© Д.Д. Болотов, Л.М. Куфтырев, 2002

Эндокринная регуляция репаративного процесса при возмещении межсегментарного дефекта костей в области коленного сустава методом чрескостного остеосинтеза

Д.Д. Болотов, Л.М. Куфтырев

Endocrinic control of reparative process during bone intersegmental defect filling in the knee region using transosseous osteosynthesis technique

D.D. Bolotov, L.M. Kuftyrev

Государственное учреждение науки

Российский научный центр "Восстановительная травматология и ортопедия" им. академика Г. А. Илизарова, г. Курган (генеральный директор — заслуженный деятель науки РФ, член-корреспондент РАМН, д.м.н., профессор В.И. Шевцов)

Произведена оценка изменения концентрации в сыворотке крови гормонов: соматотропина, кальцитонина, паратирина, инсулина и циклических нуклеотидов: 3'5'аденозинмонофосфата и 3'5'гуанозинофосфата у 12 пациентов с дефектами суставных концов костей, образующих коленный сустав, до, в процессе и после реконструктивно-восстановительных операций на основе чрескостного остеосинтеза.

<u>Ключевые слова</u>: коленный сустав, возмещение дефекта, аппарат Илизарова, радиоиммунологический анализ, гормоны, циклические нуклеотиды.

Changes of the following hormones in blood serum were assessed: sokmatotropin, calcitonin, parathyrine, insulin and cyclic nucleotides -3.5 adenisinemonophosphate and 3.5 guanosine phosphate in 12 patients with defects of bone articular ends, forming the knee, before, during and after reconstructive-and-restorative surgeries on the basis of transosseous osteosynthesis.

Keywords: the knee (joint), defect filling, the Ilizarov fixator, radioimmunological analysis, hormones, cyclic nucleotides.

введение

Изучению возможностей организма адаптироваться к лечению методом чрескостного остеосинтеза способствуют исследования на уровне механизма активного воздействия на формирование костной ткани и ее минерализации. Общепризнанно, что процесс биологической минерализации возможен при определенном сочетании общих регуляторных факторов, обеспечивающих положительный минеральный баланс организма. Процессы минерализации костной ткани в живом организме сводятся к факторам, регулирующим синтез органической матрицы, и гомеостазу минеральных веществ [2, 6]. В этом отношении значительную ценность представляет изучение уровня остеотропных гормонов.

Многолетними исследованиями, выполненными в нашем Центре, установлено, что репаративный остеогенез в условиях чрескостного остеосинтеза протекает, по меньшей мере, в двух последовательно сменяющих друг друга фазах.

Каждая из них - фаза резорбции (катаболическая, пролиферативная) и анаболическая (фаза дифференцировки и минерализации) контролируется компонентами системной нейрогуморальной регуляции - адаптивными и остеотропными гормонами и местными факторами роста. Между системными и местными регуляторами репаративного процесса существуют взаимоотношения взаимного модулирования и кооперации физиологического действия, вторичными мессенджерами тех и других являются ионы кальция и циклические нуклеотиды [1, 5, 10, 11].

Известно также, что опухолевый процесс, поражающий костную ткань, связан с изменением гормонального фона, репаративный остеогенез при возмещении костного дефекта после удаления опухоли имеет свои особенности в плане системной нейрогуморальной регуляции [3, 7, 8]. Однако имеющиеся в настоящее время данные недостаточны для вынесения суждения о роли, какую играют эти особенности при ле-

чении онкологических больных с применением методов чрескостного остеосинтеза. Целью нашего исследования является анализ динамики ряда показателей гормонального статуса у больных с пострезекционными дефектами дисталь-

ного суставного конца бедренной кости по поводу опухолей, которым осуществляли возмещение межсегментарного дефекта в области коленного сустава.

МАТЕРИАЛ И МЕТОДЫ

Под наблюдением находилось 12 больных с опухолями дистального суставного конца бедренной кости (гигантоклеточна – 8, остеогенна саркома -3, хондросаркома -1) в возрасте от 16 до 46 лет. Давность патологии составляла от 0,5 до 15 лет. Всем пациентам после резекции произведены реконструктивно-стабилизирующие операции с применением технологий чрескостного остеосинтеза для замещения дефектов: методикой билопоследовательного дистракционнокомпрессионного остеосинтнза – у 7, полилокального последовательного дистракционнокомпрессионного остеосинтеза – у 3, полилокального последовательного дистракционнокомпрессионного остеосинтеза с одновременным удлинением голени на одном уровне - у 1, монолокального компрессионного с удлинением голени на одном уровне – у 1. Больных обследовали в следующие сроки: до операции, еженедельно в течение первого месяца и дважды в месяц в последующем в процессе дистракции и фиксации, на 7-й день и ежемесячно после снятия аппарата.

Концентрацию гормонов: соматотропина (СТГ), кальцитонина (КТ), паратирина (ПТГ), инсулина (ИН) и циклических нуклеотидов: 3′5′аденозинмонофосфата (цАМФ) и 3′5′гуанозинофосфата (цГМФ) определяли методом радиоиммунологического анализа (РИА) (выполнялся совместно с к.м.н. Н.В. Офицеровой), используя гамма-счетчик фирмы «Тгасог Ешгора» (Голландия) и наборы следующих фирм: «Віс Маlіпстоdt» (Германия), «СІЅ» (Франция), «Атегsham» (Великобритания).

РЕЗУЛЬТАТЫ

Исходные гормональный фон и сывороточные уровни циклических нуклеотидов, как и их динамика на протяжении этапов лечения, отражены на рисунках 1-6. До вмешательства больные с хроническими дефектами дистального конца бедра, образовавшимися после удаления опухолей, как правило, имели в сравнении с нормой повышенные уровни ПТГ (в 2,2 раза, р<0,01), цАМФ (в 1,8 раза, р<0,01), СТГ (в 1.5 раза, p<0,05), тенденцию к снижению концентрации KT на 10% (p < 0.05) и практически нормальные уровни цГМФ и ИН (р<0,1). Принимая во внимание ту роль, которую отдельные гормоны играют в поддержании скелетного гомеостаза [2], можно сказать, что равновесие между костеобразованием и резорбцией у больных с хроническими дефектами костей после удаления опухолей изменено в сторону увеличения резорбции.

Динамика концентрации ПТГ была сходна с изменениями его уровня в сыворотке крови при замещении дефектов костей нижней конечности у больных, не имеющих онкологической патологии [4, 9]: резко повышаясь в послеоперационном периоде до 4,71 нг/мл (в 6,7 раза, p<0,001), он оставался высоким на всем протяжении периода дистракции, в 3-4 месяца фиксации отмечалось новое его увеличение на достоверном уровне (p<0,01), связанное, повидимому, с ремоделированием новообразованной кости, и снижение предоперационного уровня наблюдалось только после снятия аппа-

рата. Динамика содержания цАМФ в сыворотке крови в значительной мере соответствовала описанной для ПТГ, что предполагает в действии последнего не только внутриклеточное увеличение активности аденилатциклазы, но и влияние на перераспределение цАМФ между внутриклеточными компартментами и тканевой жидкостью.

В процессе дистракции наблюдалось плавное непрерывное увеличение содержания в крови СТГ, достигавшего максимального значения (6, 53 нг/мл, p<0,01) к 14-му дню фиксации. Затем происходило постепенное его снижение, однако к концу фиксации уровень этого гормона оставался увеличенным в 3,2 раза (p<0,01). После снятия аппарата содержание СТГ падало и к 30-му дню этого периода наблюдения существенно не отличалось от дооперационного (p<0,05).

Изменения содержания в крови КТ и цГМФ в целом повторяли изменения СТГ, достигая наибольшего содержания также к 14-му дню фиксации, увеличиваясь до 153 пг/мл (в 1,5 раза, p<0,05) для КТ и 6,03 пмоль/мл (в 3,6 раза, p<0,01) для цГМФ. При этом концентрация цГМФ в процессе дистракции плавно, постепенно снижалась, оставаясь увеличенной к концу дистракции в 2 раза и постепенно приближаясь после снятия аппарата к верхней границе нормы, но не доходя до нее. Концентрация КТ оставалась увеличенной в 1,4-1,5 раза в течение первых трех месяцев фиксации с последующим

Гений Ортопедии № 2, 2003 г.

снижением, но оставалась повышенной в 1,2 раза к концу фиксации и также приближалась к верхней границе нормы после снятия аппарата, не доходя до нее.

В послеоперационном периоде наблюдалось резкое повышение концентрации цАМФ до 54,5 нМ/мл – 3,8 раза с последующим снижением до близкого к дооперационному уровню через 2 месяца дистракции и постепенным последующим снижением с незначительными колебаниями, оставаясь повышенным в 1,2-1,5 раза в течение последующей дистракции и фиксации. После снятия аппарата концентрация цАМФ еще более приближалась к норме, не доходя до ее верхней границы, но оставалась увеличенной в 1,1-1,2 раза.

Концентрация ИН в сыворотке крови находилась в пределах нормы, снижаясь в 1,4 раза в послеоперационном периоде и незначительно на 2-3 месяце после снятия аппарата.

Рис. 1. Концентрация кальцитонина в сыворотке крови.

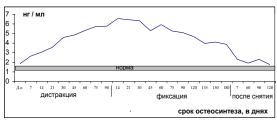


Рис. 2. Концентрация соматотропина в сыворотке крови.

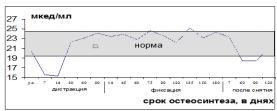


Рис. 3. Концентрация инсулина в сыворотке крови.

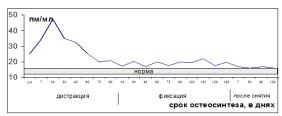


Рис. 4. Концентрация цАМФ в сыворотке крови.

Рис. 5. Концентрация цГМФ в сыворотке крови.

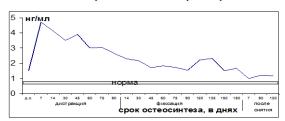


Рис. 6. Концентрация $\Pi T \Gamma$ в сыворотке крови.

ОБСУЖДЕНИЕ

Наличие в исходном состоянии повышения концентрации СТГ, стимулирующего образование коллагена, ПТГ, вызывающего деминерализацию костной ткани и цАМФ, изменяющего прохождение клеток через фазу митоза, а также незначительное снижение КТ, уменьшающего уровень кальция и неорганического фосфора в сыворотке крови, свидетельствовало о наличии в организме гормонального дисбаланса.

Резкое увеличение в первую неделю после операции ПТГ и цАМФ может свидетельствовать о напряжении адренергических реакций организма, ответственных за гормональный ответ на оперативное вмешательство, ПТГ, оставаясь повышенным (максимальное снижение до 1,51 нг/мл- в 2,2 раза выше в сравнении с контрольными цифрами к 5 месяцу фиксации), способствовал активной резорбции, кроме того, активизируя адемилатциклазу, стимулировал проникновение кальция в клетку, действуя на

клеточном и монокулярном уровнях.

Повышение уровня ПТГ, а следовательно, и кальция в сыворотке крови, явилось причиной постепенного увеличения КТ, снижающего уровень кальция и неорганического фосфора, взаимодействующих по принципу обратной связи, в результате чего ускорялась минерализация кости. Одновременно с этим КТ снижает активность остеокластов, что также повышает минерализацию регенерата.

В отличие от КТ, пик повышения которого приходится на 2 месяц фиксации, у СТГ, имеющего сходную тенденцию повышения и снижения в сыворотке крови, пик повышения приходится на 14 день фиксации, что соответствует фазе наиболее активного образования коллагена

Концентрация цГМ Φ , стимулирующей клеточную пролиферацию, изменяясь сходно с КТ и СТГ, плавно повышаясь, имеет пик концен-

трации на 45 день фиксации, находясь между пиками повышения КТ и СТГ.

Колебание ИН не носило принципиального характера и может быть рассмотрено как реакция на оперативное вмешательство.

Таким образом, исходя из количественной

оценки изменений концентрации гормонов, выявлена закономерность их воздействия, результатом которой явились условия, способствующие увеличению массы и минерализации регенератов при замещении межсегментарных дефектов в области коленного сустава.

ЛИТЕРАТУРА

- 1. Баранова В.В., Егоров В.Я. Уровень цАМФ и эффект кальция регулирующих гормонов // Физиологический журнал. 1985. Т.71, № 11. – С. 1367–1375.
- 2. Белоус А.М., Панков Е.Я. Гормоны и вопросы физиологической и репаративной регенерации костей // Ортопед. травматол. 1967. № 11. С. 111-118.
- 3. Динамика формирования дистракционного регенерата при замещении дефектов костей нижней конечности у больных с гигантоклеточной опухолью / Л.М. Куфтырев, Л.Н. Носова, И.И. Балаев и др. // Гений ортопедии. 1996. № 2-3. С. 111-112.
- 4. Клинико-рентгенорадионуклидная оценка репаративного костеобразования при возмещении дефектов кости методом удлинения одного из отломков по Илизарову / А.А. Свешников, В.Д. Макушин, Л.М. Куфтырев и др. // Медико-биологические и медико-инженерные проблемы чрескостного остеосинтеза по Илизарову: Сб. науч. работ. Курган, 1989. Вып. 14. С.159-166.
- 5. Нестерова М. В., Васильев В.Ю., Северин Е.С. Циклические нуклеотиды в системе регуляции клеточной пролиферации и дифференцировки // Украинский биохимический журнал. − 1981. − Т.53, № 2. − С. 52-69.
- 6. Офицерова Н.В. Свешников А.А., Носова Л.Н., Концентрация гормонов крови и содержание минеральных веществ кости при лечении дефектов голени и бедра по Илизарову // Вопросы чрескостного остеосинтеза по Илизарову. Экспериментально-теоретическое и клиническое обоснование новых способов диагностики и лечения ортопедо-травматологических больных: Сб. науч. работ. Курган, 1990. Вып.15. С. 91-95.
- 7. Петручук И.В. Гормональная регуляция процесса минерализации регенерата кости: Автореф. дис... канд. биол. наук. Минск, 1978. 23 с.
- 8. Показатели концентрации гормонов и циклических нуклеотидов крови при ортопедическом лечении больных с гигантоклеточной опухолью / Л.М. Куфтырев, Н.В. Офицерова, А.А. Свешников и др. // Новые технологии в лечении больных: Материалы конф. Ленинск-Кузнецкий, 1996. С. 82-83.
- 9. Радионуклидная оценка дистракционного остеогенеза при замещении дефектов костей нижней конечности у больных с гигантоклеточной опухолью / Л.М. Куфтырев, К.Э. Пожарищенский, Л.Н. Носова и др. // Гений ортопедии. 1998. № 1. С. 12-16.
- 10. Ткачук В.А. Участие аденилатциклазы в проведении гормонального сдвига через мембрану // Украинский биохимический журнал. 1981. Т. 52, № 2. С. 5-27.
- 11. Федоров Н.А. Биологическое и клиническое значение циклических нуклеотидов. М.: Медицина, 1979. 285 с.

Рукопись поступила 09.01.02.

Уважаемые коллеги!

Редакционный совет журнала «Гений Ортопедии» обращается к Вам с просьбой своевременно подписаться на наш журнал.

Журнал включен в каталог «Газеты и журналы» Агентства «Роспечать» на I полугодие 2003 года. Подписной индекс – 81417.

Цена одного номера – 100 руб.

Для желающих доставка журнала наложенным платежом, как и раньше, непосредственно из центра остается в силе. Стоимость одного номера журнала на 2003 год – 80 руб. (без стоимости пересылки). Для этого необходимо прислать заказ почтой, электронной почтой или по факсу на имя заведующей библиотекой Таушкановой Лидии Федоровны.

Адрес: РНЦ "ВТО", отдел научно-медицинской информации,

ул. М. Ульяновой, 6, г. Курган, 640014, Россия

Факс: (3522) 53-60-46. Тел.: (3522) 53-09-89.

E-Mail: gip@rncvto.kurgan.ru