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Abstract
Introduction Technological advances in bone tissue engineering have improved orthopaedic implants and surgical techniques for bone reconstruction. 
This approach allows overcoming inconvenience of the paucity of autologous materials available and donor site morbidity. Aim To demonstrate advances 
of the past 30 years in the development of bioimplants providing alternatives to bone grafting in reconstructive orthopaedics. Methods Preparing 
the review, the scientific platforms such as PubMed, Scopus, ResearchGate, RSCI were used for information searching. Search words or word 
combinations were bioactive osteoinductive implants, bone grafting, bone reconstruction, hydroxyapatite, bone scaffolds. Results The main trends 
in tissue engineering in the field of orthopaedics are represented by construction of three-dimensional structure implants guiding cell migration, 
proliferation and differentiation as well as mechanical support. Association with bone morphogenetic proteins, growth factors enables proliferation 
and differentiation of cell types of the targeted bone tissue. A promising advancement should be biodegradability with a controllable degradation 
rate to compliment cell/tissue in-growth and maturation in limb reconstruction. Discussion This review presents and discusses the experimental and 
clinical application of biotolerant, bioinert and bioactive materials for reconstructive bone surgery. Future generations of biomaterials are designed to be 
osteoconductive and osteoinductive. Conclusion Properties of polycaprolactone (PCL) filled with hydroxyapatite (from 10 to 50 wt %) make this hybrid 
material with controllable absorption a promising strategy for reconstructive surgery in comparison to other materials.
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Аннотация
Введение. Технологический прогресс в течение последних 30 лет способствовал исследованиям и прогрессу в области имплантов 
для реконструктивной ортопедии. Это направление позволило практически полностью отказаться от применения аутоимплантов из-за 
недостатков их использования. Цель. Продемонстрировать достижения последних 30 лет в разработке биоимплантатов, являющихся 
альтернативой костной пластике в реконструктивной ортопедии. Материалы и методы. При подготовке обзора для поиска информации 
использовались научные платформы PubMed, Scopus, ResearchGate, RSCI. Поисковыми словами и словосочетаниями были: биоактивные 
остеоиндуктивные импланты, костные трансплантаты, костная реконструкция, гидроксиапатит, костные скаффолды, bioactive osteoinductive 
implants, bone grafting, bone reconstruction, hydroxyapatite, bone scaffolds. Результаты. Основные направления тканевой инженерии в области 
ортопедии представлены 3D-имплантами, обеспечивающими детерминированную клеточную миграцию, пролиферацию и дифференцировку 
и сохраняющие на протяжении требуемого времени достаточную механическую прочность своей структуры. Сочетание биодеградируемых 
имплантов с импрегнацией их костным морфогенетическим белком стимулирует регенерацию реконструируемой кости. Программируемая 
и контролируемая резорбция имплантов в сочетании с замещением их новой костной тканью является основным вектором развития 
инженеринга костной ткани. Обсуждение. Данный обзор включил в себя представление и критическое обсуждение экспериментального 
и клинического применения биотолерантных, биоинертных и биоактивных материалов, разрабатываемых и применяемых в настоящее время 
для реконструктивной ортопедии. Существует консенсусное мнение, что биоматериалы будущего, применяемые в ортопедии, должны обладать 
остеоиндуктивными и остеокондуктивными свойствами. Заключение. Свойства поликапролактона, импрегнированного гидроксиапатитом 
(от 10 дo 50 wt %) в сочетании с контролируемой и прогнозируемой абсорбцией, делают этот гибридный материал наиболее перспективным 
для изготовления имплантов в сравнении с иными композитными материалами.
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INTRODUCTION

Methods for surgical treatment of fractures and bone 
diseases with the use of osteosynthesis technologies 
have spread globally over the past century. A great 
number of internal (intraosseous and extraosseous) and 
external (wire- and half-pin-based) fixators have been 
proposed to ensure the most reliable osteosynthesis 
of a broken bone and to provide favorable conditions 
for reparative bone tissue regeneration: accurate reduction 

of bone fragments, their stable fixation, sparing attitude 
to osteogenic tissues, optimal rate of elongation, good 
blood supply to the involved limb, and early functioning 
in the postoperative period [1, 2]. Most orthopedic surgeons 
believe that the Ilizarov method is one of the best methods 
to provide the above-mentioned conditions. Nevertheless, 
clinical practice shows that the duration of osteosynthesis 
with the Ilizarov frame lasts at least four months for closed 
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long bone fractures. In conventional limb lengthening, 
the excellent external fixation index is about 30 days/cm, 
the good one is 45 days/cm, the fair one is 60 days/cm [3-9]. 
In 2004, Eralp et al. reported an index of 1.65 months/cm 
for lengthening of the tibia with the Ilizarov fixator [10]. 
It is obvious that long-lasting treatment cannot satisfy either 
the patient and his relatives or the health care institutions. 
Therefore, there is a necessity to reduce the period 
of external frame wearing and to stimulate osteogenesis, 
both with conservative and invasive methods [11, 12].

Autologous bone grafting and various bioactive 
products from the decalcified bone, biocomposite 
matrices, recombinant bone morphogenetic proteins, 

and biomaterials from ceramics were offered for this 
purpose. Alongside, experimental studies on cell 
technologies have intensified [11, 13]. Bioengineering 
in orthopedics aims at creating biomaterials that are 
suitable to replace the damaged ones such as skin, 
muscle tissue, blood vessels, nerve fibers, and bone 
tissue. Biomaterials are the materials designed to serve 
as interfaces with biological systems in order to augment 
or replace host tissue, organ, or body function [14].

This publication aimed to reveal the trends 
in experimental development and clinical application 
of advanced bioactive implants in limb reconstruction 
dedicated to replace bone grafts.

MATERIALS AND METHODS

We summarized the recently published studies 
on definition, classification, production, indications and 
clinical application outcomes for implants with osteoinductive 
and osteoconductive properties used in limb reconstruction. 
To prepare the review, we searched for information sources 

at the scientific platforms such as PubMed, Scopus, 
ResearchGate, RSCI, as well as other published products 
(Elsevier, Springer) using search words or word constructions: 
bone tissue engineering, reconstructive orthopaedics, clinical 
translation, scaffolds, hydroxyapatite.

RESULTS AND DISCUSSION

This area of materials science in orthopedics is 
also called bioceramics. The name emphasizes the 
leading role of the ceramic component in implants 
for joint replacement, filling materials for dentistry, 
implants for maxillofacial surgery, and medical cosmetic 
products [15, 16]. Biomaterials must possess certain 
chemical properties (absence of undesirable chemical 
reactions with tissues and interstitial fluids, resistance 
to corrosion), mechanical characteristics (strength, 
resistance to breakdown, long-lasting mechanical 
support), biological properties (absence of reactions 
from the immune system, consolidation with bone tissue, 
stimulation of osteogenesis).

Biomaterials used as implants that replace a bone part 
or as temporary fixators for fractures are also classified 
by their biological activity on bone tissue regeneration:

• Biotolerant materials (stainless steel and cobalt-
chromium alloys); a layer of fibrous tissue develops 
between the surface of those implants and the host bone; 
reparative regeneration of the injured bone occurs within 
conventional time and at some distance from the implant 
(distant osteogenesis);

• Bioinert materials (titanium and aluminum oxides) 
do not cause the formation of fibrous layer on the implant 
surface; reparative osteogenesis proceeds in direct contact 
with the implant surface (contact osteogenesis), but bone 
union occurs within usual terms;

• Bioactive materials (calcium phosphate ceramics and 
silicon-based bioglasses) are characterized by the formation 
of a chemical bond with the bone (bonding osteogenesis), 
enhance bone formation starting from the implant surface 
and induce the formation of a continuous bond from 
the tissue to its surface.

Metal implants occupy a large place in traumatology. 
Alloy steel is most frequently used to restore the integrity 
of a fractured bone (screws, locking intramedullary 
nails or bone plates). Internal fixation implants are made 
from materials that must primarily meet the objectives 
of providing reliable fixation of the fracture 

for functional treatment within a certain period, 
sometimes for 12-18 months. This is a rather long period 
of time. Therefore, materials must be chosen to resist 
fatiguing failure after fixation on the surface of bone 
fragments in order to maintain them in an anatomical 
position under loading until biological bone union.

All metals can be classified according to the effect 
on reparative osteogenesis into biotolerant materials (stainless 
steel and cobalt-chromium alloys) or bio-inert materials 
(titanium and aluminum oxides). There are no bioactive 
metals that would stimulate reparative osteogenesis. 
Chromium-nickel and chromium-nickel-molybdenum 
corrosion-resistant steels, alloys of cobalt, tantalum, titanium, 
and pure metals such as nickel, silver, and titanium are the 
most frequently used materials for production of surgical 
implants applied in current medicine. Thus, in dentistry, 
dental implants are made from titanium and its alloys, since 
titanium is a biocompatible and corrosion-resistant material. 
In fact, all metals corrode under the influence of human 
body fluids. And without exception, all metal implants 
get protected from corrosion by a passive layer consisting 
of insoluble products of their oxidation. Corrosion increases 
by about 100 times if the passive protective layer of a metal 
implant, which consists of insoluble products of their 
oxidation, is damaged eventually by friction [17]. Under 
these conditions, the implant will not be able to provide 
stable fixation for a long time period required for bone 
fracture union.

Undoubtedly, titanium is one of the most promising 
materials for the manufacture of surgical implants widely 
used in traumatology. Numerous experiments and clinical 
practice have confirmed that titanium and its alloys is 
the most optimal metal for implantation [18].

Typical bioactive materials include bioglasses. The most 
common composition is 24.5 % Na2O, 24.5 % CaO, 
45.0 % SiO2, 6 % P2O5. By varying the composition, one can 
change their bioactivity and resorbability. Other materials 
are based on hydroxyapatite (HA), Ca10(PO4)6(OH)2 (dense 
and porous ceramics) [15, 19].
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Hydroxyapatite, Ca10(PO4)6(OH)2, is one of the few 
known bioactive materials. It enables bone ingrowth 
and osseointegration of an orthopedic, dental, 
and maxillofacial implant due to its high biocompatibility. 
In recent years, a special term has appeared 
in the literature, biocompatible nanoceramics (where 
HA grains vary in size from one to several hundreds 
of nanometers), or nanostructured bioceramics, which 
defines a nanostructured ceramic material used in medicine 
to regenerate lost bone tissue [20].

The phenomenon of bioactivity is determined mainly 
by chemical factors, such as the crystalline phase and 
the molecular structure of the material, and by physical 
factors such as roughness and porosity of the material 
surface. Back in 1973, Hulbert et al. [21] proposed a new 
concept of the so-called biological fixation of skeletal 
implants by active bone growth (osteoconduction) on their 
surface. The materials were oxide ceramic and carbon 
compounds, as well as metals coated with stable oxide 
layers. Later, the concept of bioactivity of materials was 
defined as their ability to interact with the surrounding host 
bone tissue and to form a chemical bond with it [15, 22-24]. 
The ion-exchange reaction between the bioactive implant 
and the surrounding body fluids leads to the formation 
of a layer of carbonate apatite on it, which is chemically 
and crystallographically equivalent to the mineral 
composition of the bone. This ability of the implant 
to initiate the formation of calcium phosphate under 
in vitro conditions is interpreted as the first sign of possible 
bioactivity in vivo.

Multiple complex and interrelated processes take 
place on the surface of a bioactive implant. First, ions 
and proteins are adsorbed there, forming a biofilm 
on the surface of the implant. This process strongly 
depends on the physical and chemical characteristics 
of the surface topography (roughness, porosity, 
morphology), chemical composition, energy and charge. 
As a result, both the amount and functionality of adsorbed 
proteins are largely controlled by the surface of the 
biomaterial. The adsorbed biofilm promotes the adhesion 
of cells facilitated by specific transmembrane receptors, 
integrins [16, 25]. The surface of the material, 
its biocompatibility determines the degree of adhesion 
of osteogenic and mesenchymal stem cells on their 
surface [26-28]. The degree of adhesion and disposition 
of these cells determine their ability to proliferate 
and differentiate into osteoblasts upon contact 
with the implant. The latter is crucial in the development 
of a mechanically strong interface of complete fusion 
between the implant surface and bone tissue without 
a layer of fibrous tissue [29-33].

The traumatology science currently develops 
two fundamentally different approaches to address injuries 
and bone loss: 1) simple replacement of a damaged area 
of the bone with a massive implant, with or without 
bioengineered structure, that replaces the bone and 
adjacent joints, or 2) creating conditions for regeneration 
of the bone in the injured area with an osteoinductive 
(absorbable or non-absorbable) implant. An analysis 
of literature reveals that both directions are increasingly 
associated with bioceramics, the use of which in medicine 

has been expanding as the developments in the field 
of chemistry progress and technologies for production 
of materials with the properties that are close to bone tissue 
improve [34-36].

Among the synthetic materials that can be used 
for implantation, calcium phosphate-based ceramics 
are the most promising. Hydroxyapatite is not only 
biocompatible, but also the most bioactive. However, 
the main shortcoming of ceramics is its fragility. Therefore, 
bioinert metals and alloys with a calcium phosphate 
coating can be used for fabrication of orthopedic devices 
for the musculoskeletal system, which experiences 
significant mechanical loads [37-40]. The coating provides 
biological compatibility and expressed biological activity 
in the formation of bone tissue around the metal. There are 
two research trends:

1. Development of joint prosthetic devices, the bearing 
metal part of which is covered with ceramics for the 
purpose of osteoinduction and formation of an extensive 
bone coupling that ensures reliable contact of the metal with 
the bone tissue over the maximum area, thus eliminating 
the failure of fixing the elements of the joint on the bone 
for many years [37, 40].

2. Development of intramedullary implants that do not 
experience significant load, but their hydroxyapatite 
coating contributes to the filling of extensive bone defects 
after trauma or surgical bone resections [41, 42].

Such a coating is designed to induce reparative 
osteogenesis around the implant, thereby contributing 
to the filling of extensive bone defects. The coupling 
created in this way around the implant provides optimal 
conditions for consolidation of bone fractures or nonunion, 
the formation of a distraction regenerate [40].

The main biological advantage of HA coatings is 
enhanced bone formation, accelerated bonding between 
the implant surface and surrounding tissue, and a reduced 
release of potentially harmful metal ions [30].

Methods for applying a bioactive coating to implants 
are numerous. The basic technologies for the deposition 
of hydroxyapatite are microarc oxidation, magnetron 
sputtering, formation of composite polymer coatings, 
vacuum arc deposition under the conditions of short-pulse 
high-frequency plasma immersion ion implantation. 
The technology of coating determines mechanical 
properties of the coating and physicochemical 
characteristics of the implant surface [18, 28, 29, 43-47].

The inconvenience of metal implants with a bioactive 
coating includes the second surgery to remove them. 
A solution to this problem is found in using of an implant 
fabricated from a strong composite material which will 
gradually undergo resorption while the defect is filled 
with regenerating bone tissue.

The first fixation devices for osteosynthesis 
made from biodegradable materials have been 
available since the early 1980s [48, 49]. However, 
their use for fracture treatment has not been widely 
accepted yet due to a number of reasons. A few types 
of biodegradable orthopedic implants available are either 
not intended for management of fractures, or do not meet 
the requirements of the AO/ASIF principles in terms 
of their properties and application methods [50-52].
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Nowadays, it has become possible not only to obtain 
biodegradable materials with strong mechanical properties 
and an optimal degradation profile for fracture management, 
but also to produce structures close to classical metal fixators 
in sizes, what enables to consider biodegradable fixators 
of the latest generations as their full alternative [53, 54]. 
However, most of the researches are still devoted to either 
products or materials of early generations not related to 
osteosynthesis of limb bone fractures. Very few publications 
describe practical aspects of their use [55, 56].

Materials that undergo degradation due 
to the physiological effects of body tissues can be 
conditionally designated as biodegradable, including 
bioabsorbable and bioresorbable. Biodegradable materials 
is a wide group and is defined as a community of materials 
that undergo decay due to the physiological effects of body 
tissues on them (in vivo), regardless of the removal 
of degradation products from the body [56, 57]

In 1966, Kulkarni et al. [58] reported the results 
of a study on the biocompatibility of polylactic acid 
(PLA) and its stereoisomer (Poly-L-Lactic Acid, 
PLLA). In 1971, the first result of a medical evaluation 
of the polymers in suture, rod, and film form was also 
presented [59]. The requirements for orthopedic fixators 
made of biodegradable materials were formulated later: 
adequate fixation of bone fragments and/or soft tissues 
to the bone implant must retain mechanical properties 
within the estimated consolidation period; degradation 
period should not be too long to avoid the problems typical 
for metal fixators; implant must be made of materials that 
are completely safe for humans: non-toxic, non-antigenic, 
non-pyrogenic and non-carcinogenic [60-65].

The group of polymeric biodegradable materials 
for osteosynthesis includes polyesters based on lactic 
and glycolic acids, polycaprolactone, as well as their 
co-polymers, which can be characterized as bioinert 
bioresorbable. The degradation of these compounds 
proceeds mainly along the hydrolytic path. However, 
it also partly occurs enzymatically, mainly after 
the hydrolytic decomposition of the molecule into relatively 
small fragments due to the enzymes of phagocytes, 
macrophages and neutrophils, while the end products of 
decomposition are CO2 and water [66-72]. As a material 
for the manufacture of orthopedic fixators, PLLA is 
of main interest. It has a high crystallinity, hydrophobicity 
and retains its properties for a long time, sometimes even 
too long (up to 5 years or more), is non-toxic and does not 
elicit an immune response [73].

The PLLA strength for compression is 80-500 MPa, 
the tensile strength is 45-70 MPa, the elastic modulus is 
2.7 GPa, that are close to the values of the human bone 
tissue, which for the cortical bone are 131-224 MPa, 
35-283 MPa and 17-20 GPa, respectively, and for spongy 
bone 5-10 MPa, 1.5-38 MPa and 0.05-0.1 GPa, relatively. 
PLLA products retain their original mechanical resistance 
for at least 3 months after implantation; degrade within 
24 months. In some cases, after 4 years of implantation 
in the tibia, only initial surface signs of screw erosion were 
noted, what makes us consider that products made from 
pure PLLA are conditionally biodegradable [48, 71-74]. 
PLLA of high crystallinity degrades very slowly, while 

being inferior in strength to both polyglycolic acid (PGA) 
and biostable materials (metals). By combining PLLA 
and PGA, it was possible to solve the issue of relatively 
insufficient strength of the promising copolymer containing 
polylactic and glycolic acids [55, 56, 74-81].

Polylactic acid screws and pins are used in the clinical 
practice for fixation of small bone fragments 
in intra-articular fractures, fractures of the ankles and 
tibiofibular syndesmosis, bones of the wrist joint [75, 77]. 
In most fractures of the upper and lower extremities, 
it is not possible to ensure the stability of bone fragments 
only with such degradable implants. The economic effect 
of the use of biodegradable materials in fractures of various 
locations, including ankle fractures, was estimated 
by Böstman et al. and ranged from 410 to 903 US dollars 
due to minimization of repeated surgical activity needed 
for the removal of metal implants [81, 82]. The terms 
of fracture union remain standard [83, 84].

To obtain a real opportunity to stimulate osteogenic 
processes, a number of researchers propose to add special 
inductors (fillers) to the composite material as matrix 
for transplantation of stromal progenitor cells, native bone 
marrow cells [85, 86].

Several biocomposite materials containing bone 
collagen and bone sulfated glycosaminoglycans 
of animals and humans have been developed in Russia 
in order to restore bone defects: Biomatrix – bone 
xenocollagen and bone sulfated glycosaminoglycans; 
Allomatrix-implant – bone allocollagen and bone 
allosulfated glycosaminoglycans; Osteomatrix – 
biocomposition based on natural bone components 
xeno- or allocollagen, sulfated glycosaminoglycans 
and hydroxyapatite; CollapAn – a calcium-phosphate 
biocomposite material based on synthetic hydroxyapatite, 
collagen and an antibiotic [86-92].

These materials have porous and cellular structure 
corresponding to the architectonics of native cancellous 
bone. Such a structure provides not only volume 
maintenance in the defect due to elastic properties, but 
also an optimal opportunity for penetration and ingrowth 
of connective tissue cells, blood vessels and bone formation 
into the implant [88, 89, 92]. However, for all their 
advantages, they do not have the necessary mechanical 
characteristic of native bone tissue.

Osteomatrix is used in dentistry to replace bone defects 
formed after the removal of cysts and teeth. It was shown 
that 3 months after surgery the bone defects were actively 
filled with young bone tissue [91]. Good clinical results 
were also demonstrated for the CollapAn. In the area 
of the defects filled with CollapAn, the cortical layer and 
the medullary canal gradually formed by the 4-5th month, 
along with an increase in the intensity and uniformity 
of the callus. It was well tolerated; there were no cases 
of rejection and allergic reactions. In fracture treatment, 
an endosteal callus with a small periosteal component 
occurred by the end of the 4th week after the operation. 
The use of CollapAn in delayed fracture union and 
nonunion contributed to the formation of callus, mainly 
in its periosteal part, by the end of the 6-8th week after 
the operation. On average, by the end of the 8-9th month, 
bone consolidation was confirmed [92, 93].
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Western European and American firms have developed 
a whole series of calcium-phosphate-collagen composites 
for filling bone defects or synostosis of vertebrae in order 
to replace autologous bone material in surgical practice. 
Thus, Collagraft®, a composite of collagen and biphasic 
calcium phosphate ceramic, contains highly purified type I 
collagen and biphasic calcium phosphate, which consists 
of 65 % hydroxyapatite and 35 % tricalcium phosphate 
ceramic [94].

Hydroxyapatite-poly-L-lactide (u-HA-PLLA) composites 
contain poly-L-lactide (PLLA). When u-HA-PLLA-composite 
rods were implanted into the subcutaneous layer, their 
bending strength retained 85 % of the original value after 
8 weeks and 80 % after 25 weeks, while after 25 weeks 
the molecular weight of the rods decreased to approximately 
20 % of original [95]. It was reported [96] that complete 
degradation of u-HA-PLLA composite rods for bone fixation 
happens approximately 4.5-5 years after implantation.

Beneficial properties of u-HA-PLLA composites enable 
to use bioresorbable devices made from them for internal 
fixation in bone fractures, orthopedic reconstructive and 

restorative operations. However, all degradable products 
based on PLLA have a significant drawback. In the course 
of degradation, the acidity of the environment of surrounding 
tissues increases, which negatively affects the processes 
of reparative regeneration of bone tissue and, consequently, 
the terms of fracture consolidation increase [97].

In order to eliminate this issue of implant 
degradation, the researchers at Tomsk Polytechnic 
University (Russia) together with researchers 
from the Ilizarov center (Russia) proposed to use 
polycaprolactone (PCL) as an implant matrix. Products 
from PCL with the inclusion of hydroxyapatite 
(from 10 to 50 wt %) were studied in the treatment 
of fractures of long bones in animals, treatment of bone 
defects and experimental limb lengthening. Experimental 
studies revealed a high biological activity of this new 
type of intraosseous implants: pH of the environment 
remained at the level of 6-7, bone union of tibial 
fractures occurred within 1 month, external fixation 
index for limb lengthening did not exceed 20 days/cm 
in monofocal procedures [98].

CONCLUSION

Thus, ceramic polymer composites are commercially 
available nowadays for treatment purposes. 
The combination of inorganic and organic components 
seems reasonable for designing in bone reconstruction 
surgery. Although autografts and allografts are still 
widely used due to the lack of artificial materials, some 
hydroxyapatite-polymer composites are attractive due 
to their similarity to the structure and properties of the bone 
tissue and osteoinductive activity. The use of materials 
depends both on medical and biological characteristics 
of a bone defect and particularities of underlying pathology. 
Variability of clinical problems requires a large range 
of biomaterials and implants on their basis.

The main objective of tissue engineering in the field 
of orthopaedics should be construction of implants serving 

as three-dimensional structures to guide cell migration, 
proliferation and differentiation along with mechanical 
support. Association with bone morphogenetic proteins, 
growth factors enables proliferation and differentiation 
of cell types of the targeted bone tissue. Tissue-engineered 
implants must be biodegradable with a controllable 
degradation rate to compliment cell/tissue in-growth and 
maturation.

The manufacture of implants should easily and efficiently 
reproduce various shapes and sizes. They have to ensure 
bone union in non-complicated fractures within three 
to four weeks and stimulate bone healing in lengthening 
procedure after two to three weeks of fixation phase. 
Osteoiductive implants should accelerate mineralization 
of newly formed organic matrix of a lengthened bone.
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