© Группа авторов, 2001

Расчет приемов реконструкции заднего отдела стопы

Г.Р. Исмайлов, Д.В. Самусенко, Г.В. Дьячкова

Calculation of the techniques of the hindfoot reconstruction

G.R. Ismailov, D.V. Samussenko, G.V. Diachkova

Государственное учреждение науки

Российский научный центр "Восстановительная травматология и ортопедия" им. академика Г. А. Илизарова, г. Курган (генеральный директор — заслуженный деятель науки РФ, член-корреспондент РАМН, д.м.н., профессор В.И. Шевцов)

При изучении 127 рентгенограмм здоровых стоп в боковой проекции путем расчетов получен индекс длины нормальной пяточной кости, использование которого в предоперационном периоде позволяет определить контуры нормального пяточного бугра, подобрать модель остеотомии и направление перемещения выделенного фрагмента пяточной кости к анатомически правильным контурам, пользуясь скиаграммой с рентгенограммы поврежденной стопы. Разработан расчет приемов реконструкции заднего отдела стопы по скиаграмме, который при двусторонних повреждениях является единственным способом определения контуров неповрежденной пяточной кости. Приведен клинический пример предоперационного расчета контуров пяточного бугра у пациента с неправильно сросшимся компрессионным переломом пяточной кости и представлен результат лечения. Показано, что управляемое перемещение выделенного фрагмента, согласно поставленной задаче, возможно лишь с помощью аппарата для чрескостного остеосинтеза по Илизарову. Ключевые слова: пяточная кость, скиаграмма, чрескостный остеосинтез, реконструкция.

The index of normal calcaneus length was calculated in the study of lateral views of 127 x-rays of normal feet; preoperative use of this index allows to determine contours of the normal calcaneal tuber, to select the type of osteotomy and the transport direction of the calcaneal isolated fragment for achievement of the anatomically correct contours using using skiagram of the involved foot x-ray. The calculation of the procedures for the hindfoot reconstruction was worked out by skiagrams, and it was the only way for determination of the contours of intact calcaneus in case of bilateral involvements. A clinical case of the preoperative calculation of the calcaneal tuber contours in a patient with malunited compression fracture of calcaneus was presented, result of treatment was described. It was demonstrated that controlled transportation of the fragment isolated in conformity with the problem stated was possible only with the Ilizarov fixator for transosseous osteosynthesis. Keywords: calcaneus, skiagram, transosseous osteosynthesis, reconstruction.

При использовании традиционных методов лечения компрессионных переломов пяточной кости неправильно сросшиеся ее переломы наблюдаются в 90-93% случаев [2, 14, 21]. При этом они сопровождаются уплощением свода стопы, снижением высоты пяточной кости, уменьшением угла Белера, укорочением стопы за счет пяточной кости. Все это вместе с деформирующим артрозом подтаранного сустава ведет к тяжелым функциональным нарушениям стопы [11, 16].

Из оперативных методов, преследующих целью реконструкцию заднего отдела стопы, следует выделить корригирующие остеотомии пяточной кости [8, 19, 20] и корригирующий подтаранный артродез с костной ауто- или гомопластикой [7, 15, 18]. Однако эффект, достигаемый при этом, не всегда положительный – вплоть до уменьшения размеров пяточной кости [12, 22]; в большинстве же случаев реконструкция заднего отдела стопы не сопровождается предоперационным планированием и размеры, форма и положение пяточной кости оцениваются ортопедом лишь после проведенной пластики [3, 6, 17].

С целью более точного количественного определения нормальных размеров и положения пяточной кости рядом авторов были предложе-

ны приемы их расчетов. Так, Г.Е. Ген (1968) величину выступающей задней части пяточной кости на боковых рентгенограммах стопы определял в 2-2,5 см. Свои наблюдения он основывал на изучении более 100 рентгенограмм. Однако длина эта, выраженная в абсолютных цифрах (сантиметрах) не может являться объективным критерием ввиду разных абсолютных размеров стоп у детей и взрослых, женщин и мужчин, индивидуальных особенностей организма, а также от разных условий съемки (расстояние "пленка-объект", "пленка-трубка").

Предложенный В.П. Киселевым и Э.Ф. Самойловичем (1985) «высотный» индекс пяточной кости (рис. 1) является более объективным критерием, но его определение затруднительно ввиду сложности визуализации суставной поверхности пяточной кости на аксиальном снимке («высотный» индекс пяточной кости по В.П. Киселеву и Э.Ф. Самойловичу определяется как отношение вертикального размера пятки $A_{\rm B}$ - $A_{\rm H}$ в наивысшей части суставной поверхности на боковой рентгенограмме $A_{\rm K}$ наибольшему размеру суставной поверхности $E_{\rm B}$ - $E_{\rm H}$ на аксиальном снимке $E_{\rm M}$ и равен в норме $E_{\rm M}$ - $E_{\rm M}$

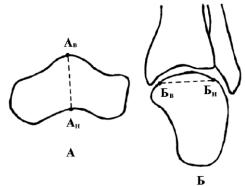


Рис. 1. Определение «высотного» индекса пяточной кости (по В.П. Киселеву, Э.Ф. Самойловичу, 1985).

С целью точного количественного определения нормальной формы, размеров, положения пяточной кости у больных с ее дефектами и приобретенными деформациями при двусторонней патологии нами разработан предоперационный расчет реконструкции заднего отдела стопы по скиаграмме. Предварительно путем расчетов получена величина индекса длины пяточной кости. Индекс длины пяточной кости получен при изучении 127 рентгенограмм здоровых стоп в боковой проекции в стандартной укладке по А.Н. Кишковскому и соавт. (1987), с разным углом наклона стопы по отношению к голени. Правильность укладки контролировали по В.И. Садофьевой (1986). Рентгенограмм стоп мужчин было 47, женщин – 80. Возраст обследованных был 10-12 лет в 14 случаях, 12-18 лет – в 24, 18-40 лет – в 58, 40-60 лет – в 26, старше 60 лет - в 5 случаях. Индекс длины пяточной кости получали путем деления ее длины на ширину дистального метаэпифиза большеберцовой кости в наиболее широкой его части по линии Wittek-Purckhauer-Скосогоренко [1]. Длину пяточной кости определяли по ее оси (рис.4) между наиболее крайними точками переднего отростка спереди и пяточного бугра сзади. Проводили статистическую обработку полученных величин индексов (включая отсев грубых погрешностей и проверку гипотезы нормального распределения) по А.М. Меркову, 1960 [10, 13]. Получили значение индекса длины здоровой пяточной кости, равное 1,95±0,03 (P=0,98, стандартная ошибка средней – 0,01).

Представляем методику расчета приемов реконструкции заднего отдела стопы по скиаграмме:

Выполняется скиаграмма с рентгенограммы поврежденной стопы, произведенной в боковой проекции в стандартной укладке по А.Н. Кишковскому и соавт., 1987 (рис. 2).

На скиаграмме вычерчивается угол Белера в 30^0 (среднее от нормы $20\text{-}40^0$), с учетом следующих ориентиров: верхнего края переднего отростка пяточной кости и нижнего края таранной в месте сочленения с задней суставной фасеткой пяточной кости (угол α , линия 1, линия 2 на рис. 3).

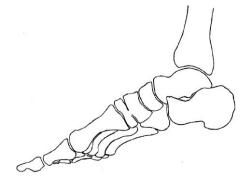


Рис. 2. Скиаграмма с рентгенограммы стопы в боковой проекции с посттравматическим дефектом пяточной кости.



Рис. 3. Расчет приемов реконструкции заднего отдела стопы по скиаграмме.

По методике Ф.Р. Богданова (1953) проводятся границы внутреннего продольного свода стопы, равного в норме 130^{0} (угол β), обозначается его пяточный катет (линия 3 на рис. 3).

Проводится ось пяточной кости (линия 4 на рис. 3) по Schulte-Brinkman и Konrad [9], проходящая в норме под углом 120^{0} - 130^{0} к оси 1 плюсневой кости с вершиной угла на середине таранно-ладьевидного сочленения (рис. 4).

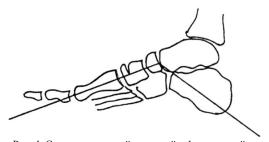


Рис. 4. Соположение осей пяточной и 1 плюсневой костей по Schulte-Brinkman и Konrad (по Л.Д. Линденбратену, 1971).

Определяется ширина СД дистального метаэпифиза большеберцовой кости в наиболее широкой его части по линии (линия 7 на рис. 3), предложенной А. Wittek (1902), R.Purckhauer (1912), Г.Ф. Скосогоренко [1].

Определяется длина пяточной кости путем умножения ширины дистального метаэпифиза большеберцовой кости в наиболее широкой его части (в сантиметрах) на индекс длины пяточной кости.

По оси пяточной кости (линия 4 на рис. 3) от-кладывается отрезок АВ, равный полученной длине

пяточной кости, где точка A — наиболее крайняя точка переднего отростка пяточной кости по ее оси.

Проводятся две касательных к воображаемому пяточному бугру – вдоль нижнего края к головке 1 плюсневой кости (линия 5 на рис. 3) и перпендикулярно ей – вдоль заднего края (линия 6 на рис. 3), причем индекс таранной кости реконструируемой стопы, вычисляемый по методике В.О. Маркса (1978), должен быть в пределах 37-41%.

Очерчиваются контуры пяточного бугра (рис. 5), при этом его верхний край ограничивается линией 1, задний край — линией 6 (рис. 3). Нижний край пяточного бугра должен касаться линии 5 в месте ее пересечения с линией 3, а задний край — пройти через точку В.

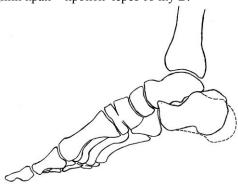
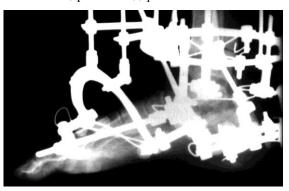


Рис. 5. Контуры нормального пяточного бугра, полученные при помощи расчета приемов реконструкции по скиаграмме.

Полученное изображение (рис. 5) является ориентиром для выбора методики операции и тактики лечения. Пользуясь скиаграммой с контурами нормальной пяточной кости, подбираем модель остеотомии и определяем направление перемещения выделенного фрагмента пяточной кости к анатомически правильным контурам. Таким образом, в спроектированной скиаграмме заранее намечены и находятся в пределах нормы угол свода, угол Белера, угол наклона пяточной кости, индекс таранной кости. Решить на практике поставленную задачу позволяет управляемое дозированное перемещение подсистем аппарата Илизарова в процессе лечения, благодаря чему ортопед имеет возможность перемещать выделенный фрагмент пяточной кости в нужном направлении. Образующийся под влиянием напряжения растяжения дистракционный регенерат в процессе фиксации оссифицируется, закрепляя достигнутый эффект.


Приводим клинический пример. Больной Б., 39 лет, диагноз: посттравматический внутрисуставной дефект пяточной кости, деформирующий артроз подтаранного сустава с болевым синдромом, посттравматическая плоско-вальгусная стопа. Компрессионный перелом (упал с высоты) 2 года назад. При поступлении: угол Белера 0⁰, угол свода — 140⁰, угол наклона пяточной кости 5⁰, индекс таранной кости 39% (рис. 6). Очерчена скиаграмма (рис. 2). Пользуясь разработанным приемом, очерчены кон-

туры нормальной пяточной кости (рис. 5).

Рис. 6. Рентгенограмма стопы в боковой проекции больного Б. до лечения.

По методике, разработанной в РНЦ «ВТО» (Г.А. Илизаров, А. В. Попков, С. Я. Зырянов. Способ устранения деформации заднего отдела стопы. А. с. 1047467), произведена операция – удлиняющий артродез подтаранного сустава с остеотомией переднего отдела пяточной кости (оперировал -Д.В. Самусенко). В послеоперационном периоде проводилась дозированная дистракция выделенного фрагмента пяточной кости до придания заднему отделу стопы анатомически правильных контуров согласно сделанной скиаграмме. Дистракция – 35 дней, фиксация – 53 дня (рис. 7). В результате лечения угол Белера увеличен до 20°, угол свода стопы – до 130°, угол наклона пяточной кости до 25⁰, индекс таранной кости составил 37% (рис. 8). Достигнут анкилоз подтаранного сустава, болевой синдром ликвидирован.

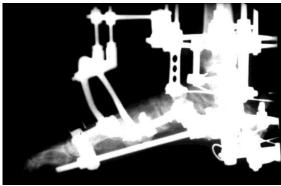


Рис. 7. Рентгенограмма стопы в боковой проекции больного Б. в конце дистракции (фото вверху) и в конце фиксации (фото внизу).

Гений Ортопедии № 4, 2001 г.

Рис. 8. Рентгенограмма стопы в боковой проекции больного Б. после снятия аппарата.

Таким образом, предложенный расчет приемов реконструкции заднего отдела стопы по скиаграмме при посттравматических деформациях пяточной кости позволяет определить необходимую величину, форму и положение пяточной кости и регулировать их в процессе лечения. Единственным описанным в мировой научной литературе средством для осуществления этой задачи является аппарат Илизарова с его уникальными возможностями управлять положением фрагментов костей в процессе лечения пациента.

ЛИТЕРАТУРА

- 1. Ген Г.Е. Оперативное лечение паралитической пяточной стопы с применением компрессионно-корригирующего аппарата: Автореф. дисс... канд. мед. наук. Симферополь, 1968. 21 с.
- 2. Ерецкая М.Ф. Консервативное лечение переломов пяточной кости // Вопр. травм. и ортоп.: Матер. итог. науч. конф. Ленингр. науч.-исслед. ин-та травматол. и ортопед. Л., 1965. С. 39-43.
- 3. Ерецкая М.Ф. Костная гомопластика при лечении переломов пяточной кости // Пластич. операции в травматол. и ортопел. практике. Вып. 9. Л., 1967. С. 50-58.
- 4. Киселев В.П., Самойлович Э.Ф. Множественные и сочетанные травмы у детей. Л.: Медицина, 1985. 231 с.
- 5. Кишковский А.Н. и др. Атлас укладок при рентгенологических исследованиях / А.Н. Кишковский, Л.А. Тютин, Г.Н. Есиновская. Л.: Медицина, 1987. 519 с.
- 6. Конюхов М.П., Макарова М.С. Оперативное лечение посттравматических деформаций стоп у детей // Профилактика и лечение травм у детей: Межинстит. сб. науч. тр. Л., 1983. С. 115-118.
- 7. Кошкарева З.В. Лечение переломов пяточной кости и их последствий: Автореф. дисс... канд. мед. наук. Новосибирск, 1979. 26 с.
- 8. Куслик М.И. Повреждения и заболевания стопы // Многотомное руководство по хирургии. Т. ХІІ. М., 1960. С. 481-513.
- 9. Линденбратен Л.Д. Методика изучения рентгеновских снимков. М.: Медицина, 1971. 351 с.
- 10. Матаев С.И. и др. Врачебный контроль и фармакотерапия в физкультуре и спорте, механизмы регуляции функциональных систем: Пособие для врачей и студентов / С.И. Матаев, Н.Я. Прокопьев, Ю.И. Лесь и др. М., 2000. 184 с.
- 11. Никитин Г.Д., Грязнухин Э.Г. Множественные переломы и сочетанные повреждения. Л.: Медицина, 1983. 296 с.
- 12. Пахомов И.А. Открытая репозиция и остеосинтез с костной пластикой в комплексе лечения тяжелых чрессуставных переломов пяточной кости // Новые технологии в медицине: Тез. науч.-практ. конф. с междунар. участием. Ч. 2. Курган, 2000. С. 10-11.
- 13. Петров А.П. Статистическая обработка результатов экспериментальных исследований: Учебное пособие. Курган: Изд-во Курганского гос. ун-та, 1998. 85 с.
- 14. Реут Н.И. Отдаленные результаты лечения компрессионных переломов пяточной кости // Вестн. хир. 1976. Т. 116, № 4. С. 95-97.
- 15. Тактика и методы оперативного лечения застарелых повреждений стопы: Метод. рекомендации / Сост.: Г.А. Кесян, В.Н. Челяпов, Р.З. Уразгильдеев и др. М., 1998. 23 с.
- 16. Трушинский Л.П. Лечение компрессионных переломов пяточной кости со смещением при помощи аппарата Илизарова // Лечение переломов и их последствий методом чрескостного остеосинтеза: Материалы Всеросс. науч.-практ. конф. Курган, 1979. С. 89-91.
- 17. Уотсон-Джонс Р. Переломы костей и повреждения суставов. Пер. с англ. М.: Медицина, 1972. 672 с.
- 18. Фишкин И.В. Лечение переломов пяточной кости // Хирургия. − 1985. № 11. С. 131-136.
- 19. Чаклин В.Д. Ортопедия. В 2-х кн. Кн.2. М.: Медгиз, 1957. 797 с.
- 20. Бойчев Б. и др. Оперативная ортопедия и травматология / Б. Бойчев, Б. Конфорти, К. Чоканов. София, 1961. 832 с.
- 21. Aaron D.A.R., Howart T.W. Intra-articular fractures of the calcaneum // Injury. 1976. Vol. 7, N 3. P. 205-211.
- 22. Kostler К оперативному исправлению застарелых переломов пяточной кости // Нов. хир. архив. 1940. Т. 48, кн. 1-2. С. 169.

Рукопись поступила 15.03.01.