2) does not decrease the bactericidal effect 
of the antibiotic.

Fig. 1 Modified disk-diffusion method for determining the antibiotic sensitivity of microorganisms, absence of a zone of inhibition of the growth: 
a – S. aureus; b – P. Aeruginosa; c – E. coli

Table 2
Bactericidal properties of products in relation to microbial test-cultures (Mе (Q1-Q3))

Microbes
Zone of growth inhibition, mm

Product 1 Product 2 Product 3 Product 4
Pure PCL Antibiotic HA + antibiotic HA

Staphylococcus aureus 0 21.25 (20.54-21.56) 23.11 (22.77-23.41) 0
Pseudomonas aeruginosa 0 15.85 (15.33-16.0) 17.23 (15.88-17.47) 0
Escherichia colli 0 22.37 (21.12-23.08) 23.80 (23.10-25.77) 4.27 (2.89-4.94)
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Fig. 2 Modified disk-diffusion method for determining the antibiotic sensitivity of microorganisms: a – no growth inhibition of S. aureus 
culture; b – no growth inhibition of the P. aeruginosa culture; c – zone of significant growth inhibition of E. coli is 4.27 (2.89 – 4.94) mm

Fig. 3 Significant zone of growth inhibition: 
a – S. aureus culture (sample 1, left; sample 2, right); 
b – P. aeruginosa culture culture (sample 1, left; sample 2, right); 
c – E. coli culture (sample 1, left; sample 2, right)

DISCUSSION

The most promising synthetic polymers for medical use 
are aliphatic polyesters based on hydroxyalkanocarboxylic 
acids: polylactide, polyglycolide, polyhydroxybutyrate. 
Their degradability under the influence of biological 
factors can be used in new devices and implants. Bioinert 
implants should be distinguished from bioresorbable 
polymers used in reconstructive surgery. Resorbable 
polymers ensure required function and structure over 
the period of host tissue regeneration. They must be 
able to decompose under the influence of body fluids 
with the formation of non-toxic products. The rate 
of decomposition of a solid bioresorbable implant 
polymers into liquid products should be controllable 
and not exceed the rate of tissue regeneration (in bone 
regeneration process, it is a period of months) [13, 14].

Currently, products made from polylactic acid 
and polycaprolactone have been frequently used 
in medicine. Introduction of inorganic substances into 
the composition of the polymer matrix enables the control 
over the physicochemical and mechanical properties 
of polylactide [15-17]. However, their application for bone 
fragments fixation has not been widely used as they do not 
meet the requirements of the AO/ASIF principles [13, 18].

New research trends are aimed to develop materials 
and implants enabling osseointegration of an implant 
followed by controlled matrix resorption [19, 20]. 
However, new generation of implants does not exclude 
risks of septic complications related to surgery [21, 22].

The relationship of bacterial agent with polymers 
or with the ceramic surface of implants remains unclear. 
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CONCLUSION
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Abstract
Background Management of bone defects with autologous bone grafting has always been the "gold standard" but it is not always possible 
to use it for a number of reasons. Preprocessed materials of biological and non-biological origin were developed as an alternative. 
A new branch of these materials is tissue-engineered constructs that fully imitate autologous bone in required volume. Aim is to study 
in vivo the possibility of using deproteinized human cancellous bone tissue as a matrix for creating tissue-engineered constructs. 
Methods The study was carried out on 24 NZW line rabbits, since this line has a fully characterized stromal-vascular fraction formula 
(SVF). The study design included 3 groups. Fiкst group (control) had surgical modeling of bone defects in the diaphysis of the 
contralateral femur without reconstruction; Group 2 had bone defect reconstruction using fragments of a deproteinized cancellous 
bone graft; group 3 underwent bone defect reconstruction using fragments of deproteinized cancellous bone matrix along with the 
autologous adipose tissue SVF (obtained according to ACP SVF technology). Animals were sacrificed with ether anesthesia at 2, 4 
and 6 weeks after the operation and subsequent histological study followed. Result During all periods of the study, the newly formed 
bone tissue volume density in the 3rd group (reconstruction with deproteinized human cancellous bone + stromal-vascular fraction) 
was 1.78 times higher (p < 0.001) than in the first group (bone defect without reconstruction), 1.21 times higher (p < 0.001) than in the 
2nd group (reconstruction with deproteinized cancellous bone alone). The dynamics of changes in the mature bone tissue volume density 
was similar to those of the newly formed bone tissue. Discussion The comparative analysis of reparative processes using a tissue 
engeneered construst based on deproteinized cancellous human bone with adipose tissue stromal vascular fraction revealed that the use 
of these bone substitute materials contributes not only to the early activation of reparative regeneration of the main structural elements 
of bone tissue at the site of bone defect, but also their timely differentiation. Conclusion The use of deproteinized cancellous bone 
matrix combined with stromal-vascular fraction to create a tissue-engineered construct could unleash several regeneration mechanisms 
and accelerate the process of bone defect site repair, compared with 1st and 2nd group of study.
Keywords: Bone defect; bone matrices; deproteinized cancellous bone; bone defect reconstruction; adipose tissue stromal-vascular 
fraction
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INTRODUCTION

Bone defect repair remains to be a difficult prom 
in the field of reconstructive surgery. Despite several trends 
under study, autogenous bone grafting still is a “gold 
standard” [1, 2, 3]. However, for a number of reasons, 
it is not always possible to completely fill in a bone defect 
with the graft [4, 5, 6]. As an alternative to autogenous 
bone graft, bone substitute materials have been used. 
They can have different origin: biological or non-
biological one. One of the ways of bone reconstructive 
technologies development is the use of combined tissue 
engineered constructs together with the patient's own cell 

material. Such construct design is able to fully imitate 
autogenous bone tissue in the required volume [7]. 
Currently, according to literature data, the most suitable 
in terms of its properties as the basis (or matrix) for such 
constructs is bone allograft [3, 8, 9]. Nevertheless, 
allogeneic bone cannot unleash the stimulation 
of the osteogenesis processes [3]. That is why autologous 
non-immunogenic cell material is strongly needed [7].

Aim is to study in vivo the possibility of using 
deproteinized human cancellous bone tissue as a matrix 
for creating tissue-engineered constructs.

MATERIAL AND METHODS

The study was carried out on 24 NZW line rabbits, 
since this line has a fully characterized stromal-vascular 
fraction formula (SVF) [10, 11, 12, 13, 14, 15]. 
The study complies with international standards and 
ethical principles for laboratory research ISO 10993-2, 

ISO 10993-6-2021. The design of the study included 
3 groups. The first group (control) had surgical 
modeling of bone defects in the areas of the diaphysis 
of the contralateral femur without reconstruction, similar 
to the study groups; 2nd group had surgical modelling 
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of the femoral diaphysis defect with its reconstruction 
using fragments of a deproteinized cancellous 
human bone graft (matrix); 3rd group underwent 
surgical modeling of femoral diaphysis defect with 
its reconstruction using fragments of deproteinized 
cancellous human bone matrix together with 
the autologous adipose tissue stromal-vascular fraction. 
Stromal-vasular fraction was obtained according to ACP 
SVF technology (Patent US10512659B2). Animals 
were sacrificed with ether anesthesia at 2, 4 and 6 weeks 
after the operation. Under the standard conditions, the 
material was harvested for subsequent histological 
assessment to evaluate the bone substitute materials 
local effect on living tissues and the implementation 
of reparative osteogenesis in the bone defect 
reconstruction area.

Adipose tissue material was taken through the dorsal 
paravertebral approach during the main surgical 
procedure. It is for this localization in adult rabbits that the 
largest amount of beige adipose tissue is typical [11, 16]. 
After obtaining adipose tissue, fragments of cancellous 
deproteinized bone matrices, 5 × 5 mm in size, were 
installed paravertebral and subcutaneously to determine 
their impact on living tissues.

To assess the effectiveness of reparative 
osteogenesis in the bone reconstruction site, fragments 
of deproteinized cancellous bone were implanted 
into simulated bone defects according to the study 
design. To confirm the absence of variability 
in the morphological manifestations of bone tissue 
reparative regeneration in the conditions of each 
individual animal, an additional defect was formed 
in the femur diaphyseal part on each limb.

After the harvesting, study samples were fixed 
in 10 % neutral buffered formalin solution for 72 hours, 
followed by decalcification in the Richmann-Gelfand-
Hill solution for 10 days at a temperature of 20 °C. 

After standard histological processing in a series 
of alcohols and xylene increasing concentration, 
bone tissue samples were embedded in paraffin 
blocks, followed by making serial sections 4-5 µm 
thick and staining them with hematoxylin and eosin. 
For differentiated quantitative assessment of "mature" 
and emerging connective tissue in the study samples, 
histological sections were stained according 
to Van Gieson and impregnated with silver. Light 
microscopy with obtaining overview micrographs 
was carried out on an OLYMPUS CX 43 laboratory 
microscope with an OLYMPUS UC 90 camera (Olympus 
Medical Systems Corp., Japan). Morphometric 
study of histological samples of matrices heterotopic 
and orthotopic implantation sites was performed using 
the ImageJ software (version 1.53o, 2022, Wayne 
Rasband and contributors National Institutes of Health, 
USA) at 200 magnification. The numerical density 
of the vessels (Nai), the percentage of implantation 
zone full-blooded vessels (%), the volume density 
of mature collagen fibers (Vv%), the volume density 
of argyrophilic connective tissue fibers (Vv%), 
the volume density of mature and newly formed bone 
tissue (Vv%) were evaluated in histological sections.

The obtained morphometric data were statistically 
processed using the RStudio program (version 2022.02.1 
Build 461 – © 2009-2022 RStudio, Inc., USA) 
in the R language (version 4.1.3 (2022-03-10), Vienna, 
Austria). Comparison of continuous scores between 
the groups was performed by a non-parametric unpaired 
Mann – Whitney U-test. The distribution bias was 
calculated with the 95 % confidence interval. Categorical 
scores were compared by Fisher's exact two-sided test. 
Correction for multiple testing error when comparing 
categories was carried out using the Benjamini – 
Hochberg method, the difference was considered 
statistically significant if p < 0.001.

RESULTS

From the 2nd week of the study, light microscopy 
of the heterotopic implant fixation area histological 
skin samples revealed the formation of a thick-walled 
connective tissue capsule with weak infiltration 
of the walls by macrophages and mononuclear 
leukocytes between the dermis and the muscle. 
Between the fibers of the connective tissue, a large 
number of small thin-walled blood vessels without 
signs of hemocirculatory disorders were revealed. 
Fragments of mplanted deproteinized cancellous bone 
matrices were represented by mature bone tissue. 
In the tissues, perifocal to the area of implantation 
of bone matrices, the formation of a cellular 
inflammatory infiltrate was not detected. 

Visual examination of the experimental bone 
defects modeling tissues areas with orthotopic 
reconstruction using bone-substituting materials 

showed no signs of a local inflammatory reaction 
in all animals.

The assessment of reparative osteogenesis according 
to hystological sections is presented at the Table 1.

From the 2nd week, a significant prevalence of indicators 
of the vessels numerical density of groups 2 and 3 
relative the control group 1 (p < 0.001) was determined. 
There were no significant differences between group 2 
and 3 at this stage (p = 0.699). A significant prevalence 
of the group 3 indicators over those in group 2 was noted 
from the 4th week of the study (p < 0.001) and persists 
by the 6th week (p < 0.001) (Fig. 1).

By 6 weeks, the percentage of full-blooded vessels 
progressively increases in all groups. Only a small 
decrease in this parameter in group 2 compared 
to the control group 1 was determined as statistically 
significant (p < 0.001) (Fig. 1 and 2).
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Table 1
Histological study results of reparative osteogenesis in orthotopical reconstruction of bone defects 

with different types of bone substitute material (M ± m)

Study parameters

Study groups

1st group (control) 2nd group (deproteinized 
cancellous bone graft)

3rd group (deproteinized cancellous 
bone matrix with SVF)

Timeline (week of study)
2 4 6 2 4 6 2 4 6

Vessels numerical 
density, Nai 5.61 ± 1.5 8.25 ± 1.5 16.66 ± 5.7 10.43* ± 

± 3.5
18.73* ± 

± 2.2
23.70* ± 

± 6.8
10.40* ± 
± 3.41

20.36*.** ± 
± 4.5

26.31*.** ± 
± 7.9

Full-blooded vessels 
percentage, % 54.44 ± 0.278.82 ± 0.296.58 ± 0.138.3* ± 0.2 75.49* ± 

± 0.2
92.20* ± 

± 0.1
81.19*.** ± 

± 0.2 64.45* ± 0.2 97.37 ± 0.3

Mature collagen 
fibers volume density, 
Vv%

5.15 ± 0.6 7.08 ± 1.1 12.68 ± 2.56.35* ± 3.8 8.83* ± 
± 2.53 9.26* ± 1.6 6.88* ± 1.5 9.30* ± 1.1 10.68*.** ± 

± 1.6

Argyrophilic 
connective tissue 
fibers volume density, 
Vv%

7.33 ± 0.7 11.83 ± 1.114.19 ± 2.4 7.25 ± 1.8 9.95* ± 1.6 10.03* ± 
± 2.2

9.66*.** ± 
± 1.3 10.23* ± 1.9 10.65* ± 2.1

Mature bone tissue 
volume density, Vv% 2.88 ± 0.7 6.43 ± 0.8 8.98 ± 1.6 5.98* ± 2.88.81* ± 1.5 12.83* ± 

± 1.5
8.63*.** ± 

± 2.2
11.51*.** ± 

± 2.5
14.58*.** ± 

± 2.2
Newly formed bone 
tissue volume density, 
Vv%

3.81 ± 0.7 6.43 ± 0.8 9.26 ± 2.1 6.11* ± 3.29.81* ± 1.6 13.53* ± 
± 2.7

9.51*.** ± 
± 2.2

12.95*.** ± 
± 2.71

16.43*.** ± 
± 2.1

* – statistically significant differences from indicators in the control group, р < 0.001; ** – statistically significant differences from 
indicators in the 2nd group, р < 0.001

Fig. 1 Vessels numerical density and full-blooded vessels percentage for each group of the study at 2, 4 and 6 weeks
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The value of the newly formed bone tissue volume 
density progressively increased from the 2nd to the 6th week 
of the study in the 1st group – 1.6 times, in the 2nd group – 
2.2 times and in the 3rd group – 1.7 times (Fig. 3 and 4). 
During all periods of observation, the newly formed 
bone volume density in the 3rd group was on average 
2.1 times higher than in the 1st study group (p < 0.001), 
and on average 1.36 times higher than in the 2nd group 
(p < 0.001).

The mature bone tissue volume density in the study 
samples increased from the 2nd to the 6th week 
in all groups; in the 2nd and 3rd groups the indicators were 
greater than in the 1st group of the study during all period 
of study. The dynamics of changes in the mature bone 
tissue volume density was similar to those of the newly 
formed bone tissue. The studies indicated a more active 
process of differentiation of the newly formed bone 
tissue starting from the 4th week of the study.

Fig. 2 Diagram showing vessels numerical density (left) and full-blooded vessels percentage (right) for each group of the study at 2, 4 and 6 weeks

Fig. 3 Volume density of newly formed bone tissue (Vv%) and mature bone tissue (Vv%) for each group of the study at 2, 4 and 6 weeks
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Fig. 4 Diagram showing volume density of newly formed bone tissue (right) and mature bone tissue (left) for each group of the study at 2, 4 
and 6 weeks

DISCUSSION

The choice of the rabbit animal model for this study 
was justified by a similar type of reparative osteogenesis, 
the Haversian type in this species of mammals and 
humans [11, 17]. This allows the results of this study 
to be extrapolated to humans.

The choice of deproteinized cancellous 
human bone tissue as a bone matrix is justified 
by scientific literature data and the results of our 
previously conducted studies, which revealed 
the properties of this material, allowing it to be 
used as an independent bone-replacing material and 
considered as a bone matrix for creating efficient 
tissue engineering constructs [3, 18].

In the case of using a construct based on a deproteinized 
bone matrix containing an autologous material that 
can have impact on bone tissue regeneration, all four 
processes of bone tissue regeneration are switched 
on: osteoblastic, osteoinductive, osteoconductive, and 
stimulated osteogenesis (Fig. 5).

Despite the fact that in this study the bone 
matrices used are xenogenic for animals, starting from 
the 2nd week macro- and microscopic morphological 
signs of a local inflammatory reaction of soft tissues and 
rejection of bone matrices in areas of their heterotopic 
implantation were absent.

The adipose tissue stromal-vascular fraction, isolated 
and processed according to the standard method, was 
chosen as a biologically active component for creating 
a tissue-engineered construct based on a deproteinized 
cancellous bone matrix, enabling to exclude an additional 
experimental quantitative assessment of the cell 
composition of the obtained fraction [14, 15, 19].

This is justified by the cell composition 
of the fraction and the cells properties themselves – 
adipose tissue stem cells, endothelial and blood vessels 
smooth muscle cells and their precursors, fibroblasts, 
macrophages, T-lymphocytes, pericytes and other cells 
that cause a pronounced regenerative potential, anti-
inflammatory effect and immunoregulatory activity. 
Also, the stromal-vascular fraction factors stimulate the 
formation of the vascular network, which contributes 
to the regeneration of bone tissue [2, 15, 20, 21, 22].

The comparative analysis of reparative processes 
using a deproteinized cancellous human bone tissue 
matrix and its combination with adipose tissue stromal 
vascular fraction revealed that the use of these bone 
substitute materials contributes not only to the early 
activation of reparative regeneration of the main 
structural elements of bone tissue at the site of bone 
defect, but also their timely differentiation.

Fig. 5 Mechanisms 
of osteoplastic material 
effect on the processes 
of bone regeneration
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CONCLUSION

According to the results of macro- and microscopic 
assessment at the deproteinized bone matrices 
heterotopic and orthotopic implantation sites, there 
were no signs of inflammation and destructive 
changes in the tissue. That fact is a sign of biological 
safety of deproteinized cancellous human bone tissue 
in relation to living tissues.

The use of deproteinized bone matrix 
in combination with stromal-vascular fraction to create 
a tissue-engineered construct may unleash several 
regeneration mechanisms and accelerate the process 
of bone defect site repair, compared to the situations with 
the use of a deproteinized bone matrix alone or without 
reconstruction of a bone defect.
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 Abstract

Introduction The number of surgical interventions using additive technologies in medicine has been growing both in Russia and with 
every year. Due to the development of printing customized implants, the use of standard (imported) designs has decreased by an average 
of 7 % in the provision of high-tech medical care. However, the issue of the pore size of customized implants for management 
of post-traumatic defects in the acetabulum remains open. Objective To evaluate the results of the treatment of patients with 
post-traumatic acetabulum defects and deformities with the implementation in clinical practice of customized implants with structure 
and size porous surface that are optimal from the point of view of biological fixation. Material and methods Porous implants with 
different types of porous structure were produced by direct laser sintering using Ti-6Al-4V titanium alloy powders. Experimental 
work was carried out in vitro to determine the ability of living fibroblasts to penetrate the pores of different sizes. Next, the clinical 
part of this study was conducted in order to determine the signs of biological fixation of customized acetabular implants in a group 
of patients (n = 30). Results The results of this experiment performed to analyze the penetration of living fibroblasts into the porous 
structure of implants with different pore size demonstrated that metal structures with a pore size of 400-499 μm can be singled out 
from all others. Discussion Analysis of the literature data shows that there is no consensus on the structure and size of the pores 
of a customized implant. In our work, we investigated the ability of human living fibroblasts to penetrate into the surface structure 
of a customized implant, as a result of which we determined their optimal pore size of 400-499 microns. It should be noted that this 
study was conducted for a definite anatomical location: the acetabulum. However, it cannot be excluded that the data obtained are 
relevant for other anatomical locations. Conclusion Management of bone defects in the acetabulum area with customized implants 
featuring the surface pore size of 400-499 microns is a justified and relevant method. A prerequisite for the use of such implants is strict 
compliance with the indications for their use, careful preoperative planning and correct positioning.
Keywords: individual implant, porous surface, pore structure, 3D printing technology
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INTRODUCTION
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The total incidence of acetabulum fractures among 
the adult population reported by literature sources 
ranges from 1 case per 50 thousand people to 3 cases 
per 100 thousand people per year. [1]. According 
to several authors, primary total hip arthroplasty may 
be a surgery of choice in the presence of risk factors 
for osteosynthesis. Such factors include multi-fragment 
fractures, massive damage to the articular cartilage 
in loaded parts, femoral head impaction [2, 3]. Due 
to untimely or incorrect treatment, there is a high 
risk of developing complications of acetabulum 
fractures such as aseptic necrosis of the femoral head, 
or degenerative ischemic damage to intra-articular 
cartilage [4-6]. The main difficulties faced by a surgeon 
in the treatment of post-traumatic coxarthrosis are 
primarily acetabulum bone tissue defects that do not 
allow achieving strong primary fixation of standard 
acetabulum components [7, 8]. Different autografts 
can be used to replace acetabulum defects; however, 
in case of the treatment of the consequences acetabulum 
fractures, the development of post-traumatic aseptic 
necrosis of the femoral head does not allow the use 

of autobone. In such cases, concomitant acetabulum 
deformation requires the use of augments and 
individual acetabulum components. The main issues 
during the planning of such surgical interventions are 
the following: absence of a common classification 
of pathological acetabulum changes [9], low reliability 
of the standard methods of preoperative planning 
using plain radiographs [10, 11]. Therefore, multispiral 
computed tomography is required, and the surgery 
is planned according to the developed 3D models. 
In several cases, when standard acetabular components 
and augments do not help in replacing the defect 
and achieving stable biological fixation, customized 
implants printed on a 3D printer are used [12].

One of the most important conditions for the implant 
surface formation is the possibility of the integration 
of bone tissue into the porous structure of a customized 
implant [12]. The size and structure of implant surface 
pores are essential for interacting with bone tissue 
in terms of primary and subsequent biological fixation 
of customized implants [13]. The absence of a unified 
approach to determining the size and geometry 



610Genij ortopedii. 2023;29(6)

Original Article

of the porous structure of implants is primarily associated 
with the analysis of bone tissue in different anatomical 
zones – lower and upper extremities, bones of facial and 
cerebral skull – since bone tissue has different macro- and 
micro architecture due to its organo-specificity [14, 15]. 
In addition to providing stable biological fixation 
of the acetabular component, an important condition 
for achieving good functional results is the restoration 

of anatomical relationships in the affected joint that are 
close to a healthy countralateral side.

Objective To evaluate the results of the treatment 
of patients with post-traumatic acetabulum defects and 
deformities with the implementation in clinical practice 
of customized implants with the structure and size 
of their porous surface that are optimal from the point 
of view of biological fixation

MATERIALS AND METHODS

The study was carried out in two stages to solve 
the task. Stage 1 included the experiment to determine 
the optimal pore size and shape of titanium coating 
for implants. Samples of porous implants with different 
surface pore size were obtained by direct laser sintering 
using Ti-6Al-4V titanium alloy powder. Twenty 
samples with different sizes of porous surface were 
prepared for this experiment: 4 batches of 5 plates 
(10 mm × 10 mm × 5 mm) (Table 1). 

Table 1
Description of test samples

Sample 
No.

Pore size, 
micron (μm)

Pore depth, 
mm

Sample size 
(L × W × H)

1 200-299

4 10 mm × 10 mm × 5 mm
2 300-399
3 400-499
4 500-599
5 600-699

An in vitro experiment was conducted to determine 
the ability of living fibroblasts to enter the pore structure 
of different size. This experiment was carried out 
together with the Novosibirsk Federal Research Center 
of Fundamental and Translational Medicine. 3D printed 
surgical hardware samples were colonized with fibroblasts 
(human living fibroblast culture), then stained with 
fluorescent stains: Hoechst 33342 (nuclei staining), 
DiOC6 (mitochondria staining) and Propidium Iodide (PI, 
nuclei of necrotic cells staining). Fluorescence intensity 
was registered using a LSM710 confocal microscope 
(Carl Zeiss); mean fluorescence intensity (mean RFU) 
for each section along the Z axis (depth, μm) was 
evaluated; the depth analyzed was up to 2 mm. At the end 
of the incubation period, the medium in chamber cells 
was replaced with FluoroBrite DMEM Media (Gibco, 
USA) that contains fluorescent stains: 5 μg/mL DiOC6, 
5 μg/mL Hoechst 33342, 1 μg/mL Propidium Iodide 
(manufacturer: Sigma, Germany). Incubation continued 
30 minutes. The medium was replaced with fresh 
FluoroBrite DMEM Media (Gibco, USA) and analyzed 
using a LSM710 confocal microscope (Carl Zeiss) 
in z-stack mode. Photo processing was performed using 
Fiji ImageJ software (NIH, USA) algorithms.

For detailed qualitative and quantitative description 
of such pathological acetabulum changes as deformation 
and bone defects, our clinic uses the method of layered 

3D visualization. Choice of the tactic of implanting 
acetabuluar components is based on the original 
method developed at the Novosibirsk Research Institute 
of Traumatology and Orthopedics [16]. The method 
is carried out as follows. Based on the MSCT data, 
a volumetric 3D model is developed that helps to determine 
reference angles and lines, and the hemisphere of a healthy 
joint by mirror transfer of marks to the pathological 
side. The hemisphere is divided into three sectors that 
correspond to the pubic, ischial and supra-acetabular 
parts of the acetabulum. To determine the sector 
of the corresponding size, a geometric figure is selected 
from the pre-formed library at 1 mm intervals. The sector 
is spatially located in such way that at least 75 % 
of the surface of its base is in contact with the supporting 
dense bone tissue, and the apex matches the rotation center. 
After selecting a properly oriented sector with known 
values of volume and surface area, these parameters are 
described for each sector corresponding to the pubic, 
ischial and supacetabular surfaces of the acetabulum. Area 
difference in percentage is specified as the deformation 
of supporting bone tissue, and the volume difference – 
as the defect of the abnormal segment (Fig. 1)

In significant defects (bone deficiency of more 
than 40 %), it is essential to use customized acetabular 
components with a set polyaxial insertion of screws, 
or to  use augments with a set direction of fixing screws.

The stage 2 of the study was carried out to determine 
the clinical efficacy of the proposed method: preoperative 
planning and surgical management of acetabulum defects 
with customized implants. A test group was formed that 
included 30 patients with significant post-traumatic 
acetabulum defects of grade III and IV according to AAOS 
classification. All patients underwent preoperative planning 
according to the developed algorithm [17]; customized 
implants with the pore size determined in the experiment 
(400-499 μm) were created, and surgical treatment of the 
defects was carried out. In addition to clinical and functional 
results, analyzed parameters included the state of bone 
tissue surrounding the customized implant, restoration 
of anatomical relationships in the hip joint, such as three-
dimensional spatial displacement of the rotation center 
and change in femoral offset in relation to the healthy 
contralateral joint parameters. Gender and age composition 
as well as distribution according to the defect type are 
presented in Table 2.
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Fig. 1 Appearance of a 3D pelvic model with a sector-by-sector determination of acetabulum bone defect

Table 2
General characteristics of the test group

Parameters
Test group (n = 30)

Type III AAOS (n = 11) Type IV AAOS (n = 19)
Average age, years 61 ± 24 49 ± 22
Gender (m) 6 (20 %) 10 (33 %)
Gender (f) 5 (17 %) 9 (30 %)

RESULTS

Together with the Research Institute of Experimental 
and Clinical Medicine (Novosibirsk), an in vitro 
experiment was conducted in order to analyze the ability 
of living fibroblasts to enter the pores of different 
sizes. The results obtained were subjected to statistical 
analysis (Table 3).

Figure 2a shows the results of implant surface confocal 
microscopy in the 3D mode: sample 3 (400-499 µm) 
– even stained, homogeneous arrangement of living 
fibroblasts at the depth of up to 2 mm; meanwhile, 
Figure 2b shows the results of the confocal microscopy 
of sample 2 (300-399 µm) – uneven, predominantly along 
pore edges, distribution of living fibroblasts at a depth of up 
to 2 mm in the structure of sample surface is observed.

Considering the results obtained during in vitro 
experiment, we observed the best penetration capacity 
of living human fibroblasts in sample 4 with a pore 
size of 400-499 μm. In the experiment, this sample 
was evenly colonized by living fibroblasts at a depth 

of up to 2 mm, while the cells remained viable with 
probability that was twice higher than in other samples.

In the clinical part of this study, the above approach 
was used in the test group (n = 30 clinical cases) 
for management of post-traumatic acetabulum defects 
grade III and IV according to AAOS with customized 
implants [18].

The average time of the surgery was 
96.74 ± 43.57 minutes; intraoperative blood loss 
was 392.39 ± 198.6 mL. No revision interventions 
for component loosening or recurrent dislocation were 
required during 12 months following the surgery.

One year after the surgical treatment, the signs 
of biological fixation of customized implants 
were evaluated using the technique developed 
by Moore et al. [19]. Their method for assessing 
the biological fixation of the acetabular component of hip 
arthroplasty involves the analysis of five radiographic 
signs (Table 4).

Table 3
Results of the experiment performed to analyze the penetration of living fibroblasts into the porous structure 

of implants with different pore size structure

Sample 
No.

Pore 
size, μm

Maximum depth 
of implant colonization 

by culture, µm

Evenness 
of colonization 

at a depth of 200 μm

Staining of mitochondria 
with DiOC6, 

conditional unit

Conditional living/necrotic 
cell ratio 

(Hoechst/ Propidium Iodide)
1 100-299 50 even 1 1/2
2 300-399 50 uneven 1 1/1.8

3 400-499 under 250 even fluorescence intensity is 
twice higher 1/1.3

4 500-599 300 even 1 1/16
5 600-699 under 400 uneven 1 1/1.7
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Fig. 2 Confocal microscopy in 3D mode: a – sample 3, fibroblasts are stained with green, 400-499 μm; b – sample 2, fibroblasts are stained 
with green, 300-399 μm

Table 4
Distribution of the number of radiographic signs 
of bone tissue change in the acetabulum region 

corresponding to the biological fixation of customized 
implants in the sample

Number of Rg signs 
of biological bone tissue 

fixation
Patients 
(n = 30) % 

5 4 13.4
4 10 33.2
3 12 39.8
2 2 6.8
1 2 6.8

Moore et al. in their work proved that implants 
with three or more biological fixation signs had 
no manifestations of loosening [19]. Thus, after one year 
following the surgery, 86.8 % of patients had 3 or 
more radiographic signs; this fact indicates that there 
was no loosening of the customized components 
in the acetabulum area.

Tendency in the recovery of anatomical relationships 
were registered according to radiographs and MSCT 
before surgery and 12 months after it (Table 5).

The results obtained prove that due to the rational 
preoperative planning and use of customized implants, 
the most accurate restoration of anatomical relationships 

in the replaced joint was achieved in relation to a healthy 
contralateral joint.

Table 5
Shift of anatomical parameters in regard to healthy 

contralateral joint in mm

Parameter Value 
before surgery

Value 12 months 
after surgery

Vertical shift 12.89 ± 12.42 3.72 ± 3.69
Horizontal shift 11.09 ± 12.93 5.87 ± 3.96
Anterior-posterior 
shift 8.41 ± 7.81 2.09 ± 1.21

Offset 7.37 ± 8.54 4.20 ± 2.85

In the test group (n = 30), VAS parameters were 
evaluated, as well as the results of Harris and SF-36 
questionnaires over time, i.e. before surgical treatment, 
at discharge and a year after surgical intervention. 
Results are shown in Table 6.

In the test group (n = 30), there was a significant 
decrease in VAS score from 7.4 to 2.7 twelve months 
after surgery with the use of customized implants 
(on average by 47 %); this fact demonstrates an effective 
reduction in pain syndrome. Assessment of the changes 
in Harris Hip Score demonstrates that the average 
value increased from 48 to 75 points over 12 months 
(on average by 23 %), so, it can be characterized as 
excellent and good results.

Table 6
Evaluation of Harris and VAS scores and SF-36 questionnaire in the test subgroup (n = 30) over time

Parameter Before surgery 12 months after surgery Intragroup comparison, Mann – Whitney U test
Me [Q1; Q3] Me [Q1; Q3] Difference [95 % CI] p value

VAS, points 8 [7; 8] 2.5 [2; 3]
0-1: -3.5 [-4.0; -3.0]
0-2: -5 [-5.5; -4.5]

1-2: -1.5 [-2.0; -1.0]

0-1: < 0.001*
0-2: < 0.001*
1-2: < 0.001*

Harris, points 48 [38.2; 52] 75 [73.2; 78]
0-1: 57 [48.0; 61.5]

0-2: 56.5 [46.0; 60.5]
1-2: -1.5[-6.0; 4.5]

0-1: < 0.001*
0-2: < 0.001*
1-2: < 0.469

SF-36, %

PH 27.5 [24;29.7] 65.5 [61;71]
0-1: 26 [22.0; 29.0]

0-2: 39.5 [32.0; 43.0]
1-2: 12.5 [8.5; 15.5]

0-1: < 0.001*
0-2: < 0.001*
1-2: < 0.001*

MH 31.5 [29.2;35] 67 [65; 69.7]
0-1: 27.5 [25.0; 30.0
0-2: 33.5 [28.0; 39.0]

1-2: 8.5 [4.5; 11.5]

0-1: < 0.001*
0-2: < 0.001*
1-2: < 0.001*
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SF-36 questionnaire also showed a significant increase 
in the quality of physical and mental health: average PH 
value increased by 46.7 %, MH value – by 38 %.

The pore size of a customized implant surface 
equal to 400-499 μm is optimal from the point of view 
of expected biological integration of bone tissue into 
implant surface up to 2 mm depth and, as a result, 
it determines good subsequent fixation of the implant 
that is confirmed by the X-ray signs of the changes in 
bone tissue of the acetabulum region. These data were 

also supported by an in vitro experiment conducted 
with the use of confocal microscopy.

Assessment of social and clinical adaptation 
parameters (VAS, Harris, SF36 questionnaires) 
confirmed the high effectiveness of customized implants 
with set surface structure over time. However, it should 
be mentioned that this study was carried out within 
a narrow anatomical location, i.e. the acetabulum, 
accordingly, it cannot be ruled out that the data obtained 
are also relevant for other anatomical areas.

DISCUSSION
Laser selective sintering technology enables 

to manufacture implants with pore size control up 
to 20 microns [20, 21, 22].

However, the authors note that the optimal pore size 
of a customized implant surface has not been determined. 
The lack of a unified approach to determining the size 
and geometry of the porous structure of the implant 
is primarily due to the study of bone tissue of various 
anatomical zones – the lower and upper extremities, 
the bones of the facial and cerebral skull – because bone 
tissue, depending on organ specificity, differs in its macro- 
and microarchitectonics [15, 23]. Taniguchi Naoya in his 
work examined three samples of porous titanium implants 
(with an estimated porosity of 65 % and a pore size of 300, 
600 and 900 microns), designated as implants P300, P600 
and P900 [23].

Accordingly, the P600 implant (632 microns) 
demonstrated significantly higher fixation ability 
after 2 weeks than the other implants. After 4 weeks, 
all models showed a sufficiently high fixation ability 
in the detach test.

Ran Qichun et al. work studied the effect of the  pore 
size of implants on biological characteristics (in particular 
osseointegration), conducted a number of experiments 
on implants with a pore size of 500-699 and 
700-900 microns, both in vivo and in vitro [24, 25, 26]. 

According to the study, implants printed on a 3D printer 
with a given pore size up to 600 microns outperform 
the other groups in terms of osseointegration of bone 
tissue into the porous structure of the implant surface.

Yuhao Zheng, Jing Zhang et al. in their study 
of the porous surface of customized implants noted 
that the issue of the implant surface with a pore size 
of less than 300 microns was not well investigated 
at the moment. Yuhao Zheng, examining the average 
pore sizes of cylindrical implants 542, 366, and 
134 microns, indicated that with a porosity of more than 
60 %, the optimal pore size is 366 microns; however, 
they did not describe the pore geometry [27, 28, 29, 30].

The pore size of 400-499 microns of the surface 
of a customized implant is optimal for managing 
post-traumatic acetabular defects from the point 
of view of the predicted biological fixation of the bone. 
This approach determines a good subsequent fixation 
of the implant, which is confirmed by the presence 
of radiological signs of changes in the bone tissue 
of the acetabulum area. The findings are also confirmed 
by an in vitro experiment conducted using confocal 
microscopy. However, it is worth noting that this study 
was conducted for a definite anatomical location – 
the acetabulum. However, it cannot be excluded that 
the data obtained are relevant for other anatomical zones.

CONCLUSION
The analysis of porous structure size in this 

experimental work led to conclusion that the optimized 
parameter of implant surface porous structure for better 
osteogenic result is 400-499 μm. Too small or too 
large pore size may more or less interfere with cellular 
behavior and bone regeneration. Thus, the management 
of bone defects in the acetabulum region using 

customized implants with the surface of a mesh porous 
structure (400-499 μm) is a justified method that is also 
relevant and socially significant due to the increasing 
number of patients requiring such surgical interventions. 
A mandatory condition for using such implants is strict 
compliance with the indications for their use, careful 
preoperative planning, and correct positioning.
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Abstract
Introducrion Repair of the affected articular surface still remains an unsolved problem. The purpose of this study was to assess 
the efficacy of a biodegradable polycaprolactone implant coated with hydroxyapatite on the healing of an osteochondral defect 
of the femoral condyle in rats. Materials and methods An osteochondral defect of the medial femoral condyle was modeled 
in 76 Wistar rats divided into 2 groups. In the experimental group, the defect was replaced with a biodegradable polycaprolactone 
membrane coated with hydroxyapatite. In the control group, the defect remained untreated. The results were assessed within a year. 
Results In the experimental group, the animals had a significantly better range of motion at all stages of the experiment than the control 
animals. The implant ensured the integrity and congruence of the articular surface. On day 180, a newly formed area of the articular 
surface of the organotypic structure was observed in the defect. Biomechanical properties of the repaied zone restored after 60 days 
while in the control one they remained lower by 27-29 %. Discussion Filling the defect with an elastic implant made of polyprolactone 
with hydroxyapatite provided early functional load on the joint. The structure of the implant, simulating the extracellular matrix, 
promoted the growth, proliferation and directed differentiation of cells in the area of the osteochondral defect. The moderate rate 
of biodegradability of the material provided gradual replacement of the implant with organ-specific tissues. Conclusion A biodegradable 
polycaprolactone implant impregnated with hydroxyapatite particles might be effective for experimental osteochondral defect repair.
Keywords: articular cartilage, osteochondral defect, biodegradable implants, polycaprolactone, hydroxyapatite

For citation: Popkov AV, Gorbach ES, Gorbach EN, Kononovich NA, Kireeva EA, Popkov DA. Bioactive biodegradable polycaprolactone 
implant for management of osteochondral defects: an experimental study. Genij Ortopedii. 2023;29(6):615-628. doi: 10.18019/1028-4427-
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INTRODUCTION

Lesions of joint articular cartilage are a common 
pathology of the musculoskeletal system. An analysis 
of more than 30,000 arthroscopic interventions associated 
with injuries and diseases of large joints showed 
pathological changes in the cartilage of varying severity 
in 63 % of cases [1, 2]. Focal disorders of the articular 
cartilage and subchondral bone of the femoral condyles 
mostly result from injuries or diseases of the knee 
joint. Their delayed or inadequate treatment could lead 
to the development of degenerative joint disorders [3].

Osteochondral defects of large joints frequently 
require surgical treatment [4]. Despite the fact that 
a wide range of surgical techniques for the treatment 
of articular cartilage has been introduced into clinical 
practice, the search for methods of articular surface 
repir remains a very urgent and unsolved problem 
at the present stage of medicine and biotechnology [5].

The low ability of the cartilage to regenerate has been 
proven by many researchers and is associated with the lack 
of blood supply and innervating components in it. Therefore, 
a lot of research has been and is being carried out to develop 
new methods, which, as a rule, are aimed at stimulating 
the repair and articular cartilage recovery [6, 7].

To date, one of the most efficient and cost-effective 
methods is the microfracturing method in its various 
modifications. However, the regenerate thus formed 

in the subchondral defect area frequently undergoes 
lysis in patients older than 35 years [8, 9].

Mosaic chondroplasty contributes to the successful 
long-term repair of the damaged site with bone 
and cartilage autografts taken from unloaded areas 
of the articular surface [10, 11], but it can cause pain 
and degenerative changes in those areas, or they need 
to be filled with other implant materials, which requires 
additional costs and increases the time of the surgery.

In recent years, cell technologies have been 
successfully applied such as autologous chondrocyte 
implantation (ACI) into the area of the cartilage defect 
or a combination of autologous chondrocytes and 
collagen matrices (MACI) [12]. The shortcomings 
of these methods is complexity and high costs.

An alternative method for treating osteoarthritis is 
matrix-induced technologies (autologous membrane-
induced chondrogenesis collagen, AMIC), when 
native bone marrow cells and poorly differentiated 
perivascular cells penetrate into the defect area as a result 
of preliminary microfracturing and further populate 
the implanted biocompatible biodegradable matrices. 
Current publications are mainly devoted to the results 
of replacement of cartilage defects with collagen matrices. 
However, natural collagen matrices are quite expensive 
and not always effective in the long term [13-15].
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There are recent publications on the successful use 
of synthetic polymeric biodegradable implant materials, 
which are much cheaper and do not cause immune 
reactions [16-21]. However, complex experimental 
studies with a long-term follow-up period are required 
to objectively substantiate the use of such materials and 
technologies before introducing them in clinical practice.

The aim of our study was to investigate the safety 
and efficiency of the application of a biodegradable 
implant produced from polycaprolactone with 
the method of electrospinning and coated 
with hydroxyapatite and its impact on healing 
of an intra-articular defect in the loaded zone 
of the knee joint in rats.

MATERIALS AND METHODS

The study was conducted on 76 Wistar rats, 
whose age was 7 months at the beginning of the 
experiment. Osteochondral defects of the articular 
surface of the medial femoral condyle were modeled 
in all the animals divided into 2 groups, 38 rats each. 
The knee joint was approached and an osteochondral 
defect of the medial condyle of the femur, 1.5-2 mm 
wide and 2 mm deep, was modeled using a 2-mm cutter. 
In the experimental group, the defect was filled with 
a biodegradable polycaprolactone (PCL) membrane 
with hydroxyapatite (a biodegradable elastic PCL 
matrix produced by electrospinning and containing 
hydroxyapatite). In the control group, the defects were 
left untreated. Surgical interventions were performed 
in a sterile operating room under general anesthesia 
(Rometar 2 % – 1-2 mg/kg, Bioveta, Czech Republic; 
Zoletil 100 – 10-15 mg/kg, Virbac Sante Animale, 
France). Five rats were intact to calculate reference 
normal values.

Clinical methods
Clinical observation of all animals was carried out 

throughout the experiment. Their general condition 
and physical activity were assessed. Body weight was 
measured using electronic scales; general and local 
temperature in the area of surgical intervention and in the 
similar area of the contralateral limb was measured with 
a remote medical infrared thermometer (BWell Swis 
AG, Switzerland). The external condition of the lower 
leg soft tissues in the surgical area and the functional 
state of the limb were assessed. The circumference 
of the lower leg in its upper third was measured with 
a centimeter tape. The angles of passive knee extension 
and flexion were measured with a standard goniometer.

Defect healing was studied using microanatomical 
and histological methods. The animals were euthanized 
by an overdose of barbiturates after premedication 
with conventional pharmacological preparations 
on experiment days 14, 60, 180 and 360.

Anatomical methods
After euthanasia, the femur of the involved limb 

was isolated and the femur soft tissues were dissected. 
In the area of the metaphysis, its distal articular end 
was sawn off with a cutter. The features of the articular 
surface defect and the whole articular surface were 
examined, paying attention to the restoration of its 
congruence. The macroscopic evaluation standards 
of the International Cartilage Restoration Society (ICRS) 

were used [23]. The ICRS macroscopic evaluation 
of osteochondral repair has been widely used to study 
the repair of an osteochondral defect in vivo [24, 25, 26]. 
Two orthopedic surgeons and a histology researcher 
performed a blind evaluation of the effect of defect 
repair. Photographic digital documentation of anatomical 
preparations was carried out.

Biomechanical methods
To analyze the biomechanical properties 

of the articular surface of the regenerate formed 
in the area of the osteochondral defect, its compliance (P) 
was determined on fresh unfixed anatomical preparations 
(measuring the magnitude of the applied force as a result 
of the forced introduction of the indenter into the tissue 
under study). To do this, we used a pointer indicator 
with measurement steps from 0 to 10 mm and a division 
value of 0.01 mm (GOST 577-68) with a spherical 
shape of the indenter. The curvature of the cartilaginous 
surface was determined by a radius meter in the radius 
range of 0.5-10 mm. The measurements were performed 
as follows: the curvature of the cartilaginous surface 
was measured with a radius meter, setting the measuring 
device on a template corresponding to the radius 
of the cartilage surface curvature (the steady indicator 
reading is Mo), similarly, the value of penetration 
of the indenter into the cartilage was measured 
(M – according to the indication of the indicator arrow). 
The contact time of  he indenter with the cartilage was 
3-5 seconds. Each of the measurements was repeated 
three times. Average values were calculated. According 
to the formula P = 10.5 M + 70 (where P is the force 
of the spring mechanism, measured in gram-force (gf)) 
were determined the magnitude of the force P, with 
which the movable leg of the device penetrated into 
the cartilage.

Having determined the value of the indenter 
penetration (d) (in accordance with the readings 
of the digital indicator, where d = Mo-M), 
the compliance (P) was calculated: P = d/P in mm/gf, 
given that 1 m/N = 0.102 mm/gf.

Histological methods
Fragments of the distal articular end of the femur 

dissected from soft tissues were fixed in 10 % 
neutral formalin solution for 3-5 days. Samples were 
demineralized in a decalcifying solution based on EDTA 
by constant shaking and changing solutions every day 
for 7-10 days. For dehydration of bone and cartilage 
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fragments, alcohols of ascending strength (from 70° 
to 100°) were used. The samples were then impregnated 
and embedded in paraffin.

Histological sections, 5-7 µm thick, were prepared 
using a sledge microtome (Reichert, Germany), placed on 
glass slides and dried. Deparaffinized preparations were 
stained with hematoxylin and eosin, as well as alcian 
blue – safranin-O. An immunohistochemical reaction to 
CD34 antibodies was carried out by additional staining 
with hematoxylin and eosin (protocol and antibodies 
from Abcam PLC, UK).

Light microscopic study and digitization 
of histological preparations were performed using 
an AxioLab.A1 microscope and an AxioCam digital 
camera (Carl Zeiss MicroImaging GmbH, Germany). 
The thickness of the subchondral bone trabeculae was 
measured with VideoTesT Master-Morphology-4.0 
(NPK Zenit Ltd, Russia). The thickness of the cartilage 
tissue in the defect zone was measured after 180 
and 360 days on digitized images of histological 
preparations of the experiment series and intact animals. 
The areas of tissue components in the regenerate formed 

in the defect zone were measured and their portion 
in the total area of the regenerate at different time-points 
of the experiment was calculated. Blind histological 
assessment was carried out according to the system 
proposed by O'Driscoll et al [27].

Statistical methods
Statistical analysis was performed using Attestat 

software 9.3.1. The values were presented as medians (Me) 
and quartiles (Q1-Q3). The significance of differences 
was determined by the Mann-Whitney test. At p < 0.05, 
the differences were considered statistically significant.

Ethics Approval was obtained from the institutional 
ethics committee before the experiment (Ethics 
Committee of the Ilizarov National Medical Research 
Center for Traumatology and Orthopedics, Kurgan, 
Russia (protocol code 1(71), date of approval 28.04.2022). 
Interventions, animal care, and euthanasia conformed 
to the requirements of the European Convention for the 
Protection of Vertebrate Animals used for Experimental 
and other Scientific Purposes (Strasbourg, 18.03.1986), 
principles of laboratory animal care (NIH publication 
number 85-23, revised 1985), and the national laws.

RESULTS
Clinical assessment
After 14 days, the rats actively used the involved limb. 

Their behavior, food intake and physical activity did not 
differ from intact animals. Tissue swelling persisted 
for 7 days post-surgery. Measurements of the circumference 
of the upper third of the leg showed slightly lower volume 
of soft tissues of involved limbs in the control group 
in comparison to the experimental group (Fig. 1).

Neither weight loss nor critical changes in the body 
temperature were observed in the animals of both 
groups (Table 1). There was a slight increase in body 
temperature within 30 days after surgery in both groups. 
The local temperature in the joint area within a month 
after surgery was higher than the reference values 
by 2.6-2.7 °C in both groups. Fig. 1 Soft tissue circumference of the lower leg

Table 1
Physiological parameters: weight, local and body temperature

Experiment time-point Animal group Parameters
Body weight [gr] General body temperature [°С] Local temperature [°С]

Reference norm – 397.0 (342-406) 34.6 (34.5-35.1) 31.1 (30.1-31.8)

14 days Control 402.3 (331-409) 36.9 (36.4-36.9)* 33.7 (31.0-33.5) *
Experiment 403.8 (344-409) 37 (36.7-36.9) * 33.8 (32.4-33.8) *

30 days Control 408 (328-410) 36.2 (36.1-36.4) * 32.2 (31.2-32.2)
Experiment 408 (344-416) 36.4 (35.8-36.5) * 31.2 (30-31.4)

60 days Control 408.4 (343-412) 35.1 (34.7-35.4) 28.8 (28.5-28.9) *
Experiment 409.0 (348-419) 35.6 (34.7-35.5) 31.1 (30.4-31.5)

90 days Control 410.0 (338-410) 34.9 (33.5-35.05) 30.2 (28.85-31.2)*
Experiment 410.0 (350-434) 35.03 (34.4-35.1) 31.3 (30.8-31.3)

180 days Control 393(391-395) 35.1 (34.9-35.3) 30.8 (29.8-31.8)
Experiment 413 (411-415) 34.9 (34.7-35.1) 30.7 (30.1-31.8)

360 days Control 401 (398-404) 35.6 (35.5-35.7)* 30.4(29.7-31)*
Experiment 418 (410-426) 35.1 (34.9-35.3) 30.9(30.4-31.4)

* significant difference, p < 0.05
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At any time-point of the study, range of knee motion 
in experimental and control animals did not significantly 
differed from each other and from intact rats (Fig. 2). 
But at the 1-year point, the values of knee extension 
in both groups were reduced relative to the previous 
mesurements by 8.1 % in the experimental group and 
by 16.5 % in the control group. At the same time, 
in the experimental group, the values did not have 
significant differences from intact animals and were 
higher than in the control group by 11 %.

Knee flexion values in both groups did not differ from 
those in intact animals. However, a slight decrease was 
noted after 30 days in both groups (by 3 % and by 1.5 %, 
in the experimental and control groups, respectively) 
and after a year in the control group (by 1.5 %). At the 
same time, from 90 days to 360 days, the indicators 
of the experimental group exceeded those in the control 
one by 2 %-2.9 %. So, there was no significant difference 
in ROM between the groups.

Results of anatomical and histological study
The study of anatomical preparations of the distal 

articular end of the femur showed that in the animals 
of the experimental group, a smooth shiny articular 
surface was seen and preservation of the anatomical 
relief of the condyle already after 14 days due 
to the implanted material filling the defect gap. The 
defect was covered with a layer of transparent tissue 
under which the implant material was visualized filling 
the defect (Fig. 3 i). There were no signs of implant 
rejection, inflammatory reaction of surrounding tissues 
and cavities around it. On day 60, the layer of tissue 
on the implant surface was more pronounced, and 
the surface congruence was maintained (Fig. 3 j). 
throughout the study including long-term, the 
anatomical relief of the surface in the area of damage 
was preserved in experimental group (Fig. 3 k, l). 
Visualization of the implant at each subsequent 
study time-point was less expressed (Fig. 3 j, k, l). 
At six months post-surgery, the defect site was 

completely replaced by specific tissues. The lateral 
femoral condyle retained its anatomical shape without 
erosion. The color and gloss of the surface was similar 
to the norm (Fig. 3 l).

In the control group, the bottom of the defect was 
lined with a smooth tissue layer in all periods, denser 
and less transparent along the perimeter of the edge 
of the defect (Fig. 3 a-d). However, the defect was 
not filled even after 180 days of the experiment 
(Fig. 3 c). After 360 days, the defect was unevenly 
filled with a connective tissue substrate (Fig. 3 d). 
The congruity of the surface was disturbed at all time-
points of the experiment (Fig. 3 a-d). In the intact lateral 
condyle, areas with erosions on the cartilage surface 
were visualized starting from day 60 of the experiment 
(Fig. 3 b, c, d).

At all time-points of the experiment, the indicators 
of macroscopic assessment according to the ICRS 
standards in the experimental group were significantly 
higher than in the control group (Table 2). 
The maximum scores were noted in the experimental 
group after six months and a year of the experiment. 
By those time-points, cartilage recovery was close 
to normal and corresponded to the grade II of healing 
while in the control group, the result corresponded 
to grades III and IV, which are characterized 
as abnormal and extremely abnormal recovery. 
The results obtained are consistent with those 
of descriptive morphology.

Table 2
Results of macroscopic study of osteochondral defect 

recovery (ICRS standards)

Group Number of points, Me (Q1-Q3)
60 days 180 days 360 days

Control 2.5 
(2.3-2.6)*

4 
(3.9-4.2)*

4.5 
(4.3-4.7)*

Experimental 10 
(9.5-10.5)

10.5 
(10.3-10.7)

11 
(10.8-11.4)

*significant difference (p ˂ 0.01)

Fig. 2 Range of motion in knee joint: a – extension, b – flexion
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Histological methods showed that the area 
of the defect in the experimental group was densely 
filled with implant material after 14 days, around which 
granulation and loose fibrous connective tissue and 
microvessels were detected (Fig. 3 m). Bands of loose 
fibrous connective tissue containing microvessels, 
an accumulation of poorly differentiated fibroblast-
like cells, cells of the monocyte-macrophage series 
and lymphocytes grew from the side of the surrounding 
subchondral bone into the spaces between the structures 
of the implant (Fig. 4 b). Among them, there were 
cells in a state of division (Fig. 4 c). Inflammatory 
infiltrates around the structures of the implant 
material were not observed. In the intertrabecular 
spaces of the subchondral bone adjacent to the defect, 
predominantly red (hematopoietic) bone marrow was 
seen. Outside, small areas of hyaline-like cartilage 
crawled onto the implant filling the defect from the 
side of the preserved hyaline cartilage, connected 
with avascular fibrous connective tissue with small 
areas of granulations, covering most of the surface 
of the defect (Fig. 3 m, Fig. 4 a).

In the control group, the defect was predominantly 
filled with loose fibrous tissue with granulation foci 
(Fig. 3 e, Fig. 4 d, e). In the intertrabecular spaces, 
inflammatory infiltrates, loose fibrous connective 
tissue, and foci of hematopoiesis were noted 
(Fig. 4 e).

After 60 days of the experiment, the volume 
of the implant material significantly decreased due 
to its biodegradation and replacement with tissue 
components; in the projection of the subchondral bone 
with reticulofibrous bone and loose fibrous connective 
tissues with numerous microvessels, and in the 
projection of the cartilaginous lining from the side of 
intact hyaline cartilage with small foci of hyaline-like 
tissue, and in the middle part with fibrocartilaginous 
tissue (Fig. 5 a).

Bone trabeculae along the periphery of the defect 
area were more mature and mineralized but slightly 
mineralized in the middle part (Fig. 5 c). The cell 
composition was characterized by cells of epithelial, 
fibroblastic, osteogenic and monocyte-macrophage 
differons. Osteoclasts were determined (Fig. 5 d).

Fig. 3 Anatomical and histotopographic macro- and microphotos of the osteochondral defect at different time-points of the experiment. 
Anatomical preparations of the distal articular end of the femur in the control group (a-d); histotopographic sections of the area of the 
osteochondral defect of the femoral condyle in the control group (e-h); anatomical preparations of the distal articular end of the femur in the 
experimental group (i-l); histotopographic sections of the area of osteochondral defect of the femoral condyle in the experimental group (m-p); 
f, g, h, p – Staining with hematoxylin and eosin (e, f, g, m); alcian blue-safranin staining (h, n, o, p). Magnification (e-h, m-p):50×
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Fig. 4 Features of the regenerate in the area of the osteochondral defect after 14 days of the experiment. Experimental group: articular surface 
in the area of the defect replaced by the implant (a); ingrowth of loose fibrous connective tissue into the structure of the implant (b); (c) 
mitotically dividing cells in the regenerate formed in the area of the osteochondral defect (arrows). Control group: articular surface in the 
area of the defect (d); loose fibrous connective tissue that fills the defect and trabecular subchondral bone that forms the bed of the defect (e). 
Staining with hematoxylin and eosin. Magnification: a, b, d, e – 400×; c – 1000×

Fig. 5 Features of the regenerate in the area of the osteochondral defect after 60 days 
in the experimental group: istotopographic image of the operated femoral condyle (a); 
slight creeping of hyaline cartilage tissue on the surface of the defect (b); formation of 
fibrous cartilage tissue in the superficial zone of the defect; formation of trabeculae of 
reticulofibrous bone tissue in the area of implantation (c), visualization of implant material 
residues, dilated microvessels, no inflammatory infiltrates; partial biodegradation of the 
implant material; increased number of macrophage cells (d). Staining with hematoxylin 
and eosin (a, b, d); safranin-O and alcian blue (c). Magnification: a – 50×; b, d – 200×; 
c – 100×

Giant cells of foreign bodies were not found. 
Microvessels in the area of the defect and adjacent parts 
of the subchondral bone were plethoric and dilated. 
In the projection of the cartilage, the vessels were not 
found. There was no rarefaction of the subchondral bone 
beyond the defect area. Vessels and hematopoietic-fatty 
bone marrow were visualized in the intertrabecular 
spaces.

In the control group after 60 days, the defect 
was partially covered by the trabecular bone from 
the side of the subchondral bone (Fig. 6 a) and with 
fibrous tissue in the central part (Fig. 6 a, b). Surface 
congruence was not achieved and a crescent cavity 

was noted (Fig. 3 b, f. Fig. 6 a). From the side of the 
cartilage lining, no creeping of hyaline cartilage tissue 
into the defect area was detected (Fig. 6 b). The vessels 
in the intertrabecular spaces were dilated. Lymphocytic 
infiltrates were determined along their periphery 
(Fig. 6 c). A thickening of the subchondral compact plate 
was noted at the edges of the defect (Fig. 6 b). The bone 
marrow in the intertrabecular spaces was predominantly 
hematopoietic-fatty.

After 180 days in the experimental and control series 
the subchondral defect was replaced by trabecular bone 
of hematopoietic-fatty marrow in the intertrabecular 
spaces (Fig. 3 o, g, Fig. 7 a, c, Fig. 8 a, d). 
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Fig. 6 Features of the regenerate in the area of the osteochondral defect after 60 days of the experiment. Control group: histotopographic image 
of the operated femoral condyle (a); thickening of the compact plate of the subchondral bone at the edges of the defect (b) and filling the defect 
with fibrous connective tissue; dilated sinusoidal capillaries with lymphocytic infiltrate in the perivascular region (c). Staining: safranin-O and 
alcian blue. Magnification: a – 50×; b, c – 100×

Fig. 7 Features of the regenerate in the area of the osteochondral defect after 180 
days of the experiment. Experienced group: formation of a cartilaginous lining 
throughout the replaced osteochondral defect (a); zonal structure of the newly formed 
hyaline cartilage , fibrillation of the outer zone, the appearance of isogenic groups of 
young chondrocytes in the median zone, a volumetric zone of calcified cartilage (b); 
hematopoietic bone marrow with fat cells in the intertrabecular spaces of the replaced 
area of the subchondral bone in the area of the defect (c); a fragment of the implant 
material embedded in the structure of the bone trabecula (d). Staining: a-d – safranin-O 
and alcian blue. Magnification: a – 50×; c – 100×; b, d – 200×

Fig. 8 Features of the regenerate in the area of the osteochondral defect after 180 days 
of the experiment. Control group: filling the area of the defect with fibrous connective 
tissue, formation of a hyperplastic compact plate of the subchondral bone (a); connective 
fibrous tissue on the surface of a defect replaced by subchondral bone (b); formation of 
areas of fibrous cartilage tissue on the surface of the newly formed subchondral bone in 
the area of the defect (c); hematopoietic-fatty bone marrow in the intertrabecular spaces 
(d). Staining with hematoxylin and eosin (a, c, d); with safranin-O and alcian blue (b). 
Magnification: a – 50×; c – 100x; b, d – 200×
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In the control group, compacted bone conglomerates 
were formed closer to the outer surface of the condyle, 
similar to osteophytes (Fig. 3 g). In the projection 
of the articular cartilage, the area of the defect 
in the experimental series was replaced by a layer 
of hyaline cartilage tissue (Fig. 3 o, Fig. 7 a, b) 
while in the control group by a layer of fibrous 
connective tissue (Fig. 3 g; Fig. 8 a, b), in a separate 
case in combination with small fragments of fibrous 
connective tissue (Fig. 8 c). The remnants of the 
implant material in the area of the defect in the animals 
of the experimental series were not found what 
indicated its complete biodegradation by this period. 
In one field of vision, there was an area with a small 
fragment of the implant material embedded in the 
structure of bone trabecula (Fig. 7 d).

Immunohistochemical staining for CD 34 
revealed newly formed vessels in the superficial 

connective tissue layer in control animals (Fig. 9 b). 
In the experimental group in the newly formed 
cartilage tissue formed in the area of the defect, 
the test was negative (Fig. 9 a).

After a year in the experimental group, 
the preservation of the integrity of the cartilage lining 
was noted. The newly formed cartilage acquired a zonal 
structure. It contained superficial (more voluminous 
than in intact animals), intermediate with small 
isogenic groups, and deep zones (Fig. 3 a, Fig. 10 a). 
In the control animals, the superficial area of the defect 
was filled with fibrous tissue, sometimes with 
small areas of fibrous cartilage (Fig. 3 h, Fig. 10 b). 
The subchondral bone in the experimental group 
practically did not differ from that in intact animals 
(Fig. 3 p, Fig. 10 d, f). In the controls, it was slightly 
sparse, with a thickened compact plate in the area 
of the defect (Fig. 3 h, Fig. 10 e).

Fig. 9 Immunohistochemical staining to detect vessels in the surface lining of the regenerate of an osteochondral defect; vessels were not 
identified in the experimental group (a); microvessels were detected in the control group (b, brown staining). Staining is an immunohistochemical 
reaction using antibodies to CD34. Magnification – 400×

Fig. 10 Regenerate features in the subchonral defect area after 360 days of the experiment: a – formation of hyaline cartilage tissue of zonal 
structure in the experimental group; b – filling the defect area with fibrous connective tissue in the control group; c – structure of the articular 
cartilage in intact animals of the same age; d-f – structure of subchondral bone (d – experimental group, e – control group, f – intact animals). 
Staining: a-e – safranin-O and alcian blue. Magnification: a-e – 200×
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A semi-quantitative assessment of the completeness 
of replacement and recovery of tissues in the area 
of the osteochondral defect showed that in all periods 
of the experiment, a more complete recovery was 
observed in the experimental group (Table 3). 
After 60 days, the median of the experimental group 
was 1.7 times higher than that in the control group, after 
180 days by 3.12 times, after a year of the experiment 
by 3.25 times. Since the maximum number of points 
for this assessment system is 28 points, it can be said 
that after 180 days the healing of the articular surface 
defect in the experimental group was almost complete, 
and after a year of the experiment it was complete. 
In the control group, the healing of the defect was very 
poor even after a year.

The analysis of morphometric data showed 
significant differences in the fractional components 
of the tissue components of the regenerate in the defect 
area in the experimental and control groups in almost all 
periods of the experiment (Table 4). In the control series, 

there was no implant material and in none of the periods 
was the formation of hyaline cartilage tissue detected. Its 
fraction in the total structure of the regenerate was equal 
to zero. However, the fractions of bone tissue and bone 
marrow in the regenerates of the control and experimental 
groups did not have significant differences after 2 months 
and after 1 year of the experiment.

Table 3
Results of a semi-quantitative histological assessment 

of the completeness of osteochondral defect filling 
according to O'Driscoll (modified)

Group
Number of points at experiment 

time-points, Me (Q1-Q3)
60 days 180 days 360 days

Controls 4.4 
(4.2-4.6) 7.5 (6.7-8.2) 8 (7.7-8.3)

Experimental 7.6 
(7.3-8.1)

23.4 
(23.3-23.7)

26 
(25.8-27.3)

Notes: the maximum possible number of points is 28; 
p ˂ 0.01 – differences between the groups are significant 
at all time-points

Table 4
Fractions of tissue components in the regenerate filling the osteochondral defect

Experiment 
time-point Series

Fractions of tissue components ( %). Ме (Q1-Q3)

Bone marrow Bone tissue Fibrous 
connective tissue

Fibrous cartilage 
tissue Hyaline cartilage Implanted material

14 days

Control
0

2р = 4.26Е-0.5
9.9 (8.7-11.1)

1р = 0.035
2р = 0.008

90.1 (88.3-91.9)
1р = 5.85Е-07

2р = 0.0006

0
1р = 0.011

0
2р = 0.011

0
1р = 0.00018

3р = 0.000182

Experimental
0

2р = 4.26Е-0.5
6.2 (5.9-6.5)

1р = 0.035
2р = 0.056

13.5 (11.2-14.1)
1р = 5.85Е-07

2р = 0.004

3.2 (2.6-3.8)
1р = 0.011
2р = 0.004

0
2р = 0.011

77.1 (75.3-78.9)
1р = 0.00018
2р = 2.5Е-07

2 months

Control

24.6 (23.3-27.1)
1р = 0.11

2р = 0.016
3р = 0.019

43 (42-47)
1р = 0.78

2р = 0.027
3р = 0.00026

28 (24.7-30)
1р = 0.0023

3р = 0.00026

0
1р = 0.0014
2р = 0.031

3р = 4.69E-0.6

0
1р = 0.0017
2р = 0.011

3р = 4.69E-0.6

0
1р = 0.0014

Experimental
21.7 (21.3-22.2)

1р = 0.11
3р = 00.17

44.1 (43.7-45.7)
1р = 0.78

3р = 0.00027

21 (43.7-45.7)
1р = 0.0023
3р = 0.003

2.8 (2.5-3.3)
1р = 0.0014

3р = 0.43

3.5 (3.4-3.7)
1р = 0.0017
3р = 0.0016

6.1 (7.1-5.6)
1р = 0.0014
3р = 0.0002

6 months

Control

29.2 ( 28.9-33)
1р = 0.08

2р = 0.0033
3р = 0.035

57.2 (53.7-62.7)
1р = 0.008

2р = 0.0025
3р = 0.02

8.1 (7.4-9.9 )
1р = 0.013

2р = 0.0084
3р = 0.0016

0.68 (0.51-1.74)
1р = 0.013

2р = 0.0084
3р = 0.0015

0
1р = 0.08

2р = 0.0015

0
1р = 0.42

Experimental

45.1 (44.5-45.3)
1р = 0.08

2р = 3.18Е-0.5
3р = 4.06Е-07

38 (36-45)
1р = 0.008
2р = 0.24
3р = 0.22

5.9 (5.7-6.1)
1р = 0.013

2р = 0.000025
3р = 2.98Е-0.5

0
1р = 0.013

3р = 0.007

9.6 (3.8-13.1)
1р = 0.08
2р = 0.63

3р = 0.043

0.46 (0.36-1.38)
1р = 0.42
2р = 0.42

3р = 0.022

1year 

Control

39.8 (36-50.7)
1р = 0.16

2р = 0.165
3р = 0.12

34 (33-89.1)
1р = 0.31
2р = 0.45
3р = 0.78

26.4 (10-40.4)
1р = 0.1

2р = 0.01
3р = 0.19

0

3р = 0.013

0
1р = 0.02

2р = 0.0015

0

Experimental

52.7 (46.71-
54.43)

1р = 0.16
2р = 0.398

3р = 3.18Е-05

30.28 (16.58-
32.3)

1р = 0.1
2р = 0.21

3р = 0.247

0
1р = 0.1

0 12.86 (9.07-
16.65)

1р = 0.02
2р = 0.17
3р = 0.63

0

3р = 0.022

Intact 54.1 (53.1-54.2) 36.8 (30.63-
37.43) 0 0 10.4 (9-12.6) 0

Notes: 1р – significance of differences between the groups; 2р – significance of difference compared with experimental animals; 3р – 
significance of difference as compared with the previous experimental time-point. Differences are significant at p < 0.05; bold typed 
are values that do not have significant difference (p ˃ 0.05) 
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The content of connective tissue in regenerates filling 
osteochondral defects in animals of the control group was 
significantly higher than in the experimental group: after 
14 days by 95 %, after 60 days – by 25 %, after 180 days – 
by 27.2 %, and after 360 days – by 73.6 %. In both 
groups, the maximum content of fibrous connective tissue 
in the composition of the regenerate was observed by day 
60. By day 180, this component decreased by 71-72 % 
in both groups, while in the experimental group its portion 
was very small, only 5.9 %. After a year of the experiment, 
there was no fibrous connective tissue in the regenerate 
of the experimental group animals. In the control group, 
it occupied almost one third of the regenerate. Hyaline 
cartilage tissue in the experimental group was detected after 
60 days of the experiment. Its content significantly increased 
by 36.5 % after 180 days of the experiment, and by another 
25.3 % after a year (360 days). The content in those 
periods corresponded much to the indicators in the intact 
rats. After 360 days of the experiment, the regenerates 
of the experimental group animals contained only bone 
tissue, bone marrow and hyaline cartilage tissue. Their 
fractional content was similar to that in intact animals.

In the control group, the content of bone tissue and 
bone marrow did not have significant differences from 
the experimental and intact groups at that time-point. 
At the same time, the portion of fibrous connective tissue 
was about 30 %, and the hyaline tissue was absent. The 
content of the implant material in the experimental group 
significantly reduced as the experiment period increased. 
Within the time points of 14 to 60 days, its content 
decreased by 92 %. By day 180 of the experiment, there 
was no implant material in the regenerate in the area 
of the osteochondral defect. It completely degraded 
by that time-point. The thickness of the cartilaginous 
lining in the area of the osteochondral defect after 
180 days was significantly higher than that in the norm 
(Fig. 11). A year later, the thickness of the articular 
cartilage was comparable to that in intact animals 
of the same age. Morphometry of the subchondral bone 
trabeculae thickness showed that they were thicker in 
the experimental group than in the control group. Their 
thickness after a year did not differ from that in intact 
rats (Fig. 12).

Fig. 11 Thickness of the articular cartilage in the experiment 
group after 180 days and a year relative the intact animals

Fig. 12 Thickness of the subchondral bone trabeculae in the area 
of the osteochondral defect after six months and in a year of 
the study

Biomechanical study
Biomechanical methods established that the values 

of regenerate compliance in the area of the osteochondral 
defect relative to the control group were reduced 
by 29.2 % and by 18.5 % in the experiment group 
by day 60 of the experiment, but did not have significant 
difference compared to similar indicators in intact animals 
(Table 5). The values of the experimental group exceeded 
those in the control group by 15 %. After 180 days of 
the experiment, the biomechanical properties increased 
in both series: insignificantly in the control group by 
only 3 %, and by 11.9 %in the experimental group. In 
the experimental group, the values did not significantly 
differ from those in intact animals; in the control they 
remained lower by 26.2 %.

Table 5
Biomechanical properties of the regenerated articular 

surface in the osteochondral defect

Experiment 
time-point (days)

P – compliance, 10 mm3/g*cm
Control group Experimental group

60 days 1.956 (1.597-1.982)* 2.250 (2.167-2.628) #
180 days 2.009 (1.580-2.250)* 2.553 (1.607-2.727)
360 days 1.997 (1.898-2.210)* 2.599 (2.408-2.691)#
Intact 2.762 (2.221-2.978)

* – p < 0.05 – significant difference with intact animals; 
# – p < 0.05 significant difference with the control group.

After 360 days, the values of compliance 
of the regenerate formed in the area of the osteochondral 
defect did not differ from the previous period 
in the experimental group. In the experimental group, 
they slightly increased by 2 %, while in the control 
group they decreased by 1 %. As in the previous time-
point, the animals of the experimental group did not 
show significant differences in the values of articular 
surface compliance from those in the intact animals 
while in the control animals they were significantly 
lower (by 27.2 %).

The study showed that the mechanical properties 
of the cartilage recovered to the level of the intact 
animals by day 60 in the experimental group and 
persisted up to 360 days, while in the control group they 
did not recover even after 360 days.
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DISCUSSION

A lot of researchers worldwide have been 
searching for the ways to solve the problem of treating 
irreparable osteochondral defects. Many options have 
been proposed, including those using bioengineering 
technologies [30]. However, a perfect method of tissue 
repair in the area of an osteochondral defect, the effect 
of which could be preserved for a long period, has not 
been developed so far [18]. Therefore, the search for 
the ways to successfully manage irreparable articular 
surface defects continues and is aimed at prevention 
or delay of joint replacement procedures. The greatest 
preference would be given to less expensive and one-
step techniques [17].

Previously, it was found that the most effective 
regeneration of hyaline-like cartilage is possible 
only with the use of collagen matrices populated 
with autologous cartilage cells in combination with 
microfracturing [31]. There are data on the positive use 
of cell-free collagen scaffolds [32, 33]. Some studies 
have shown that collagen matrices did not contribute 
to the restoration of joint surface congruence [34].

An alternative to collagen matrices has recently 
been polymeric implants. Polycaprolactone (PLC) 
is one of the most commonly used polymers in tissue 
engineering to restore the loss of bone and cartilage 
tissue [26, 35, 36]. One of its shortcomings is its 
low adhesive ability [37]. Many authors compensate 
for this drawback by adding hydroxyapatite particles 
to its composition or apply them to the surface of PLC 
products. Thus, this composite biomaterial has induction 
properties, is able to enhance proliferation and have 
effect on cell differentiation [38, 39].

It is known that the hydroxyapatite nanocomposite has 
greater biocompatibility and better adhesion properties 
of its surface compared to the microcomposite [40, 41]. 
The method of obtaining an elastic implant 
by electrospinning contributes to the creation 
of a voluminous fibrous framework with a fiber 
diameter and interfiber gaps that are optimal for cell 
and vessel migration [42]. It was revealed that post-
traumatic changes in the joints and the development 
of osteoarthritis are associated with the temperature 
of the skin in the joint area. At the same time, the severity 
of the pain syndrome does not correlate with pain 
sensations of the patient [43].

In our study, skin temperature in the area of the knee 
joint was increased in the early postoperative period 
and persisted up to 2 weeks of the experiment, what 
was associated with the post-traumatic state of tissues 
after surgery [44]. In the control series, a significantly 
increased temperature was noted after one year 
of observation and was associated with an aggravation 
of the arthritic changes, what was confirmed 
by anatomical and histological methods [44-46]. 
A slight increase in the skin temperature in the animals 

of the experimental series, compared with the control one, 
we associate with the improvement of microcirculation 
in the restored tissues in the area of damage. It was 
observed in the works of other researchers [47, 48].

Throughout the experiment, the volume of limb soft 
tissues in the animals of the experimental series was 
higher than in the animals of the control series. MRI 
used by several studies revealed a decrease in limb 
circumference in patients with gonarthrosis, associated 
with reduction in the muscle diameter and replacement 
of muscle tissue with adipose tissue [49].

The range of joint motion in the series with 
replacement of an osteochondral defect with a PLC 
matrix impregnated with hydroxyapatite at all stages 
of the experiment, especially in long-term periods 
(six months and a year of observation) was significantly 
better than in the animals of the control series. 
We attribute this to the progression of osteoarthritis 
signs in the control series. The reduced range 
of motion in the knee joint can be explained by pain 
and discomfort by walking and joint loading [50-52]. 
Restoration of the anatomical integrity and complete 
organotypicity of the newly formed regenerate in the 
area of the osteochondral defect in the experimental 
series already after 180 days of observation, proven 
by anatomical and histological methods, in our opinion, 
is associated with the structure of the implant, its good 
adhesive ability, sufficient porosity and elasticity. 
Starting from the moment of surgery, the elastic implant 
filled the area of the osteochondral defect, ensuring 
the integrity and congruence of the articular surface, 
withstanding the functional load, that is providing 
factors that are considered important in the healing 
of osteochondral defects [53, 54].

Early functional loading contributed to the ingrowth 
of microvessels into micropores between the fibers 
of the implant. Perivascular cells and bone marrow cells 
attached to the structured surface of the implant, thanks 
to the hydroxyapatite nanoparticles deposited on them. 
Hydroxyapatite acted as an inducer of osteogenesis 
and promoted cell differentiation along the osteogenic 
pathway [55]. Since the vessels grew into the implant 
from the side of the intact subchondral bone, 
the formation of bone tissue occurred in the projection 
of the cancellous bone surrounding the defect, which 
is necessary as a base and nourishing factor for the 
formation of cartilage tissue on the surface. There were 
no vessels in the surface layers of the implant. Under 
such conditions, undifferentiated bone marrow cells 
penetrating the surface in the projection of the articular 
cartilage surrounding the defect differentiated along 
the chondrogenic pathway. Cell differentiation into 
chondroblasts and chondrocytes continued throughout 
the experiment with sufficient nutrition from 
the synovium, which produced a sufficient volume 
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Abstract
Background Development of resorbable implants for paediatric orthopaedics is promising as there is no need for implant removal. 
The aim of this paper is to present our experience in resorbable implants in paediatric traumatology, and to make an overview of the 
recent literature. Material and methods In our department of paediatric traumatology and orthopaedics, we have operated 7 children 
with fractures of long bones with resorbable screws (ActivaScrew™). The inclusion criteria were intra-articular and juxta-articular 
fractures in children with an indication for screw fixation. To prepare the review, we searched for information sources at the scientific 
platforms such as PubMed, Scopus, ResearchGate, RSCI, as well as other published products (Elsevier, Springer). Results The cohort 
is represented by 7 patients, 4 girls and 3 boys, aged from 5 to 14 years old. The 7 fractures were 3 at the elbow and 4 at the ankle joint. 
In the immediate postoperative period, no patient presented with abnormal swelling, redness, or tissue reaction. Pain disappeared at 
day 7 in all cases. Weight-bearing and return to sport activities were allowed in normal delay. Radiological bone union was obtained 
between 3 and 6 weeks. Range of motion in adjacent joints was comparable to the opposite non-fractured side at 3 months. There were 
no cases of complications, no infection, and no need for a reoperation. Discussion The use of resorbable implants, either co-polymers 
or magnesium, solves the problem: removal of implants is not anymore necessary. Resorbable implants are becoming safer as they have 
good solidity allowing bone union of fractures and osteotomies before their eliminating. Conclusion Main indications of resorbable 
implants in pediatrics remain fractures and osteotomies fixed with screws. The development of plates and intramedullary nails will 
enlarge the indications. Level of evidence: IV.
Keywords: paediatric fracture, resorbable implants, co-polymer, magnesium
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INTRODUCTION

© Lascombes P, Journeau P, Popkov DA, 2023

The surgical treatment of paediatric fractures usually 
requires their fixation with metallic implants, made 
of stainless steel or titanium. Main indications of internal 
fixation are intraarticular fractures classified as Salter 
III and IV types and diaphyseal fractures which cannot be 
treated with conservative methods. The former need most 
often screw fixation via an open or a closed approach. 
On many occasions, diaphyseal fractures are treated with 
intramedullary fixation. The first choice is the flexible 
nailing technique in forearm and humerus fractures, 
and in femur and tibia fractures before the end of growth. 
The advantages of metallic implants are well-known, 
but among their disadvantage, one question is permanent: 
removal or not? In one hand, the future is uncertain 
in case of a need for orthopaedic surgery. To remove 
implants after a long term may be a nightmare. But 
on the opposite, the removal of implants needs a second 
surgery, and complications are not negligible. In addition, 
the use of those devices can entail complications as 
hematomas, healing problems, local sepsis.

For these reasons, the development of resorbable 
implants is promising as there is no need for implant 
removal. But resorbable implants must be safe. 
This means they must have a comparable efficiency with 

classic metallic implants to stabilize the fractures: firstly, 
stability and resistance of the implants are mandatory 
till bone union is obtained; secondly, absence of free 
debris which might damage some tissues like brain, 
liver, ganglions, lungs. For that reason, some resorbable 
implants used in the past have been withdrawn from 
the market due to some complications as intraarticular 
synovitis and spread of debris.

Interference screws [1] and absorbable anchors are 
currently used in tendons and ligaments reconstruction. 
In adult trauma, some fractures of the ankle are treated 
with absorbable plates and screws. The biomechanical 
stability of these implants has shown excellent qualities 
and biological properties.

One category of resorbable or biodegradable 
materials is a polymer that has been used for around 
40 years in many surgical applications. Initially used just 
for sutures, resorbable plates and screws are commonly 
used in maxillofacial surgery, such as for osteotomy 
syntheses or mandibular fractures. A second group 
of resorbable implant is the new generation of magnesium 
implants: experimental studies demonstrate their good 
tolerance and nice results. The first clinical studies show 
good results too.
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The main goal of this paper is to present our 
experience with resorbable implants in paediatric 

traumatology, and to make an overview of the recent 
literature.

MATERIAL AND METHODS
In our level I department of paediatric traumatology 

and orthopaedics, we operated on 7 patients with fractures 
of long bones with resorbable screws, partially 
threaded ActivaScrew™ LAG (Bioretec). The decision 
to select these new implants was taken under following 
consideration: absence of debris and urine elimination 
of the polymer polylactide-co-glycolide (PLGA), strong 
fixation ability till bone union (https://bioretec.com/
products).

The inclusion criteria were intra-articular 
and juxta-articular fractures in children with 
an indication for screw fixation, and acceptation 
of the patient and the family for a resorbable implant 
after given precise information. The exclusion criteria 
were pathological fractures.

Surgical technique Reduction of the fractures was 
obtained either by closed method and mini-invasive 
approach or by open approach with the same technique 
as in fixation with conventional metallic screws. One hole 
by screw was performed strictly into the epiphysis 
with a drill smaller than the diameter of the screw 
under the C-arm control to be parallel to both physis 
and joint (Fig. 1), thus a drill of 2.5 mm diameter was 

used for a screw of 3.5 mm diameter. Then, the cortex 
was enlarged with a countersink to bury around 50 % 
of the screw head. The adapted tap, 3.5 mm for 3.5 mm 
screws, is mandatory to be used. Just before insertion, 
the screw was dipped in a contrast fluid expecting 
to be visible on the C-arm control, but unfortunately 
it was not always visible. Finally, the screws were 
inserted with an adapted cap. At that moment, the first 
screw was not yet tightened. A second screw, of the 
same size, same technique was inserted almost parallel 
to the first one. Then, we tightened both screws: we 
just turn the screwdriver till the adapted system pulled 
out. It is not recommended to continue tightening 
the screws themselves as their head may break, leading 
to a complete loosening of the compressive effect 
on the fracture.

Imaging control should demonstrate the fracture line 
to disappear completely, proof of an excellent reduction. 
An immediate arthrogram of the joint confirmed 
the satisfactory anatomical reduction of the fracture 
(Fig. 2). An immediate immobilization was done 
with a splint plaster cast, replaced three days later with 
a resin cast.

Fig. 1 Surgical technique: a – fracture with dislocation; b – reduction of the fracture and drilling of the epiphysis; c – screw with contrast fluid 
is visible on the C-arm control

Fig. 2 Control of reduction:  
a – Tillaux fracture;  
b – fracture line disappeared, 
an immediate arthrogram 
confirms satisfactory anatomical 
reduction of the fracture
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Assessed criteria were duration of the surgical 
procedure; presence or not of swelling, redness, tissue 
reaction, pain on day 1, day 7, and day 30; time for bone 

union, date of full weight-bearing, and range of motion 
at 3 months; date of return to sport activities; 
complications and reoperation rate.

RESULTS

The cohort is represented by 7 patients, 4 girls and 
3 boys, aged from 5 to 14 years old. The 7 fractures 
were three at the elbow (Fig. 3) and four at the ankle 
joint. All of them were classified as intra-articular 
displaced fractures requiring anatomical reduction and 
stable screw fixation. The used resorbable screws were 
partially threaded, 3.5 mm diameter and of different 
length from 20 to 45 mm.

In the immediate postoperative period, day 1, 7 and 
30, no patient presented with abnormal swelling, redness, 
or tissue reaction. Pain disappeared at day 7 in all cases. 
Weight-bearing and return to sport activities were allowed 
in normal delay. Radiological bone union was obtained 
between 3 and 6 weeks. Range of motion in adjacent 
joints was comparable to the opposite non-fractured side 
at 3 months. There were no cases of complications, no 
infection, and no need for a reoperation (Table 1).

Fig. 3 Medial epicondyle fracture: a – radiograph at admission; 
b – reduction and osteosynthesis

Table 1
Cases included in the study

Sex Age 
(years) Fracture

Implants 
diameter/

length

Duration 
of surgery 
(minutes)

Delay 
of bone 
union

Delay 
of weight 
bearing

Delay 
sport 
return

Range 
of motion 

at 3 months
Complication Follow-

up

Girl 13
bimalleolar, 
ankle 
dislocation

2 screws 
3.5/45 mm 
3.5/45 mm

57 6 weeks 6 weeks 3 months
comparable 
to opposite 
side

no 1 year

Boy 14
proximal first 
metatarsal bone 
Salter III

1 screw 
3.5/З0 mm S4 6 weeks 6 weeks 3 months

comparable 
to opposite 
side

no 1 year

Boy 5 olecranon 
longitudinal

2 screws 
3.5/20 mm 
3.5/20 mm

87 4 weeks N/A 3 months
comparable 
to opposite 
side

no 9 
months

Girl 14
distal tibia 
Salter III 
(Tillaux')

1 screw 
3.5/40 mm 54 6 weeks 6 weeks 3 months

comparable 
to opposite 
side

no 1 year

Girl 10 medial 
epicondyle

1 screw 
3.5/40 mm 47 4 weeks

played 
piano 

at 4 weeks
3 months

comparable 
to opposite 
side

no 3 years

Girl 12 medial 
malleolus

1 screw 
3.5/20 mm 35 4 weeks 4 weeks 3 months

comparable 
to opposite 
side

no 6 
months

Boy 10

elbow 
dislocation 
lateral condyle 
fracture

2 screws 
3.5/24 mm 
3.5/40 mm

47 6 weeks N/A 2 months
comparable 
to opposite 
side

no 6 
months

DISCUSSION

Different polymers of lactic acid (PLA) and 
glycolic acid (PGA) have been proposed for orthopedic 
surgery both in adults and children [2, 3]. PLA 
implants are known as responsible of local reactions 
during absorption and rapid degradation which may 
cause instability before bone union. On the other hand, 

poly-(L)-lactic acid (PLLA) implants have a slow 
resorption and may lead to bone cavity filled with 
either fibrous tissue or fluid [4]. They may also cause 
local reaction as foreign-body reactions. As for others, 
the PLLA/PGA interference screw completely 
degraded, and no remnant was present 3 years after 
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implantation for a bone-patellar tendon-bone graft 
ACL reconstruction [1].

In reconstruction of nerves, implantation of poly 
(DL-lactic acid) PDLLA film did not alter liver or renal 
functions. Pathologic examinations showed that 
implantation of PDLLA film did not cause pathologic 
changes to the rat liver, kidney, pancreas, or spleen. 
Taken together, these results suggest that PDLLA films 
have excellent biocompatibility and no obvious toxicity 
in vivo, and may be used to prevent nerve adhesion, 
thereby promoting nerve regeneration [2].

Poly lactic-co-glycolic acid (PLGA) has been 
developed as another component. This new resorbable 
implant slowly degrades while it reacts with water 
in the human body. It adds advantages of a mid-term 
resorption, with a good stiffness enough to obtain 
bone union, and without any type of inflammatory 
reaction [5, 6]. The degraded components are exhaled 
and excreted, the total elimination occurs within 
approximatively 2 to 3 years. Since theses implants 
do not include any metal, there is neither X-ray, 
ultrasound nor MRI disturbances [6, 7, 8].

In clinical practice, the advantages to avoid removal 
of implants have been widely emphasized [9, 10]. 
We had a previous experience with resorbable screws, 
2.8 mm diameter made of poly-L-lactide- poly-D-lactide 
acid and trimethylene carbonate. Among 24 patients, 
we observed some complication like a loose screw head, 
joint stiffness and joint effusion [11].

Our short series demonstrate that resorbable screw 
osteosynthesis is justified in paediatric traumatology 
as this approach does not modify either the surgical 
technique or the follow-up care. The follow-up is 
comparable with classic metallic implants. We did not 
observe any abnormal mobility during the resorption 
period between the head and the body of the screw.

In a retrospective study, Kassai et al. [12] compared 
the fixation of the medial humeral epicondyle fractures 
with either a biodegradable poly L-lactide-co-glycolic 
acid (PLGA) or a traditional metallic implant. They 
observe normal delay for bone union, comparable results 
between both groups, and no specific complications 
with resorbable implants.

Varga et al. [13] published a comparative study 
of the treatment of 94 distal fractures of the radius, 
associated or not with ulna fractures. One group treated 
with one or two stainless steel Kirschner wires which 
were buried under the skin (n = 40), a second group 
with K-wire left outside (n = 24) and the third group 
with an original technique of distal radial elastic 
nailing with bioresorbable PLGA pins (n = 30). There 
was no difference between the complication rates 
of both K-wires groups, while the complication rate 
of the bioresorbable group was significantly lower.

In 2013, Sinikumpu et al. [14] from Finland published 
a preliminary technical report of a mini-invasive 

technique for pediatric diaphyseal forearm fractures 
with bioabsorbable elastic stable intramedullary 
nailing. They developed a two-stage surgical technique 
in children between 5 and 15 years old. The first stage 
was identical to the Nancy method [15, 16, 17]: 
mini-invasive approach, reduction of the fractures, 
introduction of metallic implants into the medullary 
canal of both bones through a metaphyseal small hole, 
and fixation of the radius and ulna. The second part 
of the technique was a careful removal of each metallic 
implant, each of them being immediately replaced 
by an absorbable rod (made of poly lactide-co-glycolide 
(PLCG) developed by the Bioretec company, first 
in the radius and second in the ulna, or reverse.

Recently, an international Europe-based, 
multicenter, prospective, single-arm, open-label study 
has evaluated the elastic stable intramedullary nailing 
of forearm fractures in children between age 3 and 
13 with a resorbable Activa IM-NailTM. Seventy-six 
patients with a mean age at inclusion of 8.9 ± 2.4 years 
have been operated on. The mean time of operation was 
58.9 ± 22.9 minutes. Except one case of postoperative 
fall, no case of recurrent fractures was observed 
at a mean follow-up of 8.9 ± 5.1 months. The authors 
draw a conclusion of the safety and effectiveness 
of the resorbable Activa IM-NailsTM in the treatment 
of forearm fractures [18].

Hedelin et al. [19, 20] reported a series of 32 pelvic 
osteotomies: Salter osteotomy (n = 21) and triple 
osteotomy (n = 11), fixed with a 4.5 mm (55-70 mm) 
PLGA polymer screw Activa®. They demonstrated the 
good stability of pelvic osteotomies after fixation with 
PLGA screws. In all hips studied, the overall correction 
was maintained, and there were no complications related 
to the resorption of the screws. On the MRI performed 
2 years after the surgery, there were no significant 
local reactions. In another paper, the same author 
reports a series of 21 cases of Salter osteotomy fixed 
with resorbable screws. Neither perioperative surgical 
complications nor local reactions occurred [19].

In 2018, Grün presented an excellent paper which 
describes all resorbable implants used in paediatrics, 
resorbable, ceramic and metallic, with a specific focus 
on the magnesium-based (Mg-based) implants [21]. 
Biodegradable Mg is more tensile, stable, and 
load bearing, compared to polymers and ceramics. 
Magnesium also shows favorable biomechanical 
properties able to support bone fracture healing.

Holweg et al. [22] reported a successful series 
of 20 fractures of the ankle joint, bi- and trimalleolar 
fixed with bioabsorbable Mg-based screws. These 
implants were composed of pure Mg alloyed with 
calcium and zinc. Blood analysis revealed that Mg 
and Ca were within a physiologically normal range. 
No loosening or breakage of screws was observed. 
Holweg et al. [23, 24] also demonstrated that specific 
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balance between zinc and calcium improved mechanical 
strength and a reduced in vitro degradation rate. 
In in vivo experiments with screws, all osteotomies 
completely consolidated after a maximum of 12 weeks. 
But screws were resorbed at a mean of 2.5 years after 
medial malleolus fracture fixation [25]. Marek et al. 

demonstrated no influence of Mg-Zn-Ca screws 
on physis and longitudinal bone growth throughout their 
degradation [26, 27]. Wiktor et al. stated only good and 
excellent outcomes for humeral capitellum fractures 
in 6 immature patients aged 10.6-15.3 treated with 
internal fixation with bioabsorbable nails [28].

CONCLUSION
As the major problem of metallic implants, 

stainless-steel or titanium, is to remove them or not, 
the use of resorbable implants, either co-polymers 
or magnesium-based, solves the problem: removal 
of implants is not anymore necessary. Year after 
year, new components are available on the market. 
These components are becoming safer as they show 

good solidity allowing bone union of fractures 
and osteotomies. The implants decompose and 
are eliminated from the body. Main indications 
for resorbable implants in paediatrics remain fractures 
and osteotomies fixed with screws. The development 
of plates and intramedullary nails will enlarge 
the indications.
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Abstract
Introduction Widespread use of intramedullary and extramedullary implants, as well as external fixation devices, has demonstrated 
that current surgical methods are not always successful. The study aimed to assess the efficiency of a combination of transosseous 
osteosynthesis with intramedullary reinforcement using elastic titanium hydroxyapatite-coated rods (HA-rods) in long bone fracture 
treatment. Material and methods Medical records of 40 patients aged from 18 to 55 years with closed diaphyseal tibia fractures of A1-
A3 type (AO/ASIF) treated with the Ilizarov transosseous osteosynthesis method combined with intramedullary elastic HA-coated 
wires were analysed. Result Ilizarov fixator removal was performed on average 45.3 ± 14.7 days after surgery. Radiological signs of 
bone union (immature callus, patterns of periosteal and endosteal stratifications overlapping the fracture line) were visible by week 
3 to 4. Discussion Соmbination of the external fixator and intramedullary elastic HA-coated wires overcomes shortcomings of both 
external and internal means of fixation. External osteosynthesis provides advantages of the Ilizarov method: preservation of blood 
supply, absence of soft tissue injury, joint function and early weightbearing. Elastic intramedullary wires do not injure a. nutricia and 
mechanically stimulate endosteal and periosteal bone formation. Conclusion The advantages of combined osteosynthesis provide 
reduction of Ilizarov apparatus fixation time, reduction in the number of wires and half-pins in the frame assembly, stimulation of bone 
callus formation and prevention of secondary bone fragment displacement.
Keywords: Ilizarov, flexible intramedullary nailing, hydroxyapatite
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INTRODUCTION
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The problem of urgent care for patients with injuries 
of the locomotor system is becoming increasingly 
important every year due to a growing number of severe 
injuries and following disability, especially in people 
of working age [1-4].

Widespread use of intramedullary and 
extramedullary implants, as well as external fixation 
devices, has demonstrated that current surgical methods 
are not always successful. The failure of treatment is 
related to iatrogenic lesion of surgical intervention, 
long-lasting duration of external fixation, delayed bone 

union, the lack of comfort when using external fixation 
devices [5, 6].

It is recognized that the use of bioactive implants 
(elastic titanium rods and degradable intraosseous 
implants) is a promising approach to solve the problems 
of bone regeneration reducing the treatment time [7-9].

The study was aimed to assess the efficiency 
of a combination of transosseous osteosynthesis with 
intramedullary reinforcement using elastic titanium 
hydroxyapatite-coated rods (HA-rods) in long bone 
fracture treatment.

MATERIAL AND METHODS

This retrospective study was conducted at the Ilizarov 
National Medical Research Center for Traumatology 
and Orthopaedics (Kurgan, Russia) from April 2015 
to December 2020. Medical records of 40 patients 
aged from 18 to 55 years old with closed tibial shaft 
fractures of A1-A3 Types (AO/ASIF classification) 
were analyzed.

The criteria for inclusion in the study were adults 
of working age operated on with a combined technique. 
We excluded from the study patients of other ages, open 
or complicated fractures.

After obtaining institutional review board approval, 
the data were collected about clinical and radiological 

features of fractures, postoperative period, bone 
healing and functional recovery. Incidence, severity 
of complications and outcomes were assessed as well.

Surgical technique The surgery was performed 
under epidural anesthesia in all cases. The standard 
skeletal traction allowed reducing bone displacements. 
The intramedullary nailing was performed 
simultaneously at the time of fixator placement 
using two bent nails. Two oblique tunnels toward 
the medullary canal were formed in the metaphysis 
(proximal or distal, closest to the fracture) using 
a drill of 4-mm diameter [10]. Bent nails with 
bioactive coating (HA-coated elastic nails) were 
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easily inserted through the holes into the medullary 
canal under fluoroscopic control. We used 1.8-mm 
diameter titanium alloy nails with hydroxyapatite 
coating (Orthopediatrics nails modified by Metis Ltd, 
Tomsk, Russia). The nails were 20-40-µm thick and 
had 2-8 % porosity, obtained by the method of anodic 
oxidation in arc mode [11]. This type of coating is 
presented by ultraporous system consisting of macro- 
and micropores from 50-100 nm to 1-2 μm in diameter.

The intramedullary nailing was followed by 
application of the Ilizarov fixator (Experimental Plant 
of Russian Ilizarov Scientific Center "Restorative 

traumatology and orthopaedics", Kurgan, Russia) 
according to the technology of transosseous 
osteosynthesis. It should be emphasized, that 
intramedullary nails did not interfere with wires or half-
pins of the external fixation device.

Radiography in two standard views was taken before 
surgery, on the date of surgery, then every 2 weeks until 
bone union. The radiographs after frame removal were 
also evaluated.

Statistical analysis was conducted with AtteStat 
12.0.5 software. Means and standard deviations were 
used to describe continuous variables.

RESULTS

Forty patients (9 females, 31 males) with a mean 
age of 29.6 years (range, 18-55 years) were included. 
Thirty three patients (82.5 %) underwent antegrade 
intramedullary nailing while seven patients (7.5 %) 
underwent ante- retrograde nailing (Figure 1). 
In seventeen cases (42.5 %) bent intramedullary nails 
enabled complete fracture reduction thus there was no 
need to insert additional olive wires in fractured bone 
ends at the level of intermediate external fixator rings. 
From the first days after the surgery, all patients were 
encouraged to walk independently with partial then total 
weight bearing using crutches. A postoperative edema 
of the injured leg disappeared within 2 to 3 weeks. 
The postoperative pain related to fracture was moderate 
and persisted until the end of the second week. 
It responded to simple nonsteroidal anti-inflammatory 
drug treatment.

Fourteen days after the surgery, radiographic check 
revealed that the contours of the fragmental ends were 
blurred. The endosteal bone callus became visible 
and well-expressed in the medullary canal parts close 
to the fracture line and along the intramedullary implant. 
Periosteal reaction was clearly visible and defined 
on bone fragments on both views. It was 2.8 ± 0.2 mm 
thick and 14.7 ± 1.3 mm long. In 24 cases, the periosteal 
callus was uninterrupted and overlapped the fracture 
line uniting proximal and distal fracture ends two weeks 
after the surgery.

After four weeks, radiographs showed signs 
of bone union: blurred image of fracture ends, 
a barely visible fracture line, high optical density 
of uninterrupted periosteal bone in antero-posterior 
and lateral views. In that period, 32 patients started 
to walk with 50 % or even full loading on the injured 
leg without assistive devices.

Two weeks later, bone union was noticed 
in all cases: the fracture line was barely defined; 
the image of the periosteal callus was large dense and 
compact. Weight-bearing walking was not associated 
with pain. We noticed a satisfactory recovery of ankle 
range of motion in all cases. Thus, an indication 
for frame removal was justified and the procedure was 
performed within the period of 32-62 days (in average, 
45.3 ± 14.7 days) after the surgery in all patients without 
plaster cast immobilization. A month after frame removal, 
radiographs demonstrated bone callus remodeling with 
permeability of the medullary canal, anatomical alignment 
of the segment. There were no cases of intramedullary 
nail migration. The nails were removed 4 to 7 months 
after fixator removal in all cases without any difficulties.

Regarding complications, pin site infection 
observed in 9 cases (22.5 %) were treated successfully 
by local care in 7 cases. Antibiotics and wire removal 
were necessary in 2 patients. The preoperative range 
of motion in the knee or in the ankle joint recovered 
in all patients by the latest follow-up control. There were 
no neurological or vascular complications in this series.

Case report Male patient, 47 years old, was 
admitted with closed spiral shaft fracture of the distal 
third of the right tibia (Fig. 1 a). The surgery consisted 
of osteosynthesis of leg bones with the Ilizarov fixator and 
intramedullary reinforcement of the tibia using HA-coated 
elastic nails (Fig. 1 b). Radiological signs of bone union 
were evident by 30th day (Fig. 1 c). Thereby the fixator 
was removed without subsequent immobilization 
(Fig. 1 d). The patient was allowed full weight-bearing 
2 weeks after frame removal. A follow-up control (1 year 
and 3 months after frame removal) demonstrated bone 
callus remodeling and normal radiological parameters 
of the injured tibia (Fig. 1 e, f).
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Fig. 1 Male patient, 47 years old: a – tibial fracture; b – post-
surgery; c – radiographs 30 days after surgery; d – 32nd day 
after surgery, frame removed; e – after 3 months, no mal-union, 
anatomical alignment; f – 1 year after frame removal, bone 
remodeling

DISCUSSION

Tibial shaft fractures are one of the most common 
long-bone fractures and their incidence is estimated 
to occur in 4 percent of the senior population, representing 
11.3 to 41.2 % of all skeletal fractures [12, 13]. 
Despite improvement of surgical methods, we can 
face delayed bone union and poor outcomes in tibial 
fractures. Obviously, the results of treatment are 
conditioned by both the fracture pattern and the method 
of treatment [14-17].

The extramedullary osteosynthesis can require 
large approach resulting in increased blood loss and 
additional lesion of surrounding the fracture soft tissues, 
worsens the blood supply to the fracture zone [14-16]. 
The main disadvantage of intramedullary osteosynthesis 
is significant damaging to intramedullary circulation, 
destruction of the bone marrow and endosteum. 
It potentially decreases bone regeneration [16, 17].

Ilizarov external fixation method is recognized 
for surgical treatment of tibial fractures. But its 
application is associated with long wearing 
(3 to 9 months) of external frame and related to this 
fact high incidence of pin-site infection. It remains 
uncomfortable for patients [18-20].

The combination of the external frame and 
HA-coated intramedullary elastic nails reduces 
inconveniencies of both external and internal devices. 
External osteosynthesis provides all advantages 
of the Ilizarov method: preservation of circulation, 
little soft tissue damage, early joint function and 
weight-bearing [19-21]. Elastic intramedullary 
nailing does not injure a. nutricia and mechanically 
stimulates endosteal and periosteal bone formation 
[22]. We suppose that HA-coating enables biological 
support for bone union [23]. Morphological 
experimental studies performed at the Ilizarov Medical 
Research Institute of Traumatology and Orthopedics 
revealed bone tissue structure around intramedullary 
nails and along their entire length, which persists 
until the end of the experiment and ensures complete 
stability of bone fragments [24]. Thin elastic nails do 
not interfere with spongy bone tissue in the medullary 
canal. Bundles of osteoid collagen fibers are firmly 
fixed to the rough, nanostructured surface of the nails 
coating and connected to the endosteal surface 
of the bone improving stability of bone fragments. 
This coating of a nanostructured highly porous 
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hydroxyapatite layer provides high biocompatibility 
and osteointegration of implants into the surrounding 
bone preventing the development of fibrous connective 
tissue [25, 26]. Our small series demonstrated that this 

combination of stability of bone fragment fixation 
and biological bone regeneration stimulation enables 
satisfactory outcomes of tibial fracture repair along 
with reduced external fixation time.
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Abstract
Introduction Forearm fractures are common injuries in childhood. Completely displaced and unstable fractures require surgical 
intervention. Elastic Stable Intramedullary Nailing (ESIN) is widely used in treating these fractures. Although stainless steel 
and titanium implants are the most widely used, resorbable nails are becoming an option. Aim To present our initial experience 
in treating forearm fractures in children with Resorbable Stable Intramedullary Nailing (ReSIN). Methods The authors present 
several cases treated with ReSIN, their summarry and describe the techniqual steps. Results The series included 4 patients operated 
on with ReSIN. Bone union with anatomic and functional recovery was stated in all cases within the period of 5-7 months after 
surgery. Discussion More and more paediatric fractures can be treated with absorbable implants and result in good outcomes. 
It can be said that the new methods enabled similar stable fixation as with metal implants, which is considered the gold standard. 
A distinct advantage over metal implants is that there is no need to remove the implant, thus avoiding a second operation and 
reducing the risk of surgical complications. Another positive thing is that absorbable implants can be sunk the level of the cortical 
layer of the bone, they can easily be dropped under the skin. The only drawback of the method is the price of the implants. 
Conclusion The management of paediatric diaphyseal forearm fractures with bioabsorbable intramedullary nails is a promising 
emerging alternative to the gold standard ESIN technique.
Keywords: paediatric, forearm, fracture, bioabsorbable, resorbable, implant, PLGA
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INTRODUCTION

The current gold standard method in the treatment 
of paediatric diaphyseal forearm fractures requiring 
operative treatment is the elastic stable intramedullary 
nailing (ESIN). Such fractures include displaced and 
or unstable fractures, where conservative treatment 
with a cast would be insufficient to achieve satisfactory 
results after bone healing. The ESIN or flexible 
intramedullary nailing (FIN) is minimally invasive, 
in contrast to an open approach using plate and screw 
fixation, and leads to less soft tissue damage upon later 
implant removal. Standard nails are titanium elastic 
nails (ESIN) which are generally removed in a second 
surgery after sufficient bone healing has occurred [1-9].

However, in recent years bioabsorbable 
intramedullary nails have been developed for and used 
to manage paediatric diaphyseal forearm fractures. 
Using a bioabsorbable material presents multiple 
benefits, such as eliminating the need for a second 
surgery to remove the nail, thereby reducing soft tissue 
damage. Moreover, it decreases anaesthesia-related risk, 
exposure to radiation, and potential irritation which is 
usually caused by a protruding titanium elastic nail 
tip [10-12].

The Activa IM-Nail™ developed by Bioretec 
Ltd. has shown promising results in Finnish pediatric 
forearm diaphyseal fracture treatment clinical studies. 

This implant material is a PLGA (poly-L-lactide-
co-glycolide) polymer with a radiopaque tricalcium 
phosphate (β-TCP) tip. The Pécs University Hospital 
Department of Paediatrics and Department of Pediatric 
Traumatology, Péterfy Hospital, Manninger Jenő 
National Trauma Center have been involved 
in an ongoing prospective multicentre clinical study 
analysing the treatment of paediatric diaphyseal forearm 
fractures with the Activa IM-Nail™ since 2021 [13].

The authors will explore the advantages of using 
bioabsorbable intramedullary nails in treating paediatric 
diaphyseal forearm fractures.

Epidemiology and Aetiology of Forearm Fractures
Fractures are prevalent in the paediatric population, 

accounting for approximately 25 % of all childhood 
injuries [1]. Radial and ulnar fractures have the highest 
incidence, making up 36 % of all childhood 
fractures [2, 3]. The mechanism of injury is mainly 
accidental trauma resulting from sports or leisure 
activities. A 1996 Welsh study found that 36.1 % 
of subjects sustained fractures while participating 
in sports or leisure activities [2]. Team ball and wheel 
sports such as cycling, rollerskating, and skateboarding 
were the most common, making up 42.4 % and 34.9 %, 
respectively. That study found distal radius fractures 
to have the highest incidence and soccer and rollerskating 
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to be the most common sports and leisure activities 
causing the injury [3, 14-17]. The study also observed 
that of the fractures that occurred in schools, 45 % 
happened on the playground. Of these, three-quarters 
occurred while the child was running, and half resulted 
from falling on a hard surface [2, 5-7].

The mechanism of distal radial fractures is typically 
a fall on an outstretched arm (FOOSH). Forearm shaft 
fractures often occur this way or due to a direct blow 
to the forearm. Studies show that protective equipment 
such as wrist guards can effectively prevent distal radius 
fractures during activities such as rollerskating. These 
guards prevent the hyperextension motion, which can 
occur in a FOOSH, absorb shock, and facilitate sliding 
of the guard along a surface to divert the direction 
of the kinetic force [14-16].

Diagnosis and Classification of Paediatric Forearm 
Fractures
The gold standard approach to diagnosing 

a forearm fracture is X-ray imaging. Patient’s history 
and physical examination consistent with the clinical 
picture of a fracture can be sufficient for diagnosis. 
However, X-ray imaging will confirm the diagnosis 
and provide information influencing the treatment 
plan. Both anterior-posterior and lateral view images 
should be ordered. Orthogonal films enable the 
clinician to examine for pathologies that may not be 
visible at certain angles. The clinician should also 
consider imaging the elbow or wrist joint to check 
for Monteggia or Galeazzi injuries.

Treating a multi-fragmentary fracture includes 
careful analysis of X-ray images in preoperative 
planning. In the case of highly complex fractures, CT 
may be indicated to provide a more detailed image 
of the fracture morphology and soft tissue involvement. 
The clinical approach to the diagnosis of fractures 
in children, however, differs slightly from that in adult 
patients.

If a clinician were to be confident in their 
professional opinion that a paediatric forearm fracture 
was, for example, a minimally or non-angulated radial 
greenstick fracture, an X-ray could be omitted and 
opted for conservative therapy. Furthermore, examining 
fracture crepitation and excessive palpation should 
be avoided to minimise the child’s pain and negative 
psychological response.

Paediatric diaphyseal forearm fractures are classified 
by the AO (Arbeitsgemeinschaft für Osteosynthesefragen) 
Paediatric Comprehensive Classification of Long-Bone 
Fractures. They are classified according to the fracture 
morphology, complexity, and involvement of one 
or both forearm bones. The classification code comprises 
two main parts describing the fracture location and 
morphology. Paired forearm bones are collectively 
defined as ‘2’. Fracture locations are further labelled as 
proximal ‘1’, diaphyseal ‘2’, or distal ‘3’. A lowercase 
letter specifies which bone is broken in fractures affecting 
only one bone belonging to a set of paired bones. 
For example, the code for an isolated radius fracture 
would include an ‘r’. The fractured subsegment, i.e. 
epiphysis, metaphysis, and diaphysis, is labelled ‘E’, ‘M’, 
or ‘D’, respectively. The second part of the code describes 
the fracture morphology. Fracture pattern and severity are 
described with numbers.

Finally, a degree of displacement can be described 
with roman numerals. A simple transverse nondisplaced 
fracture of the radial diaphysis, when no ulnar fracture is 
present, is therefore described with the code 22r-D/4.1. 
A both-bone forearm fracture, e.g. a simple transverse 
nondisplaced fracture of the radial and ulnar diaphysis, 
is described with the code 22-D/4.1. This classification 
system helps to describe fractures clearly and concisely 
and is used internationally [4].

Aim To present our initial experience in treating 
forearm fractures in children with Resorbable Stable 
Intramedullary Nailing (ReSIN).

METHODS

Bioabsorbable Intramedullary Nailing Technique
Bioabsorbable intramedullary nails such as the Activa 

IM-Nail™ from Bioretec Ltd. are introduced similarly 
to the aforementioned traditional ESIN technique, with 
some differences due to the different material of the nail. 
Intraoperative imaging with C-arm fluoroscopy is also 
used in bioabsorbable intramedullary nail insertion. 
However, only the radiopaque tricalcium phosphate 
(β-TCP) tip is visible on the film, not the entire nail as 
with TENs. The PLGA material is radiolucent. Also, 
unlike the ESIN procedure, the medullary canal should 
be prepared with an implant-specific dilator tool when 
using a bioabsorbable intramedullary nail. This is done 
to decrease the risk of implant breakage upon insertion 

against resistance. The dilator tool prepares a space 
for the implant within the canal. Furthermore, surgeons 
often bend titanium elastic nails prior to insertion 
to create a curvature of the nail. It should not be 
performed with the Activa IM-Nail™, as the current 
PLGA material is too brittle and could be damaged 
if bent with force [8-10].

Perhaps of most clinical significance and in contrast 
to traditional treatment with ESINs, postoperative 
immobilisation with a cast is recommended 
for bioabsorbable intramedullary nails such as the 
Activa IM-Nail™. Cast options include a long arm 
cast for two weeks followed by a short arm cast 
for two to four weeks or a long semicircular arm cast 
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with volar support for 4-6 weeks. Unfortunately, cast 
immobilisation typically leads to joint stiffness and 
decreased range of motion after cast removal. This is 
a primary cause of hesitation for surgeons considering 

the bioabsorbable intramedullary nailing method 
when comparatively, the standard TEN technique does 
not require plaster casting and therefore avoids such 
complications entirely [10-13].

RESULTS

Case 1 An eight-year-old female patient with 
a displaced both-bone diaphyseal forearm fracture was 
treated using the Activa IM-Nail™. Preoperatively 
the fracture underwent closed reduction. The patient 
experienced no surgical or postoperative complications. 
A long arm cast was applied for three weeks, followed 
by a short arm cast for the subsequent two weeks. 
The clinical outcome was highly satisfactory; 
the patient did not experience functional impairment 
or decreased range of motion. X-rays taken pre-, intra-, 
and postoperatively illustrate the success of the treatment 
(Fig. 1). Unlike children treated with titanium elastic 
nails, this patient does not require a second surgery 
for hardware removal. The outcome of this patient is 
representative of the vast majority of the preliminary 
outcomes recorded in this study.

Fig. 1 Case 1. From left to right: рreoperative, same-day 
postoperative control, six months postoperative control X-rays

Case 2 The 11-year-old girl fell while playing; 
her right forearm was injured and deformed, and 
she reported pain when moving the wrist and elbow 

joints. During her physical examination, we noticed 
a deformity of the left forearm and a dorsal deviation 
proximal to the middle third. However, sensation, 
circulation and movement were preserved in the fingers. 
The X-ray confirmed the right radius and ulna’s 
incomplete (subperiosteal) fracture with axis deviation 
(Fig. 2 a). The patient was admitted to the pediatric 
surgery department for surgical treatment.

Closed reduction was performed under general 
anaesthesia, after which the fracture of the radius and 
ulna were stabilised with absorbable 3.2 mm diameter 
medullary nails. After the operation, an additional long 
arm cast was applied. The postoperative control X-ray 
showed the fracture in a good position; the tricalcium-
phosphate marking is visible in the metaphysis 
of the proximal radius and distal ulna (Fig. 2 b).

Fig. 2 Case 2: a – рreoperative subperiosteal right forearm 
fracture; b – IM nails stabilise forearm postoperatively

Case 3 An 8-year-old boy was playing in the yard, 
running, and then fell on his left forearm. According 
to him, he heard a crack. During his physical 
examination, the child reported tolerable pain under 
the effect of the Fentanyl given in the ambulance, 
and there were no neurovascular abnormalities in the 
fingers. However, significant swelling and deformity 
were observed in the middle third of the right forearm. 
The X-ray confirmed a middle-third forearm fracture 
with displacement (Fig. 3 a).

Closed reduction was performed under general 
anaesthesia; the ulna reposition was done with 
a wire inserted percutaneously into the fracture gap. 
Stabilisation of the forearm bones was done with 
absorbable IM nails. A long arm cast immobilised 
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the left upper limb for four weeks. The postoperative 
control radiogram showed the fracture in a good position 
(Fig. 3 b).

Fig. 3 Case 3: a – preoperative X-rays; b – postoperative control 
X-rays

Case 4 A 7-year-old girl fell while riding a horse; 
her right forearm was injured and deformed, and she 

complained of severe pain. X-rays confirmed the patient 
had a both-bone diaphyseal forearm fracture (Fig. 4 a) 
of the right arm. The fractures were reduced, and both 
bones were fixed with Activa IM-Nail™. Postoperative 
imaging showed good alignment (Fig. 4 b).

Fig. 4 Case 4: a – preoperative radiograms; b – postoperative 
excellent alignment

DISCUSSION
More and more paediatric fractures can be treated 

with absorbable implants and result in good outcomes. 
The authors described the most frequently occurring 
types of forearm fractures, in which the same results 
can be achieved with absorbable implants as with metal 
and titanium implants, which are currently considered 
the gold standard. Based on the clinical results so far 
(short- and medium-term follow-up of the patients), 
it can be said that the new methods enabled similarly 
stable fixation as the fixation with metal implants, which 
is considered the gold standard. A distinct advantage 

over the procedures with metal implants is that there 
is no need to remove the implant, thus avoiding 
a second operation and reducing the risk of surgical 
complications [10, 11, 12, 13, 18]. It is also a positive 
thing that absorbable implants can be sunk the level 
of the cortical layer of the bone, they can easily be 
dropped under the skin, so they do not cause soft tissue 
irritation. The health care system is also not burdened by 
the second operation (metal removal) and the associated 
hospital care costs [19, 20]. The only drawback 
of the method is the price of the implants.

CONCLUSION

The management of paediatric diaphyseal forearm 
fractures with bioabsorbable intramedullary nails is 
a promising emerging alternative to the gold standard 
ESIN technique. Research suggests that patient outcomes 

are comparable to those treated with traditional ESIN. 
However, large-scale and long-term studies are still 
needed, as well as further research into bioabsorbable 
polymers and other potential alternative biomaterials.
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Abstract
Introduction Long duration of distraction osteosynthesis remains an unsolved problem. One of the promising ways to stimulate 
reparative regeneration of bone tissue is the technology of combined osteosynthesis with intramedullary elastic reinforcement with 
titanium wires coated with hydroxyapatite. A significant drawback of this combined distraction osteosynthesis is the planned removal 
of intramedullary wires several months after disassembling the Ilizarov apparatus. The purpose of this work is to demonstrate 
the possibility of stimulating reparative regeneration and reducing the duration of distraction osteosynthesis using an intramedullary 
degradable implant with bioactive filling. Methods We present the first in clinical practice case of surgical leg lengthening in a female 
10-year-old patient using the Ilizarov apparatus an intramedullary degradable implant made of polycaprolactone (PCL) saturated 
with hydroxyapatite to stimulate reparative regeneration in the tibia. Monthly radiographic monitoring of the process of reparative 
regeneration of bone tissue was supplemented by computed tomography after disassembling the Ilizarov apparatus. Results The process 
of lengthening the tibia was accompanied by pronounced formation of a bone “sleeve” around the implant, which was directly 
connected to the endosteum of the tibia. The density of bone substance in the medullary canal reached 496.6 HU. The cortical layer 
of the tibia in the elongation zone increased to 4 mm, and its density was equal to 1288.8 HU. Discussion Leg lengthening of 4 cm was 
achieved along with simultaneous correction of valgus recurvatum bone deformity at IO = 15 days/cm, that is two times shorter than 
the generally accepted excellent IO in distraction osteosynthesis according to Ilizarov. Conclusions Biodegradable polycaprolactone 
implants saturated with hydroxyapatite might be not inferior to titanium wires coated with hydroxyapatite in regard to the degree 
of osteoinduction and do not require repeated surgical intervention to remove them.
Keywords: distraction osteosynthesis, Ilizarovs apparatus, biodegradable implant, hydroxyapatite
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INTRODUCTION

Distraction osteosynthesis, developed 
by G.A. Ilizarov, is a unique method of bone tissue 
bioengineering due to its ability to generate in vivo 
a vascularized bone tissue that features micro- and 
macrostructure of the native bone [1]. Moreover, 
the surrounding soft tissues are simultaneously 
exposed to regeneration and lengthening under 
the influence of tension stress [2]. The evolution 
of the distraction osteosynthesis resulted 
in the development of numerous technologies for lower 
and upper limb length discrepancy, bone defects and 
deformities [3-5]. Many orthopaedic surgeons, giving 
their due to the advantages of the Ilizarov method, 
point to significant duration of the external frame 
wearing that remains an unresolved problem [6-9]. 
The index of external fixation (IEF) varies from 0.7 
to 5.9 months/cm and depends on the age, etiology, 
affected bone segment and amount of lengthening. 
We believe that such a long time of external fixation 
really increases the likelihood of pin-site infection. 
The research aimed to stimulate osteogenesis 

started at the Ilizarov Centre by the end of the XX 
and the beginning of the XXI century [2, 10, 11]. 
The technology of combined osteosynthesis with 
intramedullary elastic reinforcement with titanium 
nails coated with hydroxyapatite appeared to be one 
of the simple but very promising ways of stimulating 
reparative bone tissue regeneration [12]. According 
to experimental studies conducted at our institution, 
it does not contradict the principles of the Ilizarov 
method and does not interfere with intramedullary blood 
supply [13]. The average IEF of the femur using this 
technology in children was 20.3 ± 1.36 days/cm [10]. 
The only but a significant drawback of such combined 
distraction osteosynthesis is obligatory removal of 
intramedullary nails a few months after Ilizarov frame 
removal.

Our case report demonstrates a possibility to lengthen 
tibia over a biodegradable intramedullary nail that is 
filled with hydroxyapatite in order to stimulate bone 
union and avoid nail removal as the previous treatment 
protocol required [10, 12].
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We present a case of 4-cm tibial lengthening in 10-y.o. 
girl with congenital lower limb length discrepancy due 
to left tibia. Length discrepancy was complicated by 10° 
valgus recurvatum deformity with the deformity apex 
located at the junction of the proximal and middle third 
of the tibial shaft (Fig. 1 a).

At our institution, the parents of the child were 
proposed the method of Ilizarov limb lengthening over 
an intramedullary degradable polycaprolactone (PCL) 
implant saturated with hydroxyapatite (HA) for treatment 
(Fig. 1 b).

Fig. 1 Preoperative period: a – standing radiographs of lower 
limb; b – biodegradable implants

The implant materials were ε-polycaprolactone 
(Sigma-Aldrich, United States; Mn 80000) and 
hydroxyapatite (Fluidinova, Portugal; 10 ± 5 μm). 
PCL was dissolved in high purity acetone with 
a concentration of 15 wt %. Hydroxyapatite was pre-
ground in a ball mill in a ceramic chamber with ceramic 
grinding media with added acetone in a mass ratio 
of 1.5:1 at a rotation speed of 72 rpm for 12 hours. 
The PCL solution was added and mixed with HA 
in the ball mill. The mixture was poured in a thin layer 
into a preheated fluoroplastic mold. After drying, the 
composite was crushed in a low-speed polymer crusher 
(Shini SG-1621N, Taiwan). Filabot EX2 single screw 
extruder (Filabot, USA) was used to obtain 4-mm wide 
filaments. Additionally, HA-particles were applied 
to the implant surface by dipping into a suspension 
of HA-powder in a solvent of known concentration, and 
then dried to remove the residual solvent. The implants 
have the following mechanical properties: ultimate 
tensile strength 18.3 ± 2.4 MPa (by stretching) and 
32.0 ± 3.4 MPa (by pulling) and elastic modulus 
425.7 ± 21.9 MPa (by stretching) and 213.9 ± 8.8 MPa 
(by pulling). For comparison, the titanium alloy 

nails demonstrate ultimate tensile strength 950 MPa 
(by stretching) and 1080 MPa (by pulling) and elastic 
modulus 113.8 MPa (by stretching) and 110 MPa 
(by pulling) [14]. The implant applied for treatment was 
100 mm long and 4 mm wide.

The parents signed an informed consent 
on the treatment protocol of Ilizarov tibial lengthening 
and insertion of a PCL/HA intramedullary implant. 
Institutional ethics board approval for the study was 
obtained.

Surgery
The first stage of the operation was PCL/HA nail 

insertion into the medullary canal.
An oblique hole in proximal tibial metaphysis 

towards the medullary canal was formed using a 5-mm 
awl through 3 cm soft-tissue approach. Use of awl 
provided “reaming” for the implant in metaphyseal 
and proximal and middle diaphysis. The slightly bent 
implant was inserted manually through this hole, 
external part of implant cut and then the soft tissues 
were sutured tightly.

The Ilizarov frame assembly comprised three 
rings connected with rods and hinges. The positioning 
of hinges depended on deformity apex and CORA. 
Partial corticotomy was performed with a conventional 
chisel and completed with osteoclasis. Upon radiographic 
control, the frame systems were stabilized. It is important 
to emphasize that the implant in the medullary canal does 
not interfere with the insertion of wires but requires strict 
implementation of the corticotomy technique. There is 
a risk to cut PCL/HA implant if standard osteotomy 
would be used.

Post-operative period
Each patient was evaluated every 10-14 days 

during distraction and deformity correction phase 
and then monthly during the consolidation phase. 
Regular radiography (Shimadru Sonialvision 4, Japan) 
for immediate and every two-weeks bone regeneration 
control was supplemented by CT (Toshira Aquilion 64, 
Japan) upon Ilizarov frame removal.

Elongation phase was initiated on the 7th 
postoperative day at the rate of 1 mm/day divided into 
4 times. Planned amount of lengthening was achieved 
in 42 days (Fig. 2 a). The fixation phase lasted 23 days. 
In three weeks of fixation phase the radiology revealed 
continuity of cortices in the lengthening zone and 
disappearance of the central fibrous zone of the bone 
regenerate. It enables frame removal (Fig. 2 b). After 
frame removal the patient was recommended to walk 
with progressive weight-bearing on the operated 
leg. Two months after the external fixator removal, 
the patient walked with full weight bearing, without 
additional means of support. The recovery of ROM 
in adjacent joints was noticed.

MATERIALS AND METHODS
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Fig. 2 Radiographs of the left tibia: a – by the end 
of the distraction period; b – radiographs at frame removal

Detailed description of radiographs and computed 
tomograms. From the first days of distraction 
the transverse corticotomy of the tibia at the apex 
of the deformity provided the separation of bone 
fragments in the absence of direct contact between 
them. However, the image of regenerated bone tissue 
got visible since 14th day after the onset of elongation. 
It could be described as heterogeneous, with separate 
“islands” of compactions. After one month, the bone 
regenerate image filled the entire diastasis between 
the bone fragments. Until the end of the distraction phase 
the continuity of longitudinally oriented trabeculae 
maintained. Optical density of the regenerated bone 
exceeded both optical density of the paraosseous tissues 

and the density of endosteal callus. Another feature 
was periosteal and endosteal reaction. Its first signs 
appeared two weeks after the beginning of lengthening. 
Throughout the distraction phase, on the image of newly 
formed bone there was no central zone so called “fibrous, 
non-mineralized zone of the distraction regenerate”, 
which is typical in conventional Ilizarov lengthenings. 
Intramedullary osteogenesis was observed, particularly 
along the trajectory of the PCL/HA nail.

The radiological signs of bone union were observed 
in three weeks of fixation phase, it corresponded 
to continuity of cortices in the lengthening gap and 
disappearance of the central fibrous zone of the bone 
regenerate. The frame was removed at this stage. Thus, 
EFI was 18 days per cm.

Two months after the frame removal, radiographs 
showed remodeling of callus, increase in the density 
of newly formed bone (Fig. 3 a, b). There was 
no deformity neither fractures. Alignment remained 
normal.

Computed tomography (Fig. 3 c, d, e) performed 
after the removal of the Ilizarov fixator confirmed a three 
continuous cortices at lengthening site (their density 
was 1288.8 ± 141.2 HU), and mineralized central zone 
of the distraction regenerated bone. The cortical plate 
along the anterior surface of the leg was presented 
in the form of separate fragments.

Longitudinally oriented merging trabeculae 
in the structure of the endosteal part of the regenerated 
bone formed a bone "sleeve" (Fig. 3 c, d, e) around 
the implant with the density of 496.6 ± 20.9 HU. 
No destruction areas neither cysts in the tibia were 
revealed.

Fig. 3 After frame removal: a – radiographs two months after frame removal; b – amplified 
image of lengthened tibia, arrows point the trajectory of intramedullary implant and 
surrounding ossification; c – 3D reconstruction of the left leg by CT scan, protruding end 
of the implant is visible; d – cross section of the proximal part of newly formed bone; e – cross 
section of the proximal part of newly formed bone
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Computed tomography (Fig. 3 c, d, e) performed 
after the removal of the Ilizarov fixator confirmed a three 
continuous cortices at lengthening site (their density 
was 1288.8 ± 141.2 HU), and mineralized central zone 
of the distraction regenerated bone. The cortical plate 
along the anterior surface of the leg was presented 
in the form of separate fragments.

Longitudinally oriented merging trabeculae 
in the structure of the endosteal part of the regenerated bone 
formed a bone "sleeve" (Fig. 3 c, d, e) around the implant 

with the density of 496.6 ± 20.9 HU. No destruction areas 
neither cysts in the tibia were revealed.

Thus, the consecutive radiographs demonstrated 
that lengthening with external frame and intramedullary 
implant made of hydroxyapatite-saturated 
polycaprolactone provided optimal conditions for bone 
regeneration. The increased activity of osteogenesis was 
manifested in the formation of the distraction regenerated 
bone without evident central fibrous non-mineralized 
zone, associated with developed periosteal reaction.

DISCUSSION

The use of biodegradable implants providing advantage 
of non-removal after is a promising approach [15-17]. 
Due to osteoinductive filling they induce bone formation 
around it and provide osteointegration stimulating 
osteogenic activity in the bone marrow canal ensuring 
stability of bone fragments until union throughout 
the time of implant resorbtion [18]. The features 
of implants made of polymers of lactic and glycolic 
acids for self-locking and auto-compression related 
to changing in structure under hydrolysis reaction is 
discussed [19]. There are no studies about possibility 
to apply intramedullary biodegradable nails for limb 
lengthening where applied force is traction one and 
request for bone metabolism is higher than for fracture 
union. The case presented in the article demonstrates 
the first experience in this combined technology.

Polycaprolactone (PCL) is a biodegradable 
thermoplastic used in a variety of medical applications, 
including bioprinting of hard tissues such as bones 
and cartilages. It is a polymer that provides improved 
control of the mechanical properties of ready-made 
3D structures. In surgery the 3D implants made 
of polycaprolactone are used to fill in defects of skull 
bones and as elastic matrices to fill damaged cartilage 
tissue [20, 21]. In traumatology, pins and screws made 
of bioresorbable material are indicated for avulsion [22]. 

But all available absorbable implants are not bioactive 
without osteoinductive properties.

The principal difference of the nail that we used 
in the presented case is hydroxyapatite particles both 
on the implant surface and as a filling. It is well-known 
that hydroxyapatite possesses osteoinductive 
activity [18, 20, 21]. This feature could be favorable 
for bone lengthening especially in conditions 
of compromised bone regeneration [23].

This technology demonstrated by this case as 
excellent bone regeneration. The specific radiological 
signs were pronounced periosteal reaction both 
on adjacent bone fragments and at the level of diastasis 
and bone regenerate without apparent central fibrous 
zone, so-called “growth zone”. This active bone 
formation resulted in reduced time of external fixation 
with index of 18 days per cm.

We have a hypothesis, the result can be explained 
that bone tissue trabeculae are formed not only under 
the influence of longitudinal tension forces, but 
also due to surrounding nail osteoformation related 
to osteoinductive properties of hydroxyapatite. The 
elastic PCL/HA intramedullary nail elicits a controlled 
action and reaction to the host tissue environment with 
a controlled resorption to be replaced by stimulated 
regenerating bone tissue.

CONCLUSIONS

This case demonstrates effectiveness of bioactive 
degradable intramedullary nail in combination 
with external fixation for tibial lengthening. 
Intramedullary implant ensures mechanical stability 

and biological stimulation for bone regenerate and 
union. Resorbility and biocompatibility of the nail 
provide advantage to avoid a procedure to avoid 
implant in follow-up.
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Abstract
Introduction An aneurysmal bone cyst (ABC) is a rare, non-neoplastic, destructive, hemorrhagic, and expansile lesion accounting 
for 1 % of all bone tumors. ABC of the foot is very rare. Patients with foot ABC usually complain of pain and swelling of the affected 
area. Radiographs and MRI may be helpful in the diagnosis of ABC. No single surgical procedure has gained wide acceptance in the 
treatment of foot ABC. Purpose To show new effective surgical approach in the treatment of patient with ABC of the medial cuneiform 
bone. Material and methods We present the case of a 47-year-old woman with a 10-months history of pain and swelling in her 
right foot. Postoperative histopathological evaluation of resected tissues confirmed the diagnosis of ABC. An en bloc resection (total 
extraction of the remnant of the medial cuneiform bone) was performed and the defect was replaced with a fibular bone graft from 
the right leg. Allograft (Bio-Ost®) was placed along the autograft. Tibialis anterior tendon was attached to the fibular bone graft. We 
performed fixation of the foot and ankle using the Ilizarov original apparatus for prevention of bone graft instability and opportunity 
for early weight-bearing on the operated foot. Results The postoperative period was uncomplicated with complete healing of the bone 
defect without recurrence after 12 months of observation. AOFAS score increased significantly from 34 points preoperatively to 92 
at 1-year follow-up. Discussion The optimal treatment of this lesion is still under discussion. Different treatment modalities have 
been described in the literature: wide resection, curettage with or without adjuvants, arterial embolization, intralesional sclerotherapy. 
Biological reconstruction using bone graft seems to be the best option, but fractures and nonunion are common complications of bone 
grafting. Conclusion The combination of Ilizarov external fixation and bone grafting provided favorable conditions for the healing 
of foot bone defect due to ABC without complications, allowed mobility and early weight-bearing of the patient. Recurrence was not 
detected radiologically. Harvesting of the fibular bone graft did not affect the position of the foot and its movements. Our surgical 
approach should be considered as a treatment option in similar cases.
Keywords: Aneurysmal bone cyst, Foot, Ilizarov, bone graft; external fixation, allograft, medial cuneiform bone
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INTRODUCTION

An aneurysmal bone cyst (ABC) is a rare, 
non-neoplastic, destructive, hemorrhagic, and 
expansile lesion accounting for 1 % of all bone 
tumors [1]. The etiology of this pathology is unknown, 
although it is now commonly accepted that benign 
bone cysts are caused by trauma or local circulatory 
disturbance, which results in an increase in venous 
pressure and the development of enlarged and dilated 
vascular components within the affected bone [2, 3]. 
Overall, ABC is diagnosed more commonly in the 
second decade of life and is more common in females 
than in males [4].

Midfoot ABC is very rare. Patients with foot ABC 
usually complain of pain and swelling in the affected 
area. Radiograph and magnetic resonance imaging 
(MRI) may be helpful in the diagnosis of ABC. 
A radiograph of the patient`s foot demonstrates a lytic 
lesion in the medial cuneiform and MRI shows cystic 
formations with typical fluid-fluid levels due to blood 
sedimentation. A histopathological examination is 
needed to evaluate the ABC.

The differential diagnosis associated with ABC includes 
giant cell tumor, giant cell reparative granuloma, Brown 

tumor arising from hyperparathyroidism, chondroblastoma, 
or telangiectatic osteosarcoma [1, 3, 5, 6].

Several classifications of ABC have been proposed 
based on natural history, activity, and morphological 
features [7-10]. There is a very useful classification 
of ABC according to Capanna et al [7], which is based 
primarily on the extent and size of the cyst and its 
proximity to the cortex and soft tissues, described five 
morphological subgroups (types) and three distinct stages.

No single surgical procedure has gained wide 
acceptance in the treatment of foot ABC. The predominant 
therapy for ABCs is an intralesional resection 
performing curettage with the use of adjuvants [11]. 
A wide resection, especially in the foot, is not easy 
to achieve and can cause complications depending on 
the dimension of the operation and the localization [11]. 
Medial cuneiform bone is an important cornerstone 
for medial arch continuity, structural integrity, and 
pathological fracture risks are the conditions that should 
be considered in the treatment of foot ABC [12].

Purpose: to show a new effective surgical approach 
to the treatment of patient with ABC of the medial 
cuneiform bone.
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MATERIALS AND METHODS

We present a clinical case of aneurysmal bone cyst 
of the medial cuneiform bone in an adult woman with 
a 10-month history of pain and swelling of her right 
foot and the long-term result of using Ilizarov external 
fixation and bone grafting.

A female patient, 47 years old, was admitted 
to the Ilizarov Center with complaints of pain and swelling 
in her right foot (Fig. 1, a). The patient had a 10-month 
history of complaints and was treated conservatively 
without any relief. Pain and swelling in right foot 
were increasing in the last 3 months. The patient lived 
in the countryside and had no history of significant personal, 
ethnic, demographic, or life incidents. There was no history 
of trauma. No allergies were reported. Blood analysis and 
urine analysis were normal. Electrocardiogram, chest 
X-ray, and arterial blood gas were also normal. Functional 
condition according to the American Orthopedic Foot and 
Ankle Society (AOFAS) was 34 points preoperatively 
with a full range of ankle joint motion.

Fig. 1 Before surgery: a – photo; b – X-ray pictures in anterior-
posterior (AP) and lateral views (demonstrating an osteolytic 
lesion of the medial cuneiform)

Fig. 2 MRI scans of the right foot showing a multiloculated 
expansile lytic lesion with multiple thin septations and typical 
fluid-fluid levels due to blood sedimentation

According to Capanna et al. classification, the ABC 
was type I (centrally located lesions that are well contained 
with no outline or slightly expanded) in the active stage.

Intraoperative biopsy aspirate was haemorrhagic; 
postoperative histopathological evaluation of resected 
tissues confirmed the diagnosis of ABC (Fig. 3).

Firstly, we applied the Ilizarov original frame 
on the right leg and foot with universal hinges (Fig. 4). 
At the level of the middle third of the lower leg, one 
wire and one half-pin were drilled, and in the lower 
third three wires were inserted (one was an olive wire 
through both bones); three wires were passed through 
the forefoot. We applied two full rings in the tibia and 
two half-rings in the forefoot.

In the 2nd step, we produced a medial longitudinal 
incision in the midfoot area. We cut the tibialis anterior 
tendon at its insertion and tagged its end with sutures. 
En bloc resection of the lesion (extraction of the remnant 
of medial cuneiform bone) was performed (Fig. 5, a, b, c). 
A fibular bone graft was harvested from the lower third 
of the right leg and the graft, about 4 cm long, was placed 
while preserving the medial arch of the foot (Fig. 5 d). 
The fibular bone graft was slightly tapered on both 
ends with about 3 mm bevelled edges and shaped so as 
to lock and fill in the defect between the first metatarsal 
and navicular bones. A prepared allograft (Bio-Ost®) 
was placed along the autograft (Fig. 5, e). The hole was 
drilled through the fibular bone graft and the tibialis 
anterior tendon was attached to it (Fig. 5, f).

Radiographs and CT showed a lytic lesion in the medial 
cuneiform with subtotal bone defect (Fig. 1, b). 
MRI revealed a well-defined lesion with multiple thin 
septations and typical fluid-fluid levels due to blood 
sedimentation (Fig. 2).

Fig. 3 HE-stained 
sections of resected 
tissues (histopathological 
evaluation): a –lamellae 
surrounded with 
congestion of small blood 
vessels, and blood-filled 
cystic spaces separated by 
fibrous septae (×40); 
b – multiply of osteoblast 
proliferation, fibrous 
connective tissue and 
multinucleated giant cell 
proliferation (×100).  
HE – hematoxylin-eosin
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Fig. 4 Photo of the right leg and foot after partial Ilizarov frame 
assembly and medial longitudinal incision in the midfoot

Fig. 5 Photos during the operation steps: a – view of the lytic bone process; b – zone of the defect after resection of the lesion; c – the size of 
the defect after resection of articular surfaces of 1st metatarsal, central cuneiform, and navicular bones; d – fibular bone graft shaped to fill 
the defect between the first metatarsal, central cuneiform, and navicular bones; e – placement of the allograft (Bio-Ost®) along the autograft; 
f – attaching the tibialis anterior tendon to the fibular bone graft

In the next step, we added two olive wires through 
the hindfoot (calcaneus) and one olive wire through 
the navicular bone (Fig. 6). The final Ilizarov frame 
consisted of two full rings in the leg, two half-rings in 
the forefoot and one half-ring in the hindfoot. Basic 
circular supports on the leg, forefoot, and hindfoot were 
connected by rods with hinges.

During the treatment, the patient was attended daily 
by a physiotherapist in our department. The patient 
started walking gradually increasing weight-bearing 
on the right foot on the third day after surgery with 

or without crutches. Dressings after surgery were 
changed daily for 3 days, and then weekly. The 
patient was discharged for outpatient treatment after 
8 days. The postoperative period was uncomplicated. 
The period of fixation of the right foot and ankle with 
the Ilizarov apparatus on was 56 days.

In the next step, we added two olive wires through 
the hindfoot (calcaneus) and one olive wire through 
the navicular bone (Fig. 6). The final Ilizarov frame 
consisted of two full rings in the leg, two half-rings 
in the forefoot and one half-ring in the hindfoot. Basic 
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RESULTS

Our treatment approach enabled to create 
favorable conditions for the healing of the defect 
zone without complications (Fig. 7, 8). One year after 
the surgery, the patient was satisfied with the result 
of treatment that provided free painless weight-bearing 
(Fig. 9). Recurrence was not detected radiologically. 

AOFAS score increased significantly from 34 points 
preoperatively to 92 postoperatively. The ankle range 
of motion recovered. The muscle strength of the tibialis 
anterior muscle was assessed as 5 points. Harvesting 
of the fibular bone graft did not affect the foot position 
and movements.

Fig. 7 X-ray pictures of the patient`s foot after Ilizarov frame 
removal (56 days after surgery)

Fig. 8 X-ray pictures of the patient`s foot in AP and 
lateral views 90 days after surgery

circular supports on the leg, forefoot, and hindfoot were 
connected by rods with hinges.

During the treatment, the patient was attended daily 
by a physiotherapist in our department. The patient 
started walking gradually increasing weight-bearing 
on the right foot on the third day after surgery with 

or without crutches. Dressings after surgery were 
changed daily for 3 days, and then weekly. The patient 
was discharged for outpatient treatment after 8 
days. The postoperative period was uncomplicated. 
The period of fixation of the right foot and ankle with 
the Ilizarov apparatus on was 56 days.

Fig. 6 Treatment: 
a – X-rays in AP and 
lateral views; b – photo 
of the right foot after 
the operation

Fig. 9 A year after surgery: a – photos; b – X-ray picture in AP view
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DISCUSSION

ABC is a lytic and benign but locally aggressive 
pseudotumor lesion. This pathology is found in long 
bones (tibia, femur, pelvis, or humerus) [3].

In the general population, the ABC is more frequent 
in children and young individuals, is diagnosed 
more commonly in the second decade of life, and 
has a male-to-female ratio of 1:1.16 [4]. ABC of the 
cuneiform foot bones is extremely rare [12]. CT and 
MRI scans may be helpful in the diagnosis of this lesion.

The optimal treatment of this lesion is still under 
discussion [11]. Different treatment modalities have 
been described in the literature: wide resection, 
intralesional resection such as curettage with or 
without adjuvants, arterial embolization, intralesional 
sclerotherapy using polidocanol or the systemic 
application of denosumab [14].

Due to the rarity of ABC of the foot, only case 
reports on the surgical treatment were published [1, 5, 6, 
12, 15-17]. One study describes a case series treated by 
percutaneous instillation of polidocanol or intralesional 
curettage [11].

Once the cyst is removed, the cavity can be 
packed with either bone-graft, bone cement or other 
alternatives [16]. At present, biological reconstruction 
using bone graft seems to be the best option [16].

The adjuvant treatments such as argon beam 
coagulation, phenol, cryosurgery, and cement have 
complications such as postoperative fracture, skin 
necrosis/wound infection, and delayed bone healing 
[12]. In addition, treatment alternatives such as adjuvant 
radiotherapy, arterial embolization, and sclerotherapy do 
not contribute to the structural integrity of the bone and 
there could be recurrence too [12, 15, 18]. Inadvertent 
arterial embolization can have devastating effects, and its 
indications should be scrutinized accordingly [18].

The most preferred treatment option for most ABCs 
of the foot is curettage with bone grafting. But in our 
opinion, wide excision (en-block resection) of the lesion 
like in our ABC case might be preferable with the least 
chance of recurrence.

The medial cuneiform is an important cornerstone 
for medial arch continuity and structural integrity, and 
the risk of a pathological fracture should be considered 
in the treatment of ABC [12]. Restoring the structure 
and functions of the midfoot following resection is 
a challenging task because of its complex anatomy; 
the tibialis anterior tendon needs to be reattached 
to avoid functional disability [5]. Fractures and nonunion 
are common complications of bone grafting [16]. 
The application of fibular grafts in the reconstruction 
of bone defects caused by trauma, osteomyelitis, or 
tumor resection is an effective treatment option [19]. 
The use of the Ilizarov apparatus showed its effectiveness 
in the challenges of foot surgery [20, 21]. Due to these 
reasons, we decided to use a combination technique 
of Ilizarov external fixation and bone grafting providing 

an opportunity to start early weight-bearing instead 
of screw or plate fixation.

Kumar et al used K-wires to secure the graft 
in position after the excision of an ABC lesion 
of the medial cuneiform [5]. Bingol et al described 
compression screw fixation in the case of medial 
cuneiform ABC [12]. In our case, we used the Ilizarov 
original frame. This technique has not been published 
earlier in literature.

High recurrence rate was reported for ABC [3, 11], 
the incidence might be 10 percent and higher [11, 22, 23]. 
Deventer et al showed a local recurrence in 60 % 
of the curettage subgroup of patients and the disease after 
sequential instillations of polidocanol in the instillation 
subgroup persisted in 40 % [11]. It is important 
to note that no patient, out of the total five treated with 
polidocanol, could be managed with a single injection 
alone. The authors concluded that the less invasive 
character of the instillation justifies it as primary attempt 
of therapy.

Chowdhry described a local recurrence rate of 21 % 
after intralesional curettage in 14 patients with foot 
ABC [22].

Mankin et al in their review of 150 ABC cases 
treated with curettage and packing with bone grafting 
or polymethylmethacrylate, found a recurrence rate 
of 22 % [23].

Garg et al [24] and Dormans et al [25] described 
a reduction of local recurrence by the use of a high speed 
burr, phenol, and intralesional curettage of primary ABC 
in children and adolescents.

Complications associated with transosseous 
osteosynthesis and external fixation in foot and ankle 
surgery were reported by many authors [26, 27]. 
No complications related to vessels and nerves, and 
wire/pin-site infection were observed during and after 
our treatment, using Ilizarov external fixation.

Harvesting of the fibular bone graft might result 
in complications, including painful neuromas, vascular 
injury, long-lasting ankle pain, nerve injury, and 
ankle instability [19]. In our clinical case, harvesting 
of the fibular bone graft did not affect position and 
movements of the treated foot, did not cause pain and 
neurological problems.

The procedure of tibialis anterior tendon transfer can 
have complications such as re-rupture, loss of strength, 
instability by walking, gait disturbance with forefoot 
drop, and weak dorsiflexion of the ankle [12]. In our 
ABC case of an adult patient, we applied the Ilizarov 
original apparatus to create favorable conditions 
for healing the foot bone defect and reattached 
the tibialis anterior tendon with stable fixation and 
the possibility of early weight-bearing. The patient 
maintained a full range of motion in the ankle 
joint without pain and excellent muscle strength 
of the tibialis anterior at the final follow-up.
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CONCLUSION

The combination of Ilizarov external fixation and bone 
grafting provided favorable conditions for the healing 
of foot bone defect due to ABC without any complications, 

patient’s mobility and early weight-bearing. Our approach 
in the management of foot ABC should be considered as 
a treatment option in similar cases.
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Abstract
Introduction One of the key limitations of distraction osteogenesis (DO) is the absence or delayed formation of a callus in the distraction 
gap, which can ultimately prolong the duration of treatment. Purpose Multiple modalities of distraction regenerate (DR) stimulation are 
reviewed, with a focus on modulation of the mechanical environment required for DR formation and maturation. Methods Preparing 
the review, the scientific platforms such as PubMed, Scopus, ResearchGate, RSCI were used for information searching. Search words 
or word combinations were mechanical bone union stimulation; axial dynamization, distraction regenerate. Results Recent advances 
in mechanobiology prove the effectiveness of axial loading and mechanical stimulation during fracture healing. Further investigation 
is still required to develop the proper protocols and applications for invasive and non-invasive stimulation of the DR. Understanding 
the role of dynamization as a mechanical stimulation method is impossible without a consensus on the use of the terms and protocols 
involved. Discussion We propose to define Axial Dynamization as the ability to provide axial load at the bone regeneration site 
with minimal translation and bending strain. Axial Dynamization works and is most likely achieved through multiple mechanisms: 
direct stimulation of the tissues by axial cyclic strain and elimination of translation forces at the DR site by reducing the effects 
of the cantilever bending of the pins. Conclusion Axial Dynamization, along with other non-invasive methods of mechanical DR 
stimulation, should become a default component of limb-lengthening protocols.
Keywords: bone regeneration, mechanical stimulation, axial dynamization
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INTRODUCTION

Introduced by G.A. Ilizarov, the principles 
of distraction osteogenesis (DO) are now used to lengthen 
and reconstruct limbs to help treat multiple orthopedic 
conditions, both congenital and acquired [1-3]. 
However, several challenges remain during its clinical 
application, including long treatment duration. Extended 
time in an external fixator exponentially increases the 
risk of complications [3-8]. Due to long treatment 
time spent in a frame, “patients may have non-surgical 
problems, such as social, domestic, educational, and 
psychological problems, as well as problems that may 
be cared for by the nursing and physiotherapy staff” [9]. 
Treatment is often long because the distraction regenerate 
(DR) must mature enough to withstand weight-bearing. 
The process is often further prolonged due to delayed 
consolidation and/or the development of pathologic 
distraction regenerate [10, 11].

In an effort to decrease fixation time, multiple 
research efforts are currently focused on stimulating 
DR maturation utilizing different methods. Proposed 
solutions include biological stimulation of the regenerate, 
pharmacological stimulation, physical stimulation, and 
any combination of the above (Table 1). All these solutions 
can be performed using invasive (through various surgical 
interventions) and non-invasive approaches.

Mechanical stimulation is the foundation 
of the entire DO process. During the distraction phase 
of limb lengthening, tension stress affects all tissues 
inside and surrounding the distraction gap [44]. 
The mechanobiological phenomena of DR formation 
during the DO process essentially prolong the body’s 
evolutionary-developed mechanism of fracture healing, 
where tension stress stimulates connective tissue 
proliferation, cell differentiation, and angiogenesis. 

Table 1
Various modalities to stimulate distraction regenerate

Distraction Regenerate Stimulation
Physical Biological Pharmacological
Mechanical (see below) Grafts [12-14] Vitamins [15-17]
Ultrasound [18-21] Bone marrow and PRP [22, 23] Biometals [24, 25]
Hyperbaric oxygen therapy [26, 27] BMPs [28, 29] Supplements [30, 31]
Electromagnetic 21, 32, 33] Growth factors [34, 35] Bisphosphonates [36-38]
Laser therapy [39, 40] Cell therapy [41-43]



Genij ortopedii. 2023;29(6)657

Literature review

Both angiogenesis and a proper mechanical 
environment are necessary for successful bone 
regeneration during DO [45, 46]. As the distraction 
forces are seized, bone resorption and remodeling 
take place to convert DR into a mature bone structure 
that is capable of bearing a physical load [47]. Known 
as the consolidation stage, this is the longest phase 
in the DO process, where different mechanical DR 
stimulation techniques are typically applied.

All known mechanical stimuli can be divided into 
invasive (surgical) and non-invasive techniques (Fig. 1).

Historically, mechanical stimulation techniques were 
applied following an abnormal formation of DR in an effort 
to fight the so-called delayed consolidation. However, there 
has recently been a shift towards a prophylactic application 
of mechanical stimulation to accelerate the consolidation 
and avoid delayed consolidation all together.

The goal of this work is to review the current 
methods of reducing treatment time during limb-
lengthening procedures, with a particular interest 
on the use of mechanical stimulation to promote 
maturation of the distraction regenerate.

Fig. 1 Various techniques of mechanical stimulation of the distraction regenerate

MATERIAL AND METHODS

We summarize recently (no more than 30 years) 
published studies about definition, classification, 
indications and clinical application of methods 
for mechanical stimulation of bone healing 
in lengthening procedures. To prepare the review, 
we searched for information sources at the scientific 

platforms such as Web of Science, PubMed, Scopus, 
ResearchGate, RSCI, as well as other published 
products (Elsevier, Springer) using search words 
or word constructions: bone lengthening, Ilizarov 
method, mechanical stimulation of bone healing, 
dynamization, external frame, clinical translation.

RESULTS AND DISCUSSION

Invasive (surgical) mechanical stimulation
Most surgical methods that involve a change 

to the mechanical environment are performed at the end 
of the consolidation stage as a response to delayed 
consolidation problems. These techniques include 
plating or intramedullary fixation after lengthening [4]. 
In most cases, these techniques are considered desperate 
measures to avoid a regenerate fracture after frame 
removal. Another desperate technique involving surgical 
stimulation of the pathologic distraction regenerate relies 
on performing a fracture through the DR site. The fracture 
helps re-stimulate fracture healing mechanisms, initiate 
additional angiogenesis, and re-introduce growth and 
biological stimuli supplied to the pathologic regenerate. 
A new development, introduced by Popkov et al. [48], 
uses a prophylactic placement of intramedullary devices 

during the initial surgery. This provides extra stability 
during distraction, as well as creates an environment 
to recruit additional biological factors for DR maturation. 
They also illustrated that the use of HA-coated implants 
increases the effect of DR stimulation [49].

Non-invasive mechanical modulation
Non-invasive mechanical stimulation can be 

performed in various ways: weight-bearing [46, 50], cyclic 
compression/distraction (accordion technique) [51-53], 
destabilization of the frame by releasing nuts on threaded 
rods, destabilization of the frame by removing fixation 
elements (wires and pins), and replacing threaded rods 
with dynamization devices.

Weight-bearing
Since the very first application of the Ilizarov 

circular fixator, lower limb lengthening has required 
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at least partial weight-bearing as part of the process. 
Ilizarov listed weight-bearing as a categorically required 
part of leg lengthening [2]. There are multiple papers 
emphasizing the positive effect of lower extremity 
loading during DO treatment for DR maturation 
and remodeling. It is also the least costly method 
to mechanically stimulate the regenerate. The only 
consideration must be patient education and compliance, 
as a majority of non-invasive DR stimulation techniques 
rely on patient weight-bearing to be effective [50, 54].

Compression
Compression of the DR is often another desperate 

measure to solve poor regeneration. It is usually 
performed during the lengthening stage, when 
the distraction interzone does not progressively display 
signs of mineralization on X-rays, or at the consolidation 
stage, when there are no signs of improvement 
at the lengthening site [55, 56]. There are two important 
points to consider. First, patient preparation and education 
are necessary as the planned amount of lengthening may 
not be achieved. Second, the shape of the pathologic 
regenerate must be considered when a fully mineralized 
cortex on one side of the bone is present [57, 58]. This is 
commonly known as a regenerate cyst. The cyst prevents 
any ability to compress the DR and can ultimately cause 
the development of a deformity, either during compression 
or later following frame removal. Similar problems can 
arise from the premature mineralization of the fibula 
in cases of tibial lengthening. This occurs when the tibial 
regenerate lags behind, resulting in the fibula acting as 
a strut that shields the tibia from necessary axial loading. 
In these cases, early surgical intervention may salvage 
the lengthening by breaking through the thin mineralized 
band of regenerate or the prematurely consolidating 
fibula along with the use of various grafting techniques. 
An acute compression performed at the end of distraction 
phase with compression tension of 5.6 N/cm2 is 
considered as optimal for bone healing stimulation [59].

Cyclic compression/distraction
Ilizarov was the first to suggest the use of alternating 

cycles of distraction and compression to improve 
the quality of bone formation in the distraction 
gap [2]. Under the optimal frame stability, patient’s 
weight-bearing creates alternating distraction/
compression (ADC) forces at the lengthening site as 
part of the DO process. Therefore, it is logical that 
the ADC forces created on a fixation device might 
further improve regeneration. This practice was later 
named as an accordion maneuver [53] and widely 
reported as a treatment for poor regenerate [51, 60-63]. 
Liu et al. [52] performed impressive animal studies 
to uncover the underlying mechanisms of ADC. 
The studies showed an improvement of bone formation 
during DO, suggesting that better outcomes may be 
achieved by moderately increasing the amplitude and 
slowing down the rate of the ADC technique [52].

Axial Dynamization
For many years, rigid fixation with internal or external 

devices was the paradigm of fracture treatment. However, 
recent advances in our understanding of bone healing 
and mechanotransduction suggest that systematically 
altering the construct’s stiffness throughout different 
phases of healing improves regeneration [64-66]. 
Dynamization has recently become a buzz word 
in multiple DO publications; however, there are some 
problems regarding terminology and definitions. 
Multiple terms that describe DR dynamization are 
ill-defined and ambiguous at the present. Starting 
with dynamization itself – multiple publications 
currently describe different techniques of bone healing 
stimulation under the same term.

The term dynamization is described as “the transfer 
of a progressive load to the fracture site at a given point 
in the healing cycle” [67]. Nowadays, dynamization 
encompasses many different methods of altering 
the fixation of fractures as the bone heals [68], such 
as decreasing the external fixator’s stiffness during 
the healing process by removing stabilizing elements 
[69]. A new concept of “reverse dynamization” was 
also recently introduced by Glatt et al., where frame 
destabilization is performed during the early stages 
of fracture healing (during the first week after the initial 
fixation) to produce a larger volume of newly formed 
callus. The frame instability is reversed to a more rigid 
fixation after 3-4 weeks to, in theory, encourage blood 
vessel growth within the callus. Reverse dynamization 
somewhat contradicts the original Ilizarov idea that 
frame stability plays an important role in bone healing 
[1, 2]. In contrast to the intramembranous ossification 
described by Ilizarov, reverse dynamization generates 
a large volume of bone callus, possibly through 
endochondral and trans-chondral types of ossification.

Many other vague terms are often used in conjunction 
with dynamization to describe the mechanical 
stimulation of the distraction regenerate, including 
but not limited to stable fixation, rigid fixation, and 
micromotion. First, the term micromotion should be 
avoided in scientific literature. The physiologic load 
of an external fixator typical configuration can lead 
to an axial displacement of bone fragments away beyond 
3 mm [70]. This amount of fragment displacement 
cannot be described as micro [71]. Secondly, we propose 
that rigid fixation be reserved to describe stabilization 
without any meaningful load on the bone healing site, 
essentially inhibiting the mechanobiological processes 
necessary for optimal bone regeneration as fixation is 
too rigid. In contrast, stable fixation of bone fragments 
minimizes the amount of shear and bending strains 
at the fracture or lengthening site, while still allowing 
for some axial loading to promote bone regeneration.

Dynamization should only describe and be used 
interchangeably with Axial Dynamization. We propose 
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to define Axial Dynamization as the ability to provide 
axial load at the bone regeneration site with minimal 
translation and bending strain. Shear and bending strains 
are both undesirable forces, whereas axial loading 
and unloading promote regeneration [2]. However, it 
remains doubtful that most modern external fixator 
assemblies will be able to entirely eliminate all instances 
of bending strain [70]. The original fixator developed 
by Ilizarov incorporates built-in Axial Dynamization 
with the use of thin wires only, which act as a fixed 
beam bending when under a load. As a result, the frame 
provides some axial displacement of bone fragments 
during weight-bearing [72]. Extended use of half-pins 
in modern external fixators has increased frame rigidity 
and replaced fixed beam bending with cantilever 
bending, which ultimately creates undesirable bending 
and translation forces.

There are many other methods of altering fixation 
stability that should not be considered dynamization, 
including removing stabilizing elements of the fixation 
device, destabilizing connecting elements of the fixator, 
or removing some of the external fixation pins and 
wires. These methods would be better named as partial 
fixation removal or fixator destabilization.

When applying dynamization, simply untightening 
the nuts of the fixator connecting rods, will not provide 
the proper conditions to eliminate shear and bending 
strains. Instead, the best way to dynamize is with 
spring-loaded devices or elastic washers to provide axial 
loading with a dampening effect. An example of such 
dynamization would involve mounting the original 
De Bastiani dynamization washer [67] or a spring-
loaded device between the external fixator rings [70]. 
Use of such spring-loaded dynamization devices not 
only stimulates bone healing but also improves patient 

comfort, allowing better weight-bearing and indirectly 
improving the healing process [70].

Axial Dynamization works [73, 74] and is most 
likely achieved through multiple mechanisms: direct 
stimulation of tissues by axial cyclic strain and elimination 
of translation forces at the DR site by reducing the effects 
of the cantilever bending of the pins. However, 
it remains unclear when dynamization should be applied 
during limb lengthening. Frames are traditionally 
dynamized at the end of the consolidation period before 
the external fixator is removed. Nonetheless, we have 
started dynamizing frames earlier, at around 3-4 weeks 
after lengthening is complete. There is also an argument 
to initiate dynamization during the distraction period 
to mimic the effects of all-wire frames, which include 
properties of built-in dynamization as previously stated. 
Introducing dynamization during the early distraction 
period would likely result in a mechanical environment 
similar to the traditional all-wire fixator developed 
by Ilizarov and ultimately help develop better DR. 
However, it must be noted that dynamization also 
depends upon the patient putting weight on the treated 
extremity, which could be a challenge during the early 
stages of limb lengthening. Whereas late dynamization 
performed during the consolidation period would 
actually improve patient comfort by reducing 
the cantilever bending of the fixator pins and providing 
a dampening effect. This would allow for more weight-
bearing and physiologic walking that will help stimulate 
DR maturation.

Advancements in automated distraction will possibly 
allow for a more frequent rhythm of distraction, 
plus the ability to use passive Axial Dynamization 
techniques alongside frequent patient-independent 
cycles of compression/distraction.

CONCLUSION
Mechanical stimulation is the most accessible 

and usually most affordable way to speed-up 
the mineralization of the distraction regenerate. Multiple 
publications prove the effectiveness of mechanical 
modulation techniques involved in DO for improving 
the conditions of bone healing. Non-invasive techniques 
of DR mechanical stimulation should become a default 
component of the limb-lengthening procedure, rather 
than reserved to rescue pathologic regeneration and 
delayed consolidation. Axial Dynamization using 

spring-loaded or elastic devices proves effective 
in achieving cyclic axial loading, while minimizing 
shear and bending forces on the regenerate. There is 
a need for a consensus on the definitions and protocols 
that surround Axial Dynamization. Therefore, 
additional research is needed to develop the protocols 
and process of Axial Dynamization, which will most 
likely involve incorporating a combination of early and 
late dynamization techniques into the treatment of limb 
lengthening.
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Abstract
Introduction Technological advances in bone tissue engineering have improved orthopaedic implants and surgical techniques for 
bone reconstruction. This approach allows overcoming inconvenience of the paucity of autologous materials available and donor site 
morbidity. Aim To demonstrate advances of the past 30 years in the development of bioimplants providing alternatives to bone grafting 
in reconstructive orthopaedics. Methods Preparing the review, the scientific platforms such as PubMed, Scopus, ResearchGate, RSCI 
were used for information searching. Search words or word combinations were bioactive osteoinductive implants, bone grafting, bone 
reconstruction, hydroxyapatite, bone scaffolds. Results This review presents and discusses the experimental and clinical application 
of biotolerant, bioinert and bioactive materials for reconstructive bone surgery. Discussion Future generations of biomaterials are 
designed to be osteoconductive and osteoinductive. Properties of polycaprolactone (PCL) filled with hydroxyapatite (from 10 to 50 
wt %) make this hybrid material with controllable absorption a promising strategy for reconstructive surgery in comparison to other 
materials. Conclusion The main trends in tissue engineering in the field of orthopaedics are represented by construction of three-
dimensional structure implants guiding cell migration, proliferation and differentiation as well as mechanical support. Association 
with bone morphogenetic proteins, growth factors enables proliferation and differentiation of cell types of the targeted bone tissue. 
A promising advancement should be biodegradability with a controllable degradation rate to compliment cell/tissue in-growth and 
maturation in limb reconstruction.
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INTRODUCTION
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Methods for surgical treatment of fractures and bone 
diseases with the use of osteosynthesis technologies 
have spread globally over the past century. A great 
number of internal (intraosseous and extraosseous) and 
external (wire- and half-pin-based) fixators have been 
proposed to ensure the most reliable osteosynthesis 
of a broken bone and to provide favorable conditions 
for reparative bone tissue regeneration: accurate 
reduction of bone fragments, their stable fixation, 
sparing attitude to osteogenic tissues, optimal rate of 
elongation, good blood supply to the involved limb, and 
early functioning in the postoperative period [1, 2]. Most 
orthopedic surgeons believe that the Ilizarov method is 
one of the best methods to provide the above-mentioned 
conditions. Nevertheless, clinical practice shows that 
the duration of osteosynthesis with the Ilizarov frame 
lasts at least four months for closed long bone fractures. 
In conventional limb lengthening, the excellent external 
fixation index is about 30 days/cm, the good one is 
45 days/cm, the fair one is 60 days/cm [3-9]. In 2004, 
Eralp  et al. reported an index of 1.65 months/cm for 
lengthening of the tibia with the Ilizarov fixator [10]. 

It is obvious that long-lasting treatment cannot satisfy 
either the patient and his relatives or the health care 
institutions. Therefore, there is a necessity to reduce 
the period of external frame wearing and to stimulate 
osteogenesis, both with conservative and invasive 
methods [11, 12].

Autologous bone grafting and various bioactive 
products from the decalcified bone, biocomposite 
matrices, recombinant bone morphogenetic proteins, 
and biomaterials from ceramics were offered for this 
purpose. Alongside, experimental studies on cell 
technologies have intensified [11, 13]. Bioengineering 
in orthopedics aims at creating biomaterials that are 
suitable to replace the damaged ones such as skin, 
muscle tissue, blood vessels, nerve fibers, and bone 
tissue. Biomaterials are the materials designed to serve 
as interfaces with biological systems in order to augment 
or replace host tissue, organ, or body function [14].

This publication aimed to reveal the trends 
in experimental development and clinical application 
of advanced bioactive implants in limb reconstruction 
dedicated to replace bone grafts.

MATERIALS AND METHODS

We summarized the recently published 
studies on definition, classification, production, 
indications and clinical application outcomes for 

implants with osteoinductive and osteoconductive 
properties used in limb reconstruction. To prepare 
the review, we searched for information sources 
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at the scientific platforms such as PubMed, Scopus, 
ResearchGate, RSCI, as well as other published 
products (Elsevier, Springer) using search words 

or word constructions: bone tissue engineering, 
reconstructive orthopaedics, clinical translation, 
scaffolds, hydroxyapatite.

RESULTS AND DISCUSSION

This area of materials science in orthopedics is also 
called bioceramics. The name emphasizes the leading 
role of the ceramic component in implants for joint 
replacement, filling materials for dentistry, implants 
for maxillofacial surgery, and medical cosmetic 
products [15, 16]. Biomaterials must possess certain 
chemical properties (absence of undesirable chemical 
reactions with tissues and interstitial fluids, resistance 
to corrosion), mechanical characteristics (strength, 
resistance to breakdown, long-lasting mechanical 
support), biological properties (absence of reactions 
from the immune system, consolidation with bone 
tissue, stimulation of osteogenesis).

Biomaterials used as implants that replace a bone part 
or as temporary fixators for fractures are also classified 
by their biological activity on bone tissue regeneration:

• Biotolerant materials (stainless steel and cobalt-
chromium alloys); a layer of fibrous tissue develops 
between the surface of those implants and the host 
bone; reparative regeneration of the injured bone occurs 
within conventional time and at some distance from 
the implant (distant osteogenesis);

• Bioinert materials (titanium and aluminum oxides) 
do not cause the formation of fibrous layer on the implant 
surface; reparative osteogenesis proceeds in direct 
contact with the implant surface (contact osteogenesis), 
but bone union occurs within usual terms;

• Bioactive materials (calcium phosphate ceramics 
and silicon-based bioglasses) are characterized 
by the formation of a chemical bond with the bone 
(bonding osteogenesis), enhance bone formation starting 
from the implant surface and induce the formation 
of a continuous bond from the tissue to its surface.

Metal implants occupy a large place 
in traumatology. Alloy steel is most frequently used 
to restore the integrity of a fractured bone (screws, 
locking intramedullary nails or bone plates). Internal 
fixation implants are made from materials that must 
primarily meet the objectives of providing reliable 
fixation of the fracture for functional treatment within 
a certain period, sometimes for 12-18 months. This 
is a rather long period of time. Therefore, materials 
must be chosen to resist fatiguing failure after fixation 
on the surface of bone fragments in order to maintain 
them in an anatomical position under loading until 
biological bone union.

All metals can be classified according to the effect 
on reparative osteogenesis into biotolerant materials 
(stainless steel and cobalt-chromium alloys) 
or bio-inert materials (titanium and aluminum 
oxides). There are no bioactive metals that would 
stimulate reparative osteogenesis. Chromium-nickel 
and chromium-nickel-molybdenum corrosion-
resistant steels, alloys of cobalt, tantalum, titanium, 
and pure metals such as nickel, silver, and titanium 
are the most frequently used materials for production 

of surgical implants applied in current medicine. Thus, 
in dentistry, dental implants are made from titanium 
and its alloys, since titanium is a biocompatible 
and corrosion-resistant material. In fact, all metals 
corrode under the influence of human body fluids. 
And without exception, all metal implants get 
protected from corrosion by a passive layer consisting 
of insoluble products of their oxidation. Corrosion 
increases by about 100 times if the passive protective 
layer of a metal implant, which consists of insoluble 
products of their oxidation, is damaged eventually by 
friction [17]. Under these conditions, the implant will 
not be able to provide stable fixation for a long time 
period required for bone fracture union.

Undoubtedly, titanium is one of the most promising 
materials for the manufacture of surgical implants 
widely used in traumatology. Numerous experiments 
and clinical practice have confirmed that titanium and 
its alloys is the most optimal metal for implantation [18].

Typical bioactive materials include bioglasses. 
The most common composition is 24.5 % Na2O, 
24.5 % CaO, 45.0 % SiO2, 6 % P2O5. By varying 
the composition, one can change their bioactivity 
and resorbability. Other materials are based 
on hydroxyapatite (HA), Ca10(PO4)6(OH)2 (dense and 
porous ceramics) [15, 19].

Hydroxyapatite, Ca10(PO4)6(OH)2, is one 
of the few known bioactive materials. It enables bone 
ingrowth and osseointegration of an orthopedic, 
dental, and maxillofacial implant due to its high 
biocompatibility. In recent years, a special term has 
appeared in the literature, biocompatible nanoceramics 
(where HA grains vary in size from one to several 
hundreds of nanometers), or nanostructured bioceramics, 
which defines a nanostructured ceramic material used in 
medicine to regenerate lost bone tissue [20].

The phenomenon of bioactivity is determined mainly 
by chemical factors, such as the crystalline phase and 
the molecular structure of the material, and by physical 
factors such as roughness and porosity of the material 
surface. Back in 1973, Hulbert et al. [21] proposed a new 
concept of the so-called biological fixation of skeletal 
implants by active bone growth (osteoconduction) 
on their surface. The materials were oxide ceramic 
and carbon compounds, as well as metals coated with 
stable oxide layers. Later, the concept of bioactivity 
of materials was defined as their ability to interact with 
the surrounding host bone tissue and to form a chemical 
bond with it [15, 22-24]. The ion-exchange reaction 
between the bioactive implant and the surrounding body 
fluids leads to the formation of a layer of carbonate apatite 
on it, which is chemically and crystallographically 
equivalent to the mineral composition of the bone. This 
ability of the implant to initiate the formation of calcium 
phosphate under in vitro conditions is interpreted as 
the first sign of possible bioactivity in vivo.
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Multiple complex and interrelated processes 
take place on the surface of a bioactive implant. 
First, ions and proteins are adsorbed there, forming 
a biofilm on the surface of the implant. This process 
strongly depends on the physical and chemical 
characteristics of the surface topography (roughness, 
porosity, morphology), chemical composition, 
energy and charge. As a result, both the amount and 
functionality of adsorbed proteins are largely controlled 
by the surface of the biomaterial. The adsorbed biofilm 
promotes the adhesion of cells facilitated by specific 
transmembrane receptors, integrins [16, 25]. 
The surface of the material, its biocompatibility 
determines the degree of adhesion of osteogenic 
and mesenchymal stem cells on their surface [26-28]. 
The degree of adhesion and disposition of these cells 
determine their ability to proliferate and differentiate 
into osteoblasts upon contact with the implant. The latter 
is crucial in the development of a mechanically strong 
interface of complete fusion between the implant 
surface and bone tissue without a layer of fibrous 
tissue [29-33].

The traumatology science currently develops 
two fundamentally different approaches to address injuries 
and bone loss: 1) simple replacement of a damaged area 
of the bone with a massive implant, with or without 
bioengineered structure, that replaces the bone and 
adjacent joints, or 2) creating conditions for regeneration 
of the bone in the injured area with an osteoinductive 
(absorbable or non-absorbable) implant. An analysis 
of literature reveals that both directions are increasingly 
associated with bioceramics, the use of which in medicine 
has been expanding as the developments in the field 
of chemistry progress and technologies for production 
of materials with the properties that are close to bone 
tissue improve [34-36].

Among the synthetic materials that can be used 
for implantation, calcium phosphate-based ceramics 
are the most promising. Hydroxyapatite is not only 
biocompatible, but also the most bioactive. However, 
the main shortcoming of ceramics is its fragility. 
Therefore, bioinert metals and alloys with a calcium 
phosphate coating can be used for fabrication 
of orthopedic devices for the musculoskeletal system, 
which experiences significant mechanical loads [37-40]. 
The coating provides biological compatibility and 
expressed biological activity in the formation of bone 
tissue around the metal. There are two research trends:

1. Development of joint prosthetic devices, 
the bearing metal part of which is covered with 
ceramics for the purpose of osteoinduction and 
formation of an extensive bone coupling that ensures 
reliable contact of the metal with the bone tissue 
over the maximum area, thus eliminating the failure 
of fixing the elements of the joint on the bone for many 
years [37, 40].

2. Development of intramedullary implants 
that do not experience significant load, but their 
hydroxyapatite coating contributes to the filling 
of extensive bone defects after trauma or surgical bone 
resections [41, 42].

Such a coating is designed to induce reparative 
osteogenesis around the implant, thereby contributing 
to the filling of extensive bone defects. The coupling 
created in this way around the implant provides optimal 
conditions for consolidation of bone fractures or 
nonunion, the formation of a distraction regenerate [40].

The main biological advantage of HA coatings 
is enhanced bone formation, accelerated bonding 
between the implant surface and surrounding tissue, and 
a reduced release of potentially harmful metal ions [30].

Methods for applying a bioactive coating to implants 
are numerous. The basic technologies for the deposition 
of hydroxyapatite are microarc oxidation, magnetron 
sputtering, formation of composite polymer coatings, 
vacuum arc deposition under the conditions of short-pulse 
high-frequency plasma immersion ion implantation. 
The technology of coating determines mechanical 
properties of the coating and physicochemical 
characteristics of the implant surface [18, 28, 29, 43-47].

The inconvenience of metal implants with a bioactive 
coating includes the second surgery to remove them. 
A solution to this problem is found in using of an implant 
fabricated from a strong composite material which will 
gradually undergo resorption while the defect is filled 
with regenerating bone tissue.

The first fixation devices for osteosynthesis 
made from biodegradable materials have been 
available since the early 1980s [48, 49]. However, 
their use for fracture treatment has not been widely 
accepted yet due to a number of reasons. A few types 
of biodegradable orthopedic implants available are 
either not intended for management of fractures, 
or do not meet the requirements of the AO/ASIF 
principles in terms of their properties and application 
methods [50-52].

Nowadays, it has become possible not only to obtain 
biodegradable materials with strong mechanical 
properties and an optimal degradation profile for fracture 
management, but also to produce structures close 
to classical metal fixators in sizes, what enables to consider 
biodegradable fixators of the latest generations as their 
full alternative [53, 54]. However, most of the researches 
are still devoted to either products or materials of early 
generations not related to osteosynthesis of limb bone 
fractures. Very few publications describe practical aspects 
of their use [55, 56].

Materials that undergo degradation due 
to the physiological effects of body tissues can be 
conditionally designated as biodegradable, including 
bioabsorbable and bioresorbable. Biodegradable 
materials is a wide group and is defined as a community 
of materials that undergo decay due to the physiological 
effects of body tissues on them (in vivo), regardless of the 
removal of degradation products from the body [56, 57]

In 1966, Kulkarni  et al. [58] reported the results 
of a study on the biocompatibility of polylactic acid 
(PLA) and its stereoisomer (Poly-L-Lactic Acid, 
PLLA). In 1971, the first result of a medical evaluation 
of the polymers in suture, rod, and film form was also 
presented [59]. The requirements for orthopedic fixators 
made of biodegradable materials were formulated 
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later: adequate fixation of bone fragments and/or soft 
tissues to the bone implant must retain mechanical 
properties within the estimated consolidation period; 
degradation period should not be too long to avoid the 
problems typical for metal fixators; implant must be 
made of materials that are completely safe for humans: 
non-toxic, non-antigenic, non-pyrogenic and non-
carcinogenic [60-65].

The group of polymeric biodegradable materials 
for osteosynthesis includes polyesters based on lactic 
and glycolic acids, polycaprolactone, as well as their 
co-polymers, which can be characterized as bioinert 
bioresorbable. The degradation of these compounds 
proceeds mainly along the hydrolytic path. However, 
it also partly occurs enzymatically, mainly after 
the hydrolytic decomposition of the molecule into 
relatively small fragments due to the enzymes 
of phagocytes, macrophages and neutrophils, while 
the end products of decomposition are CO2 and 
water [66-72]. As a material for the manufacture 
of orthopedic fixators, PLLA is of main interest. It has 
a high crystallinity, hydrophobicity and retains its 
properties for a long time, sometimes even too long 
(up to 5 years or more), is non-toxic and does not elicit 
an immune response [73].

The PLLA strength for compression is 80-500 MPa, 
the tensile strength is 45-70 MPa, the elastic modulus 
is 2.7 GPa, that are close to the values of the human 
bone tissue, which for the cortical bone are 131-
224 MPa, 35-283 MPa and 17-20 GPa, respectively, 
and for spongy bone 5-10 MPa, 1.5-38 MPa and 
0.05-0.1 GPa, relatively. PLLA products retain their 
original mechanical resistance for at least 3 months 
after implantation; degrade within 24 months. In some 
cases, after 4 years of implantation in the tibia, only 
initial surface signs of screw erosion were noted, what 
makes us consider that products made from pure PLLA 
are conditionally biodegradable [48, 71-74]. PLLA 
of high crystallinity degrades very slowly, while being 
inferior in strength to both polyglycolic acid (PGA) and 
biostable materials (metals). By combining PLLA and 
PGA, it was possible to solve the issue of relatively 
insufficient strength of the promising copolymer 
containing polylactic and glycolic acids [55, 56, 74-81].

Polylactic acid screws and pins are used in the clinical 
practice for fixation of small bone fragments 
in intra-articular fractures, fractures of the ankles 
and tibiofibular syndesmosis, bones of the wrist 
joint [75, 77]. In most fractures of the upper and lower 
extremities, it is not possible to ensure the stability 
of bone fragments only with such degradable implants. 
The economic effect of the use of biodegradable 
materials in fractures of various locations, including 
ankle fractures, was estimated by Böstman  et al. and 
ranged from 410 to 903 US dollars due to minimization 
of repeated surgical activity needed for the removal 
of metal implants [81, 82]. The terms of fracture union 
remain standard [83, 84].

To obtain a real opportunity to stimulate osteogenic 
processes, a number of researchers propose to add 
special inductors (fillers) to the composite material as 

matrix for transplantation of stromal progenitor cells, 
native bone marrow cells [85, 86].

Several biocomposite materials containing bone 
collagen and bone sulfated glycosaminoglycans 
of animals and humans have been developed in Russia 
in order to restore bone defects: Biomatrix – bone 
xenocollagen and bone sulfated glycosaminoglycans; 
Allomatrix-implant – bone allocollagen and bone 
allosulfated glycosaminoglycans; Osteomatrix – 
biocomposition based on natural bone components 
xeno- or allocollagen, sulfated glycosaminoglycans 
and hydroxyapatite; CollapAn – a calcium-
phosphate biocomposite material based on synthetic 
hydroxyapatite, collagen and an antibiotic [86-92].

These materials have porous and cellular structure 
corresponding to the architectonics of native cancellous 
bone. Such a structure provides not only volume 
maintenance in the defect due to elastic properties, 
but also an optimal opportunity for penetration and 
ingrowth of connective tissue cells, blood vessels and 
bone formation into the implant [88, 89, 92]. However, 
for all their advantages, they do not have the necessary 
mechanical characteristic of native bone tissue.

Osteomatrix is used in dentistry to replace bone 
defects formed after the removal of cysts and teeth. 
It was shown that 3 months after surgery the bone 
defects were actively filled with young bone tissue 
[91]. Good clinical results were also demonstrated 
for the CollapAn. In the area of the defects filled 
with CollapAn, the cortical layer and the medullary 
canal gradually formed by the 4-5th month, along 
with an increase in the intensity and uniformity 
of the callus. It was well tolerated; there were no cases 
of rejection and allergic reactions. In fracture treatment, 
an endosteal callus with a small periosteal component 
occurred by the end of the 4th week after the operation. 
The use of CollapAn in delayed fracture union and 
nonunion contributed to the formation of callus, mainly 
in its periosteal part, by the end of the 6-8th week after 
the operation. On average, by the end of the 8-9th month, 
bone consolidation was confirmed [92, 93].

Western European and American firms have developed 
a whole series of calcium-phosphate-collagen composites 
for filling bone defects or synostosis of vertebrae in order 
to replace autologous bone material in surgical practice. 
Thus, Collagraft®, a composite of collagen and biphasic 
calcium phosphate ceramic, contains highly purified 
type I collagen and biphasic calcium phosphate, which 
consists of 65 % hydroxyapatite and 35 % tricalcium 
phosphate ceramic [94].

Hydroxyapatite-poly-L-lactide (u-HA-PLLA) 
composites contain poly-L-lactide (PLLA). When 
u-HA-PLLA-composite rods were implanted into 
the subcutaneous layer, their bending strength retained 
85 % of the original value after 8 weeks and 80 % 
after 25 weeks, while after 25 weeks the molecular 
weight of the rods decreased to approximately 20 % 
of original [95]. It was reported [96] that complete 
degradation of u-HA-PLLA composite rods for bone 
fixation happens approximately 4.5-5 years after 
implantation.
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Beneficial properties of u-HA-PLLA composites 
enable to use bioresorbable devices made from them 
for internal fixation in bone fractures, orthopedic 
reconstructive and restorative operations. However, all 
degradable products based on PLLA have a significant 
drawback. In the course of degradation, the acidity 
of the environment of surrounding tissues increases, 
which negatively affects the processes of reparative 
regeneration of bone tissue and, consequently, the terms 
of fracture consolidation increase [97].

In order to eliminate this issue of implant 
degradation, the researchers at Tomsk Polytechnic 
University (Russia) together with researchers 

from the Ilizarov center (Russia) proposed 
to use polycaprolactone (PCL) as an implant 
matrix. Products from PCL with the inclusion 
of hydroxyapatite (from 10 to 50 wt %) were studied 
in the treatment of fractures of long bones in animals, 
treatment of bone defects and experimental limb 
lengthening. Experimental studies revealed a high 
biological activity of this new type of intraosseous 
implants: pH of the environment remained 
at the level of 6-7, bone union of tibial fractures 
occurred within 1 month, external fixation index 
for limb lengthening did not exceed 20 days/cm 
in monofocal procedures [98].

CONCLUSION

Thus, ceramic polymer composites are commercially 
available nowadays for treatment purposes. 
The combination of inorganic and organic components 
seems reasonable for designing in bone reconstruction 
surgery. Although autografts and allografts are still 
widely used due to the lack of artificial materials, some 
hydroxyapatite-polymer composites are attractive 
due to their similarity to the structure and properties 
of the bone tissue and osteoinductive activity. The use 
of materials depends both on medical and biological 
characteristics of a bone defect and particularities 
of underlying pathology. Variability of clinical problems 
requires a large range of biomaterials and implants 
on their basis.

The main objective of tissue engineering in the field of 
orthopaedics should be construction of implants serving 

as three-dimensional structures to guide cell migration, 
proliferation and differentiation along with mechanical 
support. Association with bone morphogenetic proteins, 
growth factors enables proliferation and differentiation 
of cell types of the targeted bone tissue. Tissue-
engineered implants must be biodegradable with 
a controllable degradation rate to compliment cell/tissue 
in-growth and maturation.

The manufacture of implants should easily and 
efficiently reproduce various shapes and sizes. They 
have to ensure bone union in non-complicated fractures 
within three to four weeks and stimulate bone healing 
in lengthening procedure after two to three weeks 
of fixation phase. Osteoiductive implants should 
accelerate mineralization of newly formed organic 
matrix of a lengthened bone.
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