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Abstract
Introduction Bone defect management is a critical stage of treatment and rehabilitation that still remains 
a challenging problem for traumatologists and orthopaedists. The need for tissue engineering techniques is 
due to limited abilities of the human body to correct bone tissue autoregeneration, especially in comorbid 
and elderly patients with osteoporosis. Bone autografts is a gold standard in those cases but is associated 
with certain restrictions. Regenerative medicine and stem cell biology development opened up capabilities 
to employ new methods for enhancement of bone tissue repair. A special interest of researchers is focused 
on mesenchymal stem cells and extracellular vesicles for bone tissue regeneration optimization.

Purpose of this review was to show mesenchymal stem cells and exosomes effeciency in bone defect treatment.

Materials and methods Open electronic databases of scientific literature, PubMed and e-Library, were used. 
The literature data search was carried out using the keywords: regenerative medicine, bone defects, exosomes, 
mesenchymal stem cells.

Results and discussion The review presents current ideas about mesenchymal stem cells, their 
microenvironment and exosomes influence on bone tissue repair. Clinical need in effective bone regeneration 
is still high. Mesenchymal stem cells and acellular regenerative treatments have shown good results in bone 
defects repair and are perspective directions. Productive use of mesenchymal stem cells and exosomes in bone 
defects treatment requires further study of their mechanisms of action, the regenerative techniques efficacy 
and safety evaluation in preclinical and clinical studies.

Conclusion The use of mesenchymal stem cells and cell-free regenerative approaches has demonstrated good 
results in the restoration of bone tissue defects and is a promising direction.
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INTRODUCTION

Despite the improvement of surgical techniques, the treatment of large bone defects caused 
by trauma, metastatic damage or infectious process still remains a major challenge for orthopaedic 
surgeons [1, 2]. Such injuries lead to delayed fracture consolidation or nonunion and ultimately 
impair patient’s musculoskeletal function [3, 4]. Currently, bone grafting is the most commonly 
used treatment in those conditions [5, 6]. However, limited sources of donor tissue, complications 
and difficulty of graft collection, the risk of transmission of infectious diseases, short-term viability 
and unpredictable graft resorption restrict the widespread use of this technique and require 
the development of new approaches to the treatment of this pathology [7, 8]. The use of modern 
regenerative techniques, in particular tissue engineering, is a promising approach to the treatment 
of bone defects and has attracted the attention of a large number of researchers in recent years [4, 9]. 
Thus, the use of cell technologies could overcome osteogenic “insufficiency”, which is often found in 
elderly patients, in whom the body’s own resources are not able to restore lost bone tissue [10-12]. 
The angiogenic effect of exosomes would lead to improved blood supply to the developing bone 
tissue, thereby optimizing the process of osteogenesis [13-15].

The purpose of the study was to discuss the effectiveness of mesenchymal stem cells and exosomes 
to stimulate bone tissue regeneration.

MATERIALS AND METHODS

Open electronic databases of scientific literature Pubmed and e-Library were used for preparing 
the review. The literature search was carried out using the following keywords: regenerative medicine, 
bone defects, exosomes, mesenchymal stem cells. The inclusion criteria were review articles, 
systematic reviews, meta-analyses, multicentre studies, controlled cohort studies, uncontrolled 
cohort studies. Exclusion criteria were articles without a full-text version and duplicate articles. 
Preference was given to works published within the last five years.

RESULTS

Way to stimulate bone regeneration

Tissue engineering is an interdisciplinary field aimed at developing new biological approaches 
to treat a wide range of diseases [12]. The need for tissue engineering techniques in bone regeneration 
is due to the limited abilities of the human body for correct autoregeneration, especially in comorbid 
and elderly patients with osteoporosis [10].

Mesenchymal stem cells (MSCs) play a significant role in the process of bone tissue remodeling, since 
they are the precursors of the key regulators of this process, osteoblasts and osteoclasts, and are also 
able to migrate to the defect area [16]. Significant advances in the study of stem cell biology have 
provided new therapeutic regenerative strategies that avoid the use of autologous bone tissue [17].

The shortage of tissue grafts has also stimulated the development of regenerative medicine 
technologies that apply natural biomaterials that have positive properties such as biocompatibility, 
bioactivity, controlled degradation and structural similarity to native tissue extracellular matrix 
[18]. One of the philosophies of regenerative medicine is creation of such scaffold biomaterials 
that simultaneously mimic the extracellular matrix and positively modulate the activity of proper/
exogenous stem cells to achieve maximum regenerative potential [19].

Currently, the following materials have been used to improve bone regeneration [10]:

1. Tissue grafts of:

– autologous origin (bone grafts, cancellous grafts);

– allogeneic origin (bone grafts, bone graft product);
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2. Components of the extracellular matrix:

– collagen (types 1, 2 and 4);

– fibronectin;

– laminin;

3. Decellularized extracellular matrix:

– demineralized bone matrix;

– decellularized bone extracellular matrix;

– calcined bovine bone;

4. Ex vivo cultured therapeutic cells:

– MSC transplantation;

– extracellular matrix formed by cells;

– exosomes.

The use of mesenchymal stem cells and extracellular vesicles as strategies to optimize bone tissue 
regeneration is of particular interest to researchers [4].

Mesenchymal stem cells

Currently, there are two main strategies for using MSCs to improve bone tissue regeneration: 
the release-mobilization of endogenous MSCs and the use of exogenous stem cells [20]. The use 
of  exogenous stem cells is possible in several ways: systemic administration by intravenous 
infusion [21] and local application of cell suspensions, sheets and spheroids [22]. In systemic use 
of MSCs, in addition to the osteogenic effect, modulation of the immune status and, accordingly, 
restoration of the microenvironment have been demonstrated; however, the percentage of  cells 
that reach the bone defect remains low thus decreasing the therapeutic efficacy [21, 23]. The use 
of cell sheets [24] and spheroids [25] with an extracellular matrix formed by stem cells promotes 
the release of a large number of growth factors and cytokines that improve bone tissue regeneration, 
which is successfully used in the treatment of bone defects [26] and to improve the bone-to-graft 
bonds [27]. Thus, the study of Vishnevsky et al. [28] showed that the addition of MSCs to bone grafts 
in a rabbit rib cage defect model promoted an increase in the proportion of mature bone matrix 
and more intense osteogenic differentiation.

In recent years, much attention has been paid to the microenvironment of cells, since its significant 
influence on the functional activity of stem cells and their reproducible therapeutic effects 
has been discovered [6]. In a pathological microenvironment, the viability and differentiation 
of MSCs decreases; thus, during cytotherapy, both the donor microenvironment and the recipient 
microenvironment play a significant role in determining the therapeutic effectiveness 
of  transplanted stem cells [29]. Important systemic factors affecting bone regeneration and cell 
microenvironment include the level of steroid hormones [30] and blood glucose [31], as well as 
the activity of the inflammatory process [32]. Decreased estrogen levels in postmenopausal women 
have been shown to result in decreased proliferation and osteogenic differentiation of bone marrow 
(BM) MSCs, decreased bone mineralization, accumulation of reactive oxygen species, adipogenic 
cell differentiation, imbalance between osteoblastogenesis and osteoclastogenesis, and ultimately, 
in bone loss [33]. Elevated levels of corticosteroids also suppress the proliferation and osteogenic 
potential of BM MSCs [34]. At the cell level, the energy metabolic profile has a significant impact 
on the functions of stem cells, so increased glucose concentration causes dysfunction of BM MSCs 
[35]. Oxidative stress and accumulation of advanced glycation end products lead to decreased 
viability and osteogenic differentiation of stem cells [36]. Despite the essential role of inflammation 
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in bone healing, the  proinflammatory microenvironment is a key pathogenetic mechanism 
underlying various osteopenic disorders, as inflammatory cytokines lead to impaired proliferation 
and osteogenic differentiation, excess production of reactive oxygen species and apoptosis of stem 
cells [31]. Thus, to improve the regenerative potential of stem cells, it is necessary to analyze and 
adjust the level of steroid hormones and glucose in both the donor and the recipient, as well as 
modulate the inflammatory microenvironment [36]. For this purpose, gene expression regulators, 
such as rapamycin, a signaling inhibitor of mTOR, can be used in the clinic [37]; DAPT, Notch 
signaling inhibitor [38]; PDTC, nuclear transcription factor-kappaB (NF-κB) signaling inhibitor [39]; 
GSK2606414, PERK inhibitor [40]; antioxidant NAC [41]; licochalcone A [42], etc. The effectiveness 
they demonstrated indicates the potential use of the technique of normalizing the microenvironment 
of stem cells in order to increase the efficiency of MSC-mediated bone healing [43].

At the moment, the use of adipose tissue MSCs (ADSCs) has become increasingly attractive 
for clinical specialists as it is the least traumatic method for the patient [44]. However, the limited 
potential of  ADSCs for osteogenic differentiation and the natural tendency towards adipogenic 
differentiation hinder their widespread use in bone tissue regeneration [45]. At the same time, 
it is known from the literature that circular RNAs (circRNAs) play a significant role in determining 
the further path of development of stem cells and progenitor cells [46]. A study by D Zhang et al. [44] 
assessed the modulating effect of circRNA on the osteogenic differentiation of adipose tissue stem 
cells. CircRNA is a closed, continuous ring of RNA, which makes it more stable than linear RNA 
due to the absence of a free end available for enzymatic degradation [47]. Some effects of circRNA 
are reproduced by acting on microRNAs (miRs) that regulate the expression of target genes [48]. 
Thus, in  the course of  this review, it was found that circRNA-vgll3 directly binds to miR-326-5p 
in  the  cytoplasm of cells like a “sponge” and inhibits its activity, which leads to an increase 
in the expression of integrin α5 (Itga5) [44]. Itga5 is known to play a significant role in cell adhesion 
to the extracellular matrix, improves the functional activity and survival of osteoprogenitors, and 
also carries out some mechanisms of osteogenic growth factors, such as BMP2, TGFβ and PTH [49]. 
Increased expression of Itga5 through the circRNA-vgll3/miR-326-5p/integrin α5 signaling pathway 
leads to improved ADSC homing, recruitment of osteoprogenitor cells, and improved osteogenic 
differentiation of adipose tissue stem cells [44]. The use of a circRNA-vgll3 inhibitor led to a decrease 
in the mRNA expression of ADSC osteogenic differentiation genes (Runx2, OSX, Col1a1, OPN, OCN 
and BSP) [44]. The therapeutic effect of a combined use of circRNA-vgll3-modified calcium phosphate 
scaffolds and ADSCs was also assessed in a rat model of bone defect of the skull [44]. An increase 
in mineral density and an increase in the volume of newly formed bone tissue were revealed when 
compared to the control group [44]. The results of that study show the promise of using circular 
RNAs, namely circRNA-vgll3, to improve the osteogenic differentiation of adipose tissue stem cells 
and their further use for the treatment of bone defects [44].

Literature data on research into the effectiveness of stem cells in bone tissue restoration are 
not limited to animal trials alone. Thus, VN Bordakov et al. [50] provided data on the successful use 
in  their clinical practice of tissue-engineered constructs based on calcium hydroxyapatite, fibrin 
glue and bone marrow MSCs in the treatment of defects of long bones. A histological assessment 
of the regenerate one month after grafting discovered developing bone tissue, and the result 
of  treatment was subsequent consolidation of the fracture and functional recovery. However, 
the authors emphasize the importance of further studying this combination of biologically active 
components in subsequent studies [50].

Exosomes

Traditional tissue engineering is based on the use of scaffolds, cultured cells, and growth factors [51]. 
However, the use of cells has a number of disadvantages: limited sources, insufficient cell activity, 
immunological reactions and high costs for clinical use [52]. Nevertheless, the therapeutic potential 
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of  exosomes is similar to the paracrine functions of stem cells and overcomes the limitations 
associated with their transplantation [1]. This is why safer acellular tissue engineering may become 
an alternative to cell therapy [2, 53, 54]. Thus, the studies of the regenerative potential of MSC 
exosomes on a model of bone defect in rats performed by IV Mayborodin et al. [55, 56] demonstrated 
faster healing and an increase in bone density, as well as the formation of less rough callus compared 
to the control group.

Monocytes and macrophages are known to be key regulators of tissue healing processes, and different 
macrophage phenotypes have different effects on repair processes [57]. During the  repair 
process, the  recruitment of monocyte macrophages occurs, a transition from  the  M1-phenotype, 
pro-inflammatory, to the M2-phenotype, anti-inflammatory [58]. Current research is focused 
on  studying the influence of different macrophage phenotypes on tissue regeneration  [59]. 
Thus,  F Loi et al. [60] suggested that consistent changes in macrophage phenotypes make a 
significant contribution to the process of osteogenesis. Macrophages control the physiological 
process of  bone repair by secreting various factors that are osteoinductive and, conversely, 
inhibiting bone regeneration [61]. Intercellular interactions are mediated by the release into 
the  local environment of exosomes (Exos) that are extracellular vesicles ranging in size from 40 
to 150 nm, containing proteins, lipids and nucleic acids, including miRs [62, 63]. Exosomes captured 
by target cells have a biological effect on them, change their behavior pattern and activate signaling 
pathways [64]. The study of M Kang et al. [59] investigated the functional role of paracrine factors, 
Exos M0, M1 and M2 macrophages, in the treatment of critical size defects in a rat calvarial defect 
model. It was revealed that Exos M0 and M2-macrophages promote bone repair while Exos M1 affects 
bone regeneration  [59]. Exos M1, and namely miR-155, may affect RUNX2 and BMP signal ways, 
in particular BMP2 and BMP9 that result in the decrease of osteogenic differentiation of MSC, while 
Exos M0 and M2, miR 378a, promote expression of osteoinductive genes of MSC [59]. CT evaluation 
conducted after 3 weeks showed impairment in bone formation in Exos M1 group and improvement 
in Exos M0 and M2-macrophages group [59]. Other studies demonstrated that osteogenesis improved 
as a result of common cultivation of M2-macrophages with osteoprogenitors while M1-macrophages 
decreased expression of osteogenic markers and impaired bone tissue mineralization  [65, 66]. 
The study confirms the results of other studies and indicates the differential and opposite effects of 
polarized macrophages and their exosomes on bone tissue regeneration, and also provides grounds 
for the prospects of using exosomes of M0 and M2-macrophages as osteogenesis stimulators [67-69].

The pathogenetically important anti-inflammatory effect of exosomes was demonstrated in a study 
by X Wang et al. [70], where the effect of a polycaprolactone (PCL) scaffold in combination with MSC 
exosomes and S-nitrosoglutathione (GSNO) on bone tissue repair was studied. PCL is a biocompatible 
but bioinert polymer, what limits its stand-alone application in bone engineering [71]. Nevertheless, 
GSNO, which is a donor of NO, regulates the activity of the blood coagulation system, has 
an anti-inflammatory effect and prevents the destruction of bone tissue [72]. The work demonstrated 
a decrease in the expression of pro-inflammatory genes (IL-6, TNF-α, iNOS и Il-1β), an improvement 
in the osteogenic differentiation of BM MSCs, what was manifested by an increase in the expression 
of mRNA ALP, Col-I and Runx2, as well as an increase in ALP activity [70]. Researchers have suggested 
a synergistic effect of GSNO and exosomes on the expression of pro-inflammatory cytokines [70]. 
The results of that study show the promise of using bioactive agents such as GSNO and exosomes 
in combination with scaffolds to improve bone tissue regeneration [70].

Filling of large bone tissue defects is often accompanied by insufficient vascularization of the resulting 
tissue [73]. Angiogenesis plays a significant role in the process of bone tissue remodeling; therefore, 
for effective healing, improvement of both osteogenesis and angiogenesis is necessary [13]. A study 
by Y Zha et al. [2] examined an acellular tissue engineering system using encapsulated vascular 
endothelial growth factor (VEGF) gene in exosomes on the surface of a 3D-modulated PCL scaffold 
in a radius bone defect model in rats. Micro-CT analysis after 6 and 12 weeks revealed a significant 
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improvement in  bone regeneration in  the  experimental group, and histological analysis showed 
the presence of more mature collagen fibers compared to the control group [2]. The study demonstrated 
the dual role of exosome-modified scaffolds: as an inducer of osteogenic differentiation of BM MSCs 
and as a VEGF depot that ensures remodeling of the vascular network [2]. That work demonstrated 
the possibility of using exosomes as a biovector for the delivery of biologically active substances 
to improve bone tissue regeneration [2].

It was previously shown that BMSC-Exos and magnetic nanoparticles (Fe3O4, γ-Fe2O3) in combination 
with a static magnetic field (SMF) have a positive effect on both osteo- and angiogenesis [74, 75]. 
Wu et al. [1] assessed the effect of magnetic nanoparticle-modified exosomes (BMSC- Fe3O4-Exos) 
in combination with SMF on the functional characteristics of human umbilical vein endothelial 
cells (HUVEC) and BMSC, as well as the restoration of calvar defect on rat models. Researchers have 
demonstrated the osteogenic effect of this modification of exosomes in combination with a static 
magnetic field, which was manifested by improved mineralization of bone tissue, increased ALP 
secretion and mRNA expression of osteogenic markers (OPN, RUNX2, COL-1) [1]. When co-cultured 
with HUVEC, effects such as accelerated cell migration, a greater number of tube-like structures, and 
an increase in the expression of mRNA of pro-angiogenic factors (VEGF, ANG-1, HIF-1α) were noted, 
which confirms the angiogenic effect of BMSC-Fe3O4-Exos-SMF [1]. Micro-CT analysis demonstrated 
an increase in the amount of newly formed bone and blood vessels in the experimental group, which 
is confirmed by the results of other studies [76-81]. The positive effect on osteo- and angiogenesis 
was explained by an increase in the concentration of miR-1260a and its effect on the transcription 
of  certain genes [1]. Thus, in BMSC, miR-1260a inhibits the expression of HDAC7 and thereby 
reduces its suppressive effect on the expression of OPN, RUNX2, OCN, ALP and COL-1, a similar 
mechanism of  action is observed in HUVEC, where miR-1260a inhibits COL4A2, thus increasing 
secretion of VEGF, ANG-1 and HIF-1α [1, 75, 82]. This kind of angiogenic effect was demonstrated 
in  the  work of Lu et al. [14]. The study showed that miR-29a-3p, through post-transcriptional 
inhibition of VASH-1 which negatively affects angiogenesis, contributed to improved proliferation 
and migration of endothelial cells, and an increase in the number of osteocalcin-positive osteoblasts, 
bone mineral density and trabecular bone volume was noted, compared with the control group [14]. 
The results of this study demonstrate the therapeutic potential of exosomes in the repair of bone 
defects [1].

DISCUSSION

Management of large bone defects remains a challenging problem for orthopaedic surgeons, and 
therefore there is an active search for methods to increase the efficiency of bone regeneration [1, 4]. 
A large number of studies have been focused on the use of mesenchymal stem cells and exosomes 
as stimulators of osteogenesis. Analysis of current medical literature allows us to draw definite 
conclusions:

– All the studies we reviewed show a positive effect of mesenchymal stem cells and exosomes 
on the process of bone tissue remodeling.

– Local use of mesenchymal stem cells is characterized by a more pronounced regenerative effect 
compared to systemic administration [21, 23, 26, 28].

– Developing methods for increasing the differentiation of mesenchymal stem cells of adipose tissue 
in the osteogenic direction would enable to use alternative sources of multipotent cells to bone 
marrow in the future, and, accordingly, reduce the traumatic nature of the procedure, which is 
especially important in the case of a severe patient’s condition [44].

– To improve the regenerative potential of mesenchymal stem cells, it is necessary to consider 
the endocrine status of both the donor and the recipient, as well as carry out anti-inflammatory 
therapy to create an optimal microenvironment of transplanted cells [31-36].
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