Научная статья

УДК 616.833-006.38.03-06:617.3-092:004 https://doi.org/10.18019/1028-4427-2025-31-5-632-638

Особенности ортопедической патологии у больных нейрофиброматозом I типа в республике Башкортостан

Р.Н. Мустафин

Башкирский государственный медицинский университет, Уфа, Россия

Рустам Наилевич Мустафин, ruji79@mail.ru

Аннотация

Введение. Нейрофиброматоз I типа (NF-1) — наследственный опухолевый синдром, характеризующийся не только развитием кожных, подкожных и плексиформных нейрофибром, глиом зрительных нервов и когнитивных расстройств, но и ортопедической патологией. Актуальность исследования особенностей клинических проявлений NF-1 обусловлена частым развитием скелетных аномалий у пациентов, требующих специфического подхода в лечении в связи с возможным наличием опухолеподобных процессов в областях поражения костей и суставов.

Цель работы — определить частоту встречаемости ортопедической патологии и особенности проявления характерных для заболевания признаков у больных NF-1 в Республике Башкортостан (РБ), сравнить полученные результаты с данными мировой статистики.

Материалы и методы. Материал для исследования — амбулаторные карты пациентов с клиническим диагнозом «нейрофиброматоз I типа», результаты лабораторных и инструментальных исследований. Проведен ретроспективный анализ частоты встречаемости основных клинических проявлений NF-1 и ортопедической патологии. Использована интерактивная таблица сопряженности 2×2 с вычислением статистик связи (критерий Пирсона χ^2) с поправкой Йейтса на непрерывность, разработанная В.П. Леоновым, выполнен анализ четырехпольных таблиц сопряженности.

Результаты и обсуждение. Частота встречаемости NF-1 в РБ в 2024 году составила 1:7407, что в 2,3 раза реже, чем в среднем по миру (1:3000 человек). Определены: развитие сколиоза — у 17,4 %, деформация грудной клетки — у 5,3 %, псевдоартроз — у 3 %, дисморфизм лица — у 9 %, низкий рост — у 13,8 % больных. Случаи остеопороза, асимметрии лица и дисплазии крыла клиновидной кости у больных NF-1 в регионе не зарегистрированы. При помощи четырехпольных таблиц сопряженности определено статистически значимое отличие частоты встречаемости ортопедической патологии у больных NF-1 из РБ. Согласно ретроспективному анализу, частота встречаемости ортопедической патологии у больных NF-1 из РБ оказалась статистически значимо ниже, чем в среднем по миру, что свидетельствует о необходимости внесения консультации ортопеда в медико-экономические стандарты для своевременного выявления патологии и назначения лечения.

Заключение. Анализ особенностей проявлений ортопедической патологии у больных NF-1 из PБ показал сравнимую с мировыми данными частоту встречаемости деформации грудной клетки, сколиоза, низкого роста и псевдоартроза. Однако у пациентов с NF-1 из PБ определена достоверно более редкая регистрация скелетных аномалий в целом, дисморфизма лица, макроцефалии. Данных об остеопорозе, асимметрии лица и дисплазии крыла клиновидной кости, характерных для больных NF-1, в проанализированной группе не обнаружено. У больных NF-1 с ортопедической патологией выявлены более частые трудности в обучении в сравнении со всей группой пациентов с NF-1 из PБ.

Ключевые слова: деформация грудной клетки, нейрофиброматоз I типа, остеопороз, псевдоартроз, сколиоз, частота встречаемости

Для цитирования: Мустафин Р.Н. Особенности ортопедической патологии у больных нейрофиброматозом I типа в республике Башкортостан. *Гений ортопедии*. 2025;31(5):632-638. doi: 10.18019/1028-4427-2025-31-5-632-638.

_

Original article

https://doi.org/10.18019/1028-4427-2025-31-5-632-638

Specific features of orthopedic pathology in neurofibromatosis type I patients of the Republic of Bashkortostan

R.N. Mustafin

Bashkir State Medical University, Ufa, Russian Federation

Rustam N. Mustafin, ruji79@mail.ru

Abstract

Background Neurofibromatosis type 1 (NF-1) is a hereditary tumor syndrome characterized by cutaneous, subcutaneous and plexiform neurofibromas, optic nerve gliomas, cognitive disorders and can be associated with orthopedic pathology. Clinical manifestations of NF-1 include skeletal abnormalities requiring a specific approach to treatment of the tumor-like processes in the involved bones and joints.

The **objective** was to determine the frequency of orthopedic pathology and clinical manifestations of the disease in NF-1 patients seen in the Republic of Bashkortostan (RB) and make international comparisons.

Material and methods Outpatient records of patients with a clinical diagnosis of NF-I, the results of laboratory and instrumentation studies were examined. A retrospective analysis of the frequency of occurrence of the main clinical manifestations of NF-1 and orthopedic pathology was conducted. An interactive 2×2 contingency table was used for calculation of association statistics (Pearson χ^2 criterion) with the Yates correction for continuity developed by V.P. Leonov and four-field contingency tables were analyzed.

Results and discussion The incidence rate of NF-1 was 1:7407 by 2024 in the RB, which is 2.3 times less than the world average (1:3000 people). Associated malformations included scoliosis seen in 17.4 %, chest deformity observed in 5.3 %, pseudoarthrosis in 3 %, facial dysmorphism in 9 %, short stature in 13.8 % of patients. Osteoporosis, facial asymmetry and sphenoid wing dysplasia were not observed in NF-1 patients in the region. A statistically significant difference in the frequency of occurrence of orthopedic pathology was determined in patients with NF-1 from the RB using four-field contingency tables. A retrospective analysis showed a statistically lower incidence of orthopedic pathology in NF-1 patients of RB as compared to the world average which indicated the need to include orthopedic consultation in medical and economic standards for the timely detection of pathology and treatment.

Conclusion Analysis of orthopedic pathology in NF-1 patients from RB showed the occurrence of chest deformity, scoliosis, short stature and pseudoarthrosis being comparable with world data. Skeletal anomalies, facial dysmorphism and macrocephaly were not common for NF-1 patients of RB. No cases of osteoporosis, facial asymmetry and sphenoid wing dysplasia being characteristic of NF-1 patients were detected in the patients. Learning difficulties were more common for NF-1 patients with orthopedic pathology as compared to NF-1 patients of RB.

Keywords: chest wall deformity, neurofibromatosis type 1, osteoporosis, pseudoarthrosis, scoliosis, frequency of occurrence

For citation: Mustafin RN. Specific features of orthopedic pathology in neurofibromatosis type I patients of the Republic of Bashkortostan. *Genij Ortopedii*. 2025;31(5):632-638. doi: 10.18019/1028-4427-2025-31-5-632-638.

[©] Mustafin R.N., 2025

[©] Translator Irina A. Saranskikh, 2025

ВВЕДЕНИЕ

Нейрофиброматоз объединяет три нозологии, которые имеют различную генетическую природу: нейрофиброматоз I типа (NF-1), нейрофиброматоз II типа и шванноматоз. NF-1 является моногенным заболеванием, обусловленным гетерозиготными мутациями в гене-супрессоре опухолей NF1, расположенном на длинном плече 17 хромосомы (17q11.2) [1]. По данным проведенного мета-анализа [2], NF-1 встречается с частотой в среднем 1:3164 населения в мире, варьируя в различных популяциях от 1:2020 до 1:4329, а заболеваемость — от 1:1968 до 1:3601 (в среднем 1:2662). Около половины случаев NF-1 являются семейными, вследствие передачи заболевания следующему поколению по аутосомно-доминантному типу, тогда как другая половина случаев — спорадические, вызванные вновь возникшими мутациями в половых клетках родителей [3]. NF-1 — это наследственный опухолевый синдром, характерными проявлениями болезни являются множественные пигментные пятна цвета кофе-с-молоком (франц.: café-au-lait macules, CALM), диаметром более 5 мм в допубертате и более 15 мм в постпубертате, 99 % из которых представляют собой опухолевые разрастания меланоцитов в коже вследствие потери гетерозиготности в гене NF1 [4], гамартомы радужной оболочки глаз (узелков Лиша), кожные и подкожные нейрофибромы, глиомы зрительных нервов и плексиформные нейрофибромы. Специфические для NF-1 костные дисплазии включают врожденный ложный сустав (псевдоартроз) и/или истончение кортикального слоя длинных трубчатых костей, дисплазию клиновидной кости, сколиотическую/кифосколиотическую деформацию позвоночника и деформацию грудной клетки по типу воронкообразной/килевидной [5]. Согласно критериям NIH (англ.: National Institutes of Health), при обнаружении двух из этих признаков, диагноз NF-1 устанавливают клинически. При наличии подтвержденного случая NF-1 у кровных родственников достаточно одного признака болезни [6].

Наиболее распространенными для больных NF-1 являются опухолевые проявления. Так, CALM определяют у 96,5 % пациентов с NF-1, веснушчатость подмышечных и паховых областей — у 90 % [7]. Кожные и/или подкожные нейрофибромы выявляют более чем у 99 %, гамартомы радужной оболочки глаз — у 70 %, плексиформные нейрофибромы — у половины больных NF-1 [6]. Характерно также поражение головного мозга в виде глиом зрительных нервов — в 27 % случаев NF-1, опухолей головного мозга — в 10 %, гидроцефалии — в 7,7 % [8], эпилепсии — в 8,1 % [9]. Тяжелыми осложнениями NF-1 являются элокачественные опухоли из оболочек периферических нервов MPNST (*англ.*: malignant peripheral nerve sheath tumors), которые определяют у 13 % пациентов с NF-1, как правило, в результате перерождения уже существующих плексиформных нейрофибром, для данных пациентов характерна высокая летальность [10].

Помимо опухолевых проявлений NF-1 у всех пациентов наблюдают диффузные, заметные на протяжении всей жизни, когнитивные нарушения, приводящие в 40 % случаев к трудностям в обучении [3], а также частое поражение опорно-двигательной системы (ОДС). Согласно проведенному мета-анализу [11], приблизительно у 26,6 % пациентов с NF-1 имеется сколиоз. Как правило, он развивается в раннем детстве, наиболее часто поражая грудной отдел позвоночника. Достоверной корреляции между сколиозом и генотипом NF-1 не выявлено. В среднем у 24 % больных NF-1 в мире определяют низкий рост [12], у 5 % — псевдоартроз [6], который развивается вследствие образования фиброзных гамартом длинных трубчатых костей с потерей гетерозиготности гена NF1 в данных тканях [13]. В совокупности скелетные аномалии определяют не менее чем у 60 % больных NF-1, они часто являются тяжелыми случаями, требующими оперативного лечения [14]. Так, для лечения псевдоартроза при NF-1 используют иссечение тканей фиброзных гамартом с последующей коррекцией аппаратом Илизарова [13]. Спондилодез и техника растущих стержней при лечении сколиоза у больных NF-1 показали лучшие результаты с точки зрения эффективности и безопасности [11].

Характерную для NF-1 дисплазию крыла клиновидной кости определяют в среднем у 9 %, асимметрию лица — у 10 %, макроцефалию — у 25 % [15], аномалии черепа, приводящие к лицевому дисморфизму — у 53 % пациентов с NF-1 [16]. Деформация грудной клетки выявлена у 3,5 % больных NF-1, что значительно выше общей популяции (0,3 %) [17]. Проведенный метаанализ [18] показал, что при NF-1 наблюдают снижение минеральной плотности костной ткани в поясничном отделе позвоночника и бедренной кости с повышением в крови уровней паратгормона и С-телопептида коллагена первого типа, а также со снижением щелочной фосфатазы, кальция, витамина D, остеокальцина, маркеров формирования костной ткани по сравнению со здоровыми людьми. В связи с этим у половины пациентов диагностируют остеопороз [19]. Актуальность исследования ортопедической патологии у больных NF-1 обусловлена необходимостью систематизации данных об особенностях распространенности скелетных аномалий у пациентов из различных регионов, обнаружением особенностей оказания медицинской помощи с целью их коррекции.

Цель работы — определить частоту встречаемости ортопедической патологии и особенности проявления характерных для заболевания признаков у больных NF-1 в Республике Башкортостан, сравнить полученные результаты с данными мировой статистики.

МАТЕРИАЛЫ И МЕТОДЫ

Проведен анализ особенностей ортопедической патологии у больных NF-1 из Республики Башкортостан (РБ), состоящих на учете у врача генетика в Республиканском медико-генетическом центре с установленным диагнозом «нейрофиброматоз I типа». Всего исследовано 543 больных NF-1 из 433 семей в возрасте от 1 до 85 лет (средний возраст — 30 лет и 7 месяцев), из них мужчин — 259 (48 %), женщин — 284 (52 %). МРТ была проведена 60 пациентам, КТ — 28, данные о рентгенографии и денситометрии в амбулаторных картах не представлены. Из всех пациентов четыре больных NF-1 получают лечение ингибитором митоген-активируемой протеинкиназы (селуметиниб или коселуго). Все исследования проведены с соблюдением норм биомедицинской этики и соответствуют стандартам GCP (англ.: Good Clinical Practice). Исследованы особенности клинических проявлений NF-1 у больных из РБ, проведено сравнение полученных данных с общемировыми данными, а также сравнение частоты встречаемости и выраженность опухолевого синдрома у больных со скелетными аномалиями с общей группой пациентов с NF-1 из РБ.

Для получения качественных бинарных данных проводили статистическую обработку с использованием интерактивной таблицы сопряженности 2×2 с вычислением статистик связи (критерий Пирсона χ^2) с поправкой Йейтса на непрерывность, разработанной В.П. Леоновым (http://www.biometrica.tomsk.ru/freq2.htm), анализа четырехпольных таблиц сопряженности на сайте https://medstatistic.ru/calculators/calchi.html. Помимо статистического анализа проведено молекулярно-генетическое исследование образцов ДНК больных NF-1, в результате чего у 20 из них были идентифицированы мутации в гене NF1. Из 544 пациентов с NF-1 восьми проведен подробный осмотр офтальмолога, который осматривал больных с помощью щелевой лампы для выявления гамартом радужной оболочки.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В РБ зарегистрировано 543 больных NF-1 из 433 семей. С учетом населения республики, частота встречаемости болезни составила 1:7 407 человек, что более чем в два раза отличается от общемирового показателя (1 на 3 164 населения [2]). Из 543 описанных пациентов у 245 (45 %) выявлено наследование заболевания от одного из родителей, тогда как у 299 (55 %) — спорадические случаи без семейного анамнеза, что соответствует данным других исследователей [3]. Соотношение мужчин к женщинам составило приблизительно 1:1.

Пигментные пятна определены у 100 % больных NF-1, поскольку данный критерий был основным для постановки диагноза. Необходимо учесть, что подобные пятна на коже, сходные с таковыми при NF-1, могут встречаться и при других наследственных опухолевых синдромах, таких как туберозный склероз [20], синдромы Leopard [21], Нунан и Костелло [22], Коудена [23], Пейтца-Егерса [24], Легиуса [25] и нейрофиброматоз II типа [22]. Поэтому при постановке диагноза NF-1 использовано не менее двух критериев, установленных NIH [6]. Лишь у 314 пациентов (58 %) обнаружены кожные или подкожные нейрофибромы, что достоверно ниже, чем в среднем по миру (99 %) [6].

Не найдено данных о наличии у больных NF-1 из PБ злокачественных опухолей MPNST, которые встречаются у 13 % больных NF-1 [10]. Когнитивный дефицит определен у 79 (14,5 %) больных из PБ, что также достоверно ниже результатов других исследователей (40%) [3]. У части пациентов с NF-1 из PБ определено поражение головного мозга, вызывающее у 20 (3,7 %) больных NF-1 эпилепсию, у 23 (4,23 %) — гидроцефалию, у 21 (3,86 %) — опухоли головного мозга, у 28 (5,15 %) — кисты головного мозга, что статистически незначимо отличается от данных других исследователей [8, 9, 26]. У больных NF-1 из PБ достоверно более редко по сравнению с мировыми исследованиями [6, 8] выявлены глиомы зрительных нервов (n = 34; 6,25 %), плексиформные нейрофибромы (n = 38; 7 %) и узелки Лиша (n = 5; 1 %).

Плексиформные нейрофибромы могут быть обнаружены как при визуальном осмотре, так и с помощью методов МРТ и КТ [27]. Их отличительными чертами являются нечеткие границы с инвазией в окружающие ткани с расположением вдоль нервных стволов, разрастанием вокруг деформированных нервных пучков с разрастанием вдоль соседних нервных ветвей, мышц и кожи [28]. В соответствии с этими критериями клиницистами установлено наличие плексиформных нейрофибром у пациентов. Плексиформные нейрофибромы характеризуются высокой частотой перерождения в злокачественные опухоли MPNST. У пациентов с NF-1 с большой плексиформной нейрофибромой рекомендуется проводить сцинтиграфию (с галлием-67) в качестве скринингового метода. У пациентов с MPNST пятилетняя выживаемость составляет всего 30 %, поэтому для их дифференциальной диагностики от плексиформных нейрофибром рекомендуется использовать позитронно-эмиссионную томографию с триптофаном, меченым фтором-18 [29].

Следует отметить, что наличие плексиформных нейрофибром является показанием для назначения селуметиниба, поскольку в отличие от кожных нейрофибром, которые можно лечить хирургически [30], иссечение плексиформных нейрофибром затруднено в связи с их инфильтративным ростом и прорастанием в окружающие ткани. Применение селуметиниба в разных странах показало эффек-

тивность в уменьшении размеров плексиформных нейрофибром у детей (частота объективного ответа — 64% [31], 68% [32, 33]) и у взрослых (частота объективного ответа — 63,6% [34]). Определена также эффективность селуметиниба в отношении роста спинальных нейрофибром [35].

Патологии ОДС выявлены у 206 (38 %) больных NF-1 из PE, из них сколиоз обнаружен у 95 (17,4 %) человек, низкий рост — у 75 (13,8 %), дисморфизм лица — у 49 (9 %), деформация грудной клетки — у 29 (5,3 %), псевдоартроз костей голеней — у 15 (3 %), плоскостопие — у 10 (1,8 %), макроцефалия — у 5 (1 %). Асимметрия лица, дисплазия крыла клиновидной кости и остеопороз не описаны ни у одного из больных NF-1 из PE.

Сравнительный анализ поражения ОДС у больных NF-1 из PБ (табл. 1) свидетельствует о статистически значимом более редком выявлении скелетных аномалий в целом, дисморфизма лица и макроцефалии [14–16]. Отсутствуют данные о наличии остеопороза, асимметрии лица и дисплазии крыла клиновидной кости, что достоверно отличается от данных по миру [15, 19]. Частота встречаемости деформации грудной клетки относительно выше, а сколиоза, низкого роста и псевдоартроза — ниже, чем в данных других исследователей, однако статистически незначимо. Помимо поражений ОДС у больных NF-1 из PБ достоверно реже определена частота развития кожных и подкожных нейрофибром, узелков Лиша, плексиформных нейрофибром, глиом зрительных нервов по сравнению с данными по миру [3, 6, 8, 10, 12], что свидетельствует о недостаточном обследовании пациентов. Представляет интерес сравнение частоты проявления данных симптомов в группе больных с поражением ОДС у пациентов с NF-1 из PБ по сравнению с данными по миру и со всеми пациентами с NF-1 из PБ.

Таблица 1 Сравнительная характеристика ортопедической патологии при NF-1

Клинические проявления	Частота встречаемости в РБ		Частота встречаемости в мире		Критерий $χ^2$; значение p
•	абс.	%	%	[источник]	при степени свободы 1
скелетные аномалии в целом	206	38,0	60	[14]	$\chi^2 = 9,684; p = 0,002$
деформация грудной клетки	29	5,3	3,7	[17]	$\chi^2 = 0,116; p = 0,734$
сколиоз	95	17,4	26,6	[11]	$\chi^2 = 2,914; p = 0,088$
низкий рост	75	13,8	24,0	[12]	$\chi^2 = 3,25$; $p = 0,072$
псевдоартроз	15	3,0	5,0	[6]	$\chi^2 = 0,521; p = 0,471$
остеопороз	0	0	50,0	[19]	$\chi^2 = 66,667; p < 0,001$
дизморфизм лица	49	9,0	53,0	[16]	$\chi^2 = 39,841; p < 0,001$
макроцефалия	5	1,0	25,0	[15]	$\chi^2 = 15,686$; $p < 0,001$
асимметрия лица	0	0	1,0	[15]	$\chi^2 = 10,526; p = 0,002$
дисплазия крыла клиновидной кости	0	0	9,0	[15]	$\chi^2 = 9,424; p = 0,003$

Сравнительный анализ частоты встречаемости характерных для NF-1 клинических проявлений (табл. 2) у больных NF-1 с ортопедической патологией из PБ по сравнению с мировыми данными свидетельствуют о статистически достоверно более редкой регистрации кожных и подкожных нейрофибром, MPNST, плексиформных нейрофибром, глиом зрительных нервов и трудностей в обучении. По сравнению с общей группой пациентов с NF-1 в PБ у больных с ортопедической патологией определено статистически незначимо более частое развитие когнитивного дефицита (табл. 3), однако частота встречаемости других проявлений оказалась аналогична.

Таблица 2 Сравнительный анализ клинических проявлений NF-1 у пациентов с ортопедической патологией

Клинические проявления	Частота встречаемости у больных NF-1 из PБ, <i>n</i> = 206		Частота встречаемости у больных NF-1 в мире		Критерий χ²; значение <i>р</i>
	абс.	%	%	[источник]	при степени свободы 1
нейрофибромы	123	59,7	99	[6]	$\chi^2 = 46,664; p < 0,001$
MPNST	0	0	13	[10]	$\chi^2 = 13,904; p < 0,001$
узелки Лиша	3	1,5	70	[6]	$\chi^2 = 100,347; p < 0,001$
плексиформные нейрофибромы	15	7,3	50	[6]	$\chi^2 = 45,369$; $p < 0,001$
глиомы зрительных нервов	17	8,3	27	[8]	$\chi^2 = 12,502; p < 0,001$
опухоль головного мозга	9	4,4	10	[8]	$\chi^2 = 2,765$; $p = 0,097$
кисты головного мозга	13	6,3	2	[26]	$\chi^2 = 2,083; p = 0,149$
гидроцефалия	13	6,3	7,7	[8]	$\chi^2 = 0.307$; $p = 0.58$
эпилепсия	8	3,9	8,1	[9]	$\chi^2 = 1,418; p = 0,234$
трудности в обучении	45	22,0	40	[3]	$\chi^2 = 7,574; p = 0,006$

Таблица 3 Сравнительный анализ клинических проявлений NF-1 у пациентов с ортопедической патологией с общей группой больных NF-1 из PБ

Клинические проявления	у больн с ортопедическ	речаемости ых NF-1 сой патологией, 206	Частота вст у всех болн n =	ьных NF-1,	Критерий χ²; значение р при степени свободы 1
	абс.	%	абс.	%	
нейрофибромы	123	59,7	314	58	$\chi^2 = 0,243; p = 0,623$
MPNST	0	0	0	0	неприемлемо
узелки Лиша	3	1,5	5	1	$\chi^2 = 0,409; p = 0,523$
плексиформные нейрофибромы	15	7,3	38	7	$\chi^2 = 0.02; p = 0.888$
глиомы зрительных нервов	17	8,3	34	6,25	$\chi^2 = 0.945$; $p = 0.331$
опухоль головного мозга	9	4,4	21	3,86	$\chi^2 = 0,101; p = 0,752$
кисты головного мозга	13	6,3	28	5,15	$\chi^2 = 0.391; p = 0.532$
гидроцефалия	13	6,3	23	4,23	$\chi^2 = 1,418; p = 0,234$
эпилепсия	8	3,9	20	3,7	$\chi^2 = 0.018; p = 0.894$
трудности в обучении	45	22,0	79	14,5	$\chi^2 = 6,559; p = 0,011$

Отсутствие в проанализированной группе данных об остеопорозе, асимметрии лица и дисплазии крыла клиновидной кости, характерных для больных НФ-1, свидетельствует о необходимости более тщательного обследования пациентов с обязательными консультациями врача-ортопеда и проведения инструментальных исследований.

ЗАКЛЮЧЕНИЕ

Анализ особенностей проявлений ортопедической патологии у больных NF-1 из PБ показал сравнимую с мировыми данными частоту встречаемости деформации грудной клетки, сколиоза, низкого роста и псевдоартроза. Однако у пациентов с NF-1 из PБ определена достоверно более редкая регистрация скелетных аномалий в целом, дисморфизма лица, макроцефалии. Данных об остеопорозе, асимметрии лица и дисплазии крыла клиновидной кости, характерных для больных NF-1, среди проанализированной группы не обнаружено. У больных NF-1 с ортопедической патологией выявлены более частые трудности в обучении в сравнении со всей группой пациентов с NF-1 из PБ.

Конфликт интересов. Автор заявляет, что данная работа, её тема, предмет и содержание не затрагивают конкурирующих интересов.

Источник финансирования. Автор заявляет об отсутствии финансирования при проведении исследования.

Соответствие принципам этики. Все исследования велись с соблюдением норм биомедицинской этики, и соответствуют стандартам GCP.

СПИСОК ИСТОЧНИКОВ

- 1. Chai P, Luo Y, Zhou C, et al. Clinical characteristics and mutation Spectrum of NF1 in 12 Chinese families with orbital/periorbital plexiform Neurofibromatosis type 1. *BMC Med Genet*. 2019;20(1):158. doi: 10.1186/s12881-019-0877-9.
- 2. Lee TJ, Chopra M, Kim RH, et al. Incidence and prevalence of neurofibromatosis type 1 and 2: a systematic review and meta-analysis. *Orphanet J Rare Dis.* 2023;18(1):292. doi: 10.1186/s13023-023-02911-2.
- Crow AJD, Janssen JM, Marshall C, et al. A systematic review and meta-analysis of intellectual, neuropsychological, and psychoeducational functioning in neurofibromatosis type 1. Am J Med Genet A. 2022;188(8):2277-2292. doi: 10.1002/ajmg.a.62773.
- 4. De Schepper S, Maertens O, Callens T, et al. Somatic mutation analysis in NF1 café au lait spots reveals two NF1 hits in the melanocytes. J Invest Dermatol. 2008;128(4):1050-1053. doi: 10.1038/sj.jid.5701095.
- 5. Gutmann DH, Ferner RE, Listernick RH, et al. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3:17004. doi: 10.1038/nrdp.2017.4.
- Ly KI, Blakeley JO. The Diagnosis and Management of Neurofibromatosis Type 1. Med Clin North Am. 2019;103(6):1035-1054. doi: 10.1016/j.mcna.2019.07.004.
- 7. Miraglia E, Moliterni E, Iacovino C, et al. Cutaneous manifestations in neurofibromatosis type 1. *Clin Ter.* 2020;171(5):e371-e377. doi: 10.7417/CT.2020.2242.
- 8. Glombova M, Petrak B, Lisy J, et al. Brain gliomas, hydrocephalus and idiopathic aqueduct stenosis in children with neurofibromatosis type 1. *Brain Dev.* 2019;41(8):678-690. doi: 10.1016/j.braindev.2019.04.003.
- 9. Wu F, Ji X, Shen M, et al. Prevalence, clinical characteristics and outcomes of seizures in neurofibromatosis type 1: A systematic review and single arm meta-analysis. *Epilepsy Res.* 2024;208:107476. doi: 10.1016/j.eplepsyres.2024.107476.
- 10. Lim Z, Gu TY, Tai BC, Puhaindran ME. Survival outcomes of malignant peripheral nerve sheath tumors (MPNSTs) with and without neurofibromatosis type I (NF1): a meta-analysis. *World J Surg Oncol*. 2024;22(1):14. doi: 10.1186/s12957-023-03296-z.
- 11. Wang D, Zhang BH, Wen X, et al. Clinical features and surgical treatments of scoliosis in neurofibromatosis type 1: a systemic review and meta-analysis. *Eur Spine J.* 2024;33(7):2646-2665. doi: 10.1007/s00586-024-08194-w.
- 12. Virdis R, Street ME, Bandello MA, Tripodi C, Donadio A, Villani AR, Cagozzi L, Garavelli L, Bernasconi S. Growth and pubertal disorders in neurofibromatosis type 1. *J Pediatr Endocrinol Metab*. 2003;16 Suppl 2:289-292.
- 13. Stevenson DA, Little D, Armstrong L, et al. Approaches to treating NF1 tibial pseudarthrosis: consensus from the Children's Tumor Foundation NF1 Bone Abnormalities Consortium. *J Pediatr Orthop*. 2013;33(3):269-275. doi: 10.1097/BPO.0b013e31828121b8.
- 14. Mladenov KV, Spiro AS, Krajewski KL, et al. Management of spinal deformities and tibial pseudarthrosis in children with neurofibromatosis type 1 (NF-1). *Childs Nerv Syst.* 2020;36(10):2409-2425. doi: 10.1007/s00381-020-04775-4.

- 15. Chauvel-Picard J, Lion-Francois L, Beuriat PA, et al. Craniofacial bone alterations in patients with neurofibromatosis type 1. *Childs Nerv Syst.* 2020;36(10):2391-2399. doi: 10.1007/s00381-020-04749-6.
- 16. Luna EB, Janini ME, Lima F, et al. Craniomaxillofacial morphology alterations in children, adolescents and adults with neurofibromatosis 1: A cone beam computed tomography analysis of a Brazilian sample. *Med Oral Patol Oral Cir Bucal*. 2018;23(2):e168-e179. doi: 10.4317/medoral.22155.
- 17. Francis L, Subramanyam R, Mahmoud M. Severe spinal and chest deformity secondary to neurofibromatosis. *Can J Anaesth*. 2016;63(4):488-489. doi: 10.1007/s12630-015-0543-4.
- 18. Kaspiris A, Vasiliadis E, Iliopoulos ID, et al. Bone mineral density, vitamin D and osseous metabolism indices in neurofibromatosis type 1: A systematic review and meta-analysis. *Bone*. 2024;180:116992. doi: 10.1016/j.bone.2023.116992.
- 19. Rhodes SD, Yang FC. Aberrant Myeloid Differentiation Contributes to the Development of Osteoporosis in Neurofibromatosis Type 1. *Curr Osteoporos Rep.* 2016;14(1):10-15. doi: 10.1007/s11914-016-0298-z.
- 20. Tolliver S, Smith ZI, Silverberg N. The genetics and diagnosis of pediatric neurocutaneous disorders: Neurofibromatosis and tuberous sclerosis complex. *Clin Dermatol*. 2022;40(4):374-382. doi: 10.1016/j.clindermatol.2022.02.010.
- 21. Yue X, Zhao X, Dai Y, Yu L. Leopard syndrome: the potential cardiac defect underlying skin phenotypes. *Hereditas*. 2021;158(1):34. doi: 10.1186/s41065-021-00199-5.
- 22. Lalor L, Davies OMT, Basel D, Siegel DH. Café au lait spots: When and how to pursue their genetic origins. *Clin Dermatol*. 2020;38(4):421-431. doi: 10.1016/j.clindermatol.2020.03.005.
- 23. Yotsumotó Y, Harada A, Tsugawa J, et al. Infantile macrocephaly and multiple subcutaneous lipomas diagnosed with PTEN hamartoma tumor syndrome: A case report. *Mol Clin Oncol*. 2020;12(4):329-335. doi: 10.3892/mco.2020.1988.
- 24. Xu ZX, Jiang LX, Chen YR, et al. Clinical features, diagnosis, and treatment of Peutz-Jeghers syndrome: Experience with 566 Chinese cases. World J Gastroenterol. 2023;29(10):1627-1637. doi: 10.3748/wjg.v29.i10.1627.
- 25. Kavamura Mi, Leoni C, Neri G. Dermatological manifestations, management, and care in RASopathies. *Am J Med Genet C Semin Med Genet*. 2022;190(4):452-458. doi: 10.1002/ajmg.c.32027.
- 26. Sánchez Marco SB, López Pisón J, Calvo Escribano C, et al. Neurological manifestations of neurofibromatosis type 1: our experience. Neurologia (Engl Ed). 2022;37(5):325-333. doi: 10.1016/j.nrleng.2019.05.008.
- 27. de Brons B, Dhaenens B, van Minkelen R, Oostenbrink R. Identification of the Determinants of Plexiform Neurofibroma Morbidity in Pediatric and Young Adult Neurofibromatosis Type 1 Patients: A Pilot Multivariate Approach. *Cancers (Basel)*. 2025;17(1):123. doi: 10.3390/cancers17010123.
- 28. Pratama AAT, Atmaja MHS. The role of multimodality imaging in diffuse pelvicoabdominal plexiform neurofibroma: A rare case report. *Radiol Case Rep.* 2024;19(12):5605-5611. doi: 10.1016/j.radcr.2024.08.037.
- 29. Yue X, Stauff E, Boyapati S, et al. PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. *Pharmaceuticals (Basel)*. 2024;17(6):685. doi: 10.3390/ph17060685.
- 30. Ota M, Nobeyama Y, Asahina A. Real-world Settings for the Surgical Treatment of Neurofibroma in Patients with Neurofibromatosis Type 1. *JMA J*. 2024;7(2):205-212. doi: 10.31662/jmaj.2023-0161.
- 31. Nishida Y, Nonobe N, Kidokoro H, et al. Selumetinib for symptomatic, inoperable plexiform neurofibromas in pediatric patients with neurofibromatosis type 1: the first single-center real-world case series in Japan. *Jpn J Clin Oncol*. 2025:hyae184. doi: 10.1093/ijco/hyae184
- 32. Gross AM, Achée C, Hart SE, et al. Selumetinib for children with neurofibromatosis type 1 and plexiform neurofibromas: A plain language summary of SPRINT. *Future Oncol*. 2024;20(14):877-890. doi: 10.2217/fon-2023-0565.
- 33. Han Y, Li B, Yu X, et al. Efficacy and safety of selumetinib in patients with neurofibromatosis type 1 and inoperable plexiform neurofibromas: a systematic review and meta-analysis. *J Neurol*. 2024;271(5):2379-2389. doi: 10.1007/s00415-024-12301-8.
- 34. Gross AM, O'Sullivan Coyne G, Dombi E, et al. Selumetinib in adults with NF1 and inoperable plexiform neurofibroma: a phase 2 trial. *Nat Med*. 2025;31(1):105-115. doi: 10.1038/s41591-024-03361-4.
- 35. Jackson S, Baker EH, Gross AM, et al. The MEK inhibitor selumetinib reduces spinal neurofibroma burden in patients with NF1 and plexiform neurofibromas. *Neurooncol Adv.* 2020;2(1):vdaa095. doi: 10.1093/noajnl/vdaa095.

Статья поступила 04.12.2024; одобрена после рецензирования 06.02.2025; принята к публикации 25.08.2025.

The article was submitted 04.12.2024; approved after reviewing 06.02.2025; accepted for publication 25.08.2025.

Информация об авторе:

Рустам Наилевич Мустафин — кандидат медицинских наук, доцент кафедры, ruji79@mail.ru, SPIN-код: 4810-2534, https://orcid.org/0000-0002-4091-382X.

Information about the author:

Rustam N. Mustafin — Candidate of Medical Sciences, Associate Professor of the Department, ruji79@mail.ru, SPIN code: 4810-2534, https://orcid.org/0000-0002-4091-382X.