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Abstract
Background Ceramic materials are currently in wide demand in various fields of medicine. Zirconium 
ceramics demonstrate exceptional mechanical properties and biocompatibility and do not cause cytotoxic 
effects or allergic reactions in surrounding tissues.

The objective was to present an analysis of current literature data on the use of zirconium ceramics as a bone 
replacement material in traumatology and orthopaedics.

Materials and methods The search for publications was conducted using the databases of Scopus, PubMed 
and the electronic scientific library eLIBRARY in the Russian and English languages using the keywords: 
bioceramics, bone, bone defect, zirconate, zirconium ceramics, bone tissue engineering, implant, scaffold, 
augment, biointegration, bioactivity. Depth of search for scientific papers was from 2000 to 2023.

Results and discussion Zirconium dioxide is the main ceramic bioinert material. The study presents 
the characteristics of ZrO2 as a bone replacement material and its comparison with titanium implants. Data are 
presented on various strategies for improving zirconium bioceramics: improving the surface of the material 
by physical and chemical methods, obtaining volumetric porosity, including using additive technologies, 
creating composite materials, and developing bioactive coatings. New methods of creating zirconium ceramics 
compatible with living tissues containing bioactive ions that promote both osseointegration and bone tissue 
regeneration have been actively studied.

Conclusions Zirconium dioxide ceramics appear to be a promising alternative to titanium implants in terms 
of mechanical strength, biological functionality, chemical stability, osseointegration, and antibacterial 
properties. Future experimental and clinical studies will further improve zirconium ceramics.
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INTRODUCTION

Annually, about 130 million fractures happen worldwide. A significant part of them develops 
bone defects that must be filled in [1]. Moreover, the problem of bone defect compensation exists 
in  degenerative diseases of the musculoskeletal system, osteomyelitis, and oncological diseases 
that require surgical intervention using bone grafts [2]. Patients of older age groups, patients 
with complex comminuted fractures, patients with metabolic disorders are at risk for fracture 
nonunion due to  impaired bone tissue repair [3]. Unfortunately, there are currently no complete 
solutions to this problem, since the ideal one would be to achieve a biocompatible scaffold similar 
to natural bone. One of the most important properties that a graft must have is osteoconduction, 
that is, the ability to function as a scaffold for mesenchymal stem cells (MSCs), osteoblasts and 
osteoclasts [4]. This property of the material is directly related to the quality of the surface, which 
should resemble the structure of cancellous bone [5]. Another required feature is osteoinduction 
or the ability of  the graft to stimulate bone formation, ensure the recruitment, proliferation 
and subsequent differentiation of MSCs into chondro- and osteoblasts under the influence of growth 
factors, cytokines, and adhesion molecules. It is also worth noting that an important function 
of growth factors is induction of angiogenesis for the delivery of nutrient substrates to the developing 
bone tissue [6]. Osseointegration is a direct contact of the implant with the bone through newly 
formed bone tissue that should exclude the growth of fibrous tissue at the bone-implant interface. 
One of the determining factors for successful osseointegration is the geometry and size of pores 
on the surface and inside the structure of the material [7, 8]. Moreover, the osteosubstitution material 
must meet the mechanical characteristics of the bone, requirements of biocompatibility, strength, 
infectious safety and availability.

Autografting is considered the “gold standard” in the clinical practice due to a number of advantages: 
good osteoconduction, osteoinduction and stimulation of osteogenesis. However, we must not 
forget about possible complications both at the site of donor bone collection and at the site of bone 
defect [9, 10]. The use of allografts also has significant shortcomings: possible immune rejection, 
transmission of infection, and a high failure rate. The use of xenografts is limited by the presence 
of immunogenic interspecies barriers [11]. The shortage of natural sources due to growing demand 
for implants stimulated the search and development of artificial materials for osteoplasty.

The effectiveness of the interaction between the recipient bone bed and the implant depends not 
only on the regenerative potential of the bone tissue and the area of interaction between the implant 
and the bone in the defect area, but also on the compatibility of the osteosubstitution material 
with the body tissue in terms of physicochemical, biological and mechanical properties. Artificial 
materials that are developed specifically for medical purposes are biocompatible and are classified as 
biomaterials. Among such materials, a special place is occupied by bioceramics, which has a unique 
combination of properties versus metals or polymers. The biocompatibility of bioceramics ranges 
from oxides, which are inert in the body, to resorbable materials, which eventually decompose 
in the body. High internal strength, wear resistance, and low coefficient of friction allow the use 
of bioceramics under high loads. The compatibility of bioceramics with human tissue reduces 
the risk of adverse reactions or inflammation. Moreover, some types of bioceramics, in particular 
hydroxyapatite or bioactive glasses, exhibit properties that promote tissue regeneration and 
osseointegration. Bioceramics have the inherent versatility: the material can be molded into precise 
shapes and its composition can be tailored to improve specific properties. All these features make 
bioceramics an adequate material for solving a wide range of medical problems [12-15]. Research 
on ceramic biomaterials has been developing rapidly, finding new areas of application in medicine, 
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in particular in traumatology and orthopaedics. Moreover, the analysis of the contemporary market 
of bioceramics showed that there has been a steady tendency towards the change of other types 
of oxide ceramics by zirconium ceramics [16].

Purpose Based on literature data, determine the prospects for using zirconium ceramics as a bone 
substitution material in traumatology and orthopaedics

MATERIALS AND METHODS

The search for publications on the topic was carried out in the PubMed databases and the electronic 
scientific library eLIBRARY in two languages: Russian and English. Key words used were: bioceramics, 
bone, bone defect, zirconate, zirconium ceramics, bone tissue engineering, implant, scaffold, 
augment, biointegration, bioactivity. Depth of the search for scientific papers was from 2000 
throughout 2023. The literature search using keywords and abstracts found 592 sources. Of these, 
79 full-text articles were selected according to the specified criteria. The choice was determined 
by the fundamental nature, evidence, and relevance of the work on the use of zirconium ceramics 
in traumatology and orthopedics.

RESULTS AND DISCUSSION

The term "ceramics" comes from the Greek word κεραμικò (keramikò) which means "fired material". 
Ceramics include inorganic materials consisting of metallic and non-metallic components chemically 
bonded to each other. The properties of materials depend significantly on their microstructure [17]. 
The main characteristics of ceramic materials are high strength, resistance to corrosion and wear, 
and good compression resistance [12, 13]. However, fragility and relatively low tensile and bending 
strength are a serious problem for the use of ceramics as implants [18, 19]. For biomedical applications, 
such materials can be used as all-ceramic components, or they can contain particles of  other 
materials [20]. Bioceramic scaffolds play a central role in the engineering of bone tissue substitutes 
as a support and modulator for cell attachment, proliferation and differentiation, and as a carrier 
of osteogenic substances. It is important to note that the morphology, microstructure, porosity, 
mechanical and physicochemical characteristics of the scaffold should be as close as possible 
to natural bone [21].

Depending on their activity in interacting with the human body, ceramic biomaterials can be divided 
into three groups: 1) inert; 2) having low or medium surface activity; 3) bioresorbable (adsorbable). 
The choice of the type of ceramic material (inert, bioactive or bioresorbable) in each specific case 
depends on what functions the implant performs.

Inert bioceramics do not promote connection with living tissues; connective tissue of varying 
thickness develops around the implant that holds the implant and, at the same time, isolates it from 
neighboring tissues. Possessing high biocompatibility and mechanical strength, such bioceramics 
are usually used for permanent implants. Materials with low and medium activity, in addition to their 
ability of binding to specific proteins, can also release ions, thereby facilitating the integration 
of implants into living tissues. Bioresorbable ceramics should remain in the target site until bone 
regeneration occurs [14, 22].

Inert bioceramics The first generation of biomaterials was developed in the 1960s. Those materials 
were bioinert, showed minimal interaction with surrounding tissues, and did not stimulate bone 
formation [23]. The most important bioceramic inert materials are zirconium dioxide (ZrO2) and 
alumina (Al2O3). Their properties such as reduced wear rates and good long-term biocompatibility 
make these materials suitable for orthopaedic applications. The use of ceramic materials, compared 
to implants made of metal alloys, provides a lower rate of component wear and leads to a decrease 
in the release of metal ions. [24].
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Al2O3 was the first oxide used in orthopaedics due to its biological safety, strength, and reduction 
in the rate of aseptic osteolysis in comparison with metal implants [25]. Polycrystalline aluminum 
oxide has a relatively low cost, due to which it is widely used in traumatology and orthopaedics as 
a component in friction pairs of endoprostheses [26].

Zirconium dioxide has more than double strength compared to aluminum oxide, due to which this 
material has been actively used in the production of implants [27]. Zirconium dioxide occurs in three 
main crystal phase structures: cubic, tetragonal and monoclinic. Microcracks in  the  crystalline-
network structure of zirconium dioxide are self-limiting if the transition from tetragonal to monoclinic 
crystal structure is controlled [28]. To stabilize the structure of zirconium dioxide, various oxides 
are added to it, in particular, yttrium oxide [29]. Zirconium dioxide bioceramics, in particular yttria-
stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics, exhibit exceptional mechanical 
properties and biocompatibility, and do not cause cytotoxic effects or allergic reactions in 
surrounding tissues. Although this biomaterial was claimed to be inert, the adsorption of blood 
proteins, platelets and the migration of osteogenic cells suggest biological interaction with zirconia 
dioxide-based surfaces [30, 31].

Ceramic implants appear to be a promising alternative to titanium implants in terms of mechanical 
strength, biological functionality, chemical stability and osseointegration. Scarano et al. examined 
bone response to zirconia implants in an experimental study in rabbits. It showed that newly formed 
bone was actively formed in close contact with the surfaces of zirconium ceramics, the bone-to-
implant contact rate was 68.4 ± 2.4 %, mature bone and actively secreting osteoblasts were revealed 
in most parts of the implant, and no inflammation was detected [34]. Comparative studies in vitro 
and in vivo showed that zirconia implants have similar results with titanium-based implants in terms 
of osseointegration indices [32-35].

An advantage of zirconium dioxide, in comparison with titanium, was also found in terms 
of antibacterial properties. Scarano et al. showed that the percentage of the surface covered with 
bacteria on zirconium oxide disks was significantly lower than on similar titanium disks [36]. 
Roehling et al. compared experimental disks made of titanium and zirconium dioxide with three 
types of surface topography: after mechanical or sandblasting and acid etching. It was shown that 
zirconium dioxide has significantly lower bacterial adhesion compared to titanium [37].

The attractiveness of ZrO2-based ceramics for medical use is due to its exceptional chemical 
inertness, high strength and good compatibility with the human body, but its inertness limits its 
use as a bone substitute material for filling bone tissue defects. Various strategies have been used 
to improve the integration of zirconia implants into bone tissue.

The surface properties of the implant are of great importance for the formation of peri-implant 
bone tissue. Various methods are used to improve the surface of zirconia. Airborne particle abrasion, 
or  sandblasting of zirconia surfaces, significantly improves osteogenesis and osseointegration 
around implants compared to treated titanium surfaces [33, 38, 39]. To improve the surface 
properties of zirconium dioxide, chemical treatment (acid etching) is also used [40, 41]. However, 
the strength of zirconium dioxide can decrease in mechanical processing due to abrasion by particles 
and the formation of deep microcracks while thermal and acid treatments can reduce the bending 
strength of zirconium under the conditions of low-temperature degradation. Further research is 
expected to develop parameters for mechanical and chemical surface treatment of the material that 
do not affect its mechanical properties.

Ultraviolet radiation can induce electron excitation, increasing the surface energy of zirconium 
dioxide, which leads to a decrease in the contact angle of its surface with water from 51 to 9.4° and, 
accordingly, increases wettability [42]. This, in turn, makes the surface of the material biologically 
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more attractive for protein adsorption, osteoblast proliferation and osseointegration. Treatment 
of the zirconia surface with ultraviolet radiation promotes the attachment, proliferation and 
differentiation of osteoblasts without affecting the mechanical properties of the material [43].

Laser radiation may also be a promising way to improve osseointegration of zirconia. Laser 
modification improves the wettability of the material and increases the adhesion of osteoblasts 
compared to untreated samples [44].

The development of methods for obtaining porosity in ceramics enables to produce materials with 
improved osseointegration properties. Based on their structure, the following types of ceramics are 
distinguished: fine (less than 5 % of pores), coarse (from 5 to 30 % of pores), highly porous (more than 
30 % of pores). The necessary porosity characteristics – the number of pores and their morphology – 
are achieved by special technological methods, including the introduction of special pore-forming 
additives. In this case, the geometry of pores in ceramics depends on the configuration of pore-
forming particles [45]. Kalinina et al. developed highly porous bioceramics based on stabilized ZrO2. 
A synthesized ceramic implant material with an open porosity of 55 % and a pore size of 40-800 nm 
was placed into the body of laboratory animals. Vascular ingrowth into the pore space of ceramics 
was demonstrated. The authors suggest that porous ceramics based on zirconium dioxide can 
be used in the production of implants for orthopaedics and traumatology [46]. Porous zirconium 
ceramics have been especially actively developed for the production of small-sized implants [45].

Work is underway to create domestic ceramic materials based on zirconium dioxide from 
nanostructured powders [47]. A highly dispersed powder (9-10 nm) was synthesized based 
on  a  tetragonal solid solution of partially stabilized zirconium dioxide (t-ZrO2). Based on  this 
powder, nanocrystalline ceramics (grain size 60-70 nm) with high physicochemical and mechanical 
characteristics were obtained. In vivo studies showed the absence of a toxic effect of the ceramic 
implant on the tissues surrounding the implant and on laboratory animals. The research results 
allow us to state that the resulting nano-sized bioceramics can be used for medical purposes [48]. 
Buyakova et al. presented the results of studies on the structure and mechanical behavior of porous 
ceramics produced from nanocrystalline powder of partially stabilized zirconium dioxide intended 
for use in joint replacement. Ceramics with porosity capable of providing a biomechanical connection 
at the bone tissue–implant interface were obtained; it opens up new possibilities in the use of highly 
porous ceramics for bone tissue substitution [49].

Additive technologies are being actively developed in relation to ceramic materials. Their use would 
provide personalized components from porous bioceramics to fill in large bone defects [50-52].

Zirconium dioxide-based materials have been used in orthopedics since the 1980s, mainly due to their 
excellent mechanical properties resulting from phase transformations. However, the material has 
been found to undergo hydrothermal aging (low temperature degradation), whereby its mechanical 
properties gradually deteriorate over time in a humid environment, what can lead to increased 
surface roughness and microcracking, with slow crack growth that ultimately causes catastrophic 
destruction [53, 54]. Material degradation is of particular importance for medical implants [55]. Fully 
stabilized zirconium dioxide is not subject to hydrothermal aging, but its mechanical properties are 
not high enough.

Creation of composite materials has largely solved the problem of low-temperature degradation 
of  aluminum zirconium (ATZ). Ceramic composites made from hardened zirconium oxide are 
universal 56]. Compounds of alumina and zirconia have received considerable attention, particularly 
hardened materials known for their exceptional mechanical properties, including high strength, 
fracture viscosity, elasticity, hardness and wear resistance, and resistance to hydrothermal aging. 
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[57]. In this case, not only the composition of the material is important, but also the method of its 
synthesis. It has been shown, varying resistance of the resulting ceramic materials to degradation 
is observed by different temperatures [58]. ATZ ceramics hold significant promise for biomedical 
applications due to their biocompatibility and remarkable ability to withstand mechanical stress. 
Implants made from such ceramics have excellent wear resistance and strength, ensuring long 
survival in the human body and reducing the risk of adverse reactions, making them the preferred 
choice for the restoration and replacement of damaged bone tissue and joints, in particular in total 
hip and knee arthroplasty [31, 58-61], although Pluschev et al. indicated that if there is even minimal 
doubt about the stability of the head in the acetabulum, the use of ceramic components should be 
viewed critically [62].

Development of bioactive coatings on the surface of zirconia has been undertaken to improve 
the biocompatibility, antibacterial potential and biological activity of the material. Various coating 
materials with good biological properties have been described in the literature. Hydroxyapatite 
has mineral composition similar to bone, exhibits biologically active properties, enhancing 
osseointegration. Hydroxyapatite coatings enhance the osteogenesis capacity of porous 
zirconia scaffolds [63]. Moreover, an increase in the hydroxyapatite content led to a decrease 
in the mechanical and chemical stability of the material with a simultaneous increase in biological 
activity [64]. Research is being conducted to obtain and evaluate the quality of bioceramic coatings 
from a composite material based on the co-precipitation of hydroxyapatite and hydrated zirconium 
dioxide [65]. Calcium phosphate is also bioactive, but coatings made from this material exhibit low 
stability and provide weak adhesion to the substrate. To overcome these shortcomings, tricalcium 
phosphate-reinforced hydroxyapatite coatings have been studied [66]. A study conducted by 
Silva  et  al. showed that modification of the surface of scaffolds made of aluminum-zirconium 
porous ceramics with calcium phosphate and strontium included in its structure might yield 
scaffolds with high porosity, three-dimensional structure and preferential adhesion and maturation 
of osteoblastic cells, which are necessary to stimulate bone tissue regeneration in vivo [67]. Coating 
with functionalized carbon nanotubes, which enhance the roughness, wettability and cell adhesion 
of  zirconia, contributed to  the  osseointegrative properties of the material [68]. Attempts have 
been made to produce bioactive glass coatings on zirconia substrates, but with limited success. 
These coatings have poor adhesion to the substrate, as a result of which they are often subject 
to delamination and destruction. To overcome these problems, a strategy based on a functionally 
graded glass/zirconia system has been proposed [69]. To improve the mechanical characteristics and 
wear resistance of zirconia implants, the use of graphene as a coating has been studied [70].

Creation of bioactive ceramics compatible with living tissues has been currently developed. 
By  synthesizing biomaterials with appropriate biophysical and biochemical characteristics, it  is 
possible to modulate the cellular response of peri-implant tissues. This property of bioactive 
materials, such as the release of bioactive ions (Ca, Mg, Sr, Zn, Cr, Ag, La, etc.) can be used to induce 
phenotypic changes in cells or modulate the immune microenvironment to control tissue healing 
and regeneration [71]. It has been proven that the biophysical characteristics of biomaterials, such as 
topography, charge, size, electrostatic interactions and stiffness, can be modulated by the addition 
of  inorganic micro- and nanoparticles [72]. Current research shows that inert ZrO2 can be 
converted into a bioactive system comprising various molecules that can mimic the structural and 
compositional properties of bone tissue at the macro-, micro- and nanoscale, improving implant 
osseointegration [73]. Considerable efforts have been made by researchers to modify zirconia 
in terms of morphology and improve biological activity for better cell attachment, proliferation and 
differentiation during the formation of peri-implant bone [74, 75]. Pardun et al. added magnesium 
oxide or magnesium fluoride to yttrium-stabilized zirconium dioxide. The presence of Mg2+ ions 
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