ЭКСПЕРИМЕНТ

© Группа авторов, 1996.

Конструирование и экспериментальная апробация фармпрепаратов из зрелой костной ткани

В.И. Шевцов, К.С. Десятниченко, О.Б. Устюжанина, А.Н. Дьячков, А.А. Ларионов, С.Н. Лунева, О.Л. Гребнева, С.П. Изотова, Н.К. Махнина, С.И. Алиева, О.Н.Фадеева

Российский научный центр "Восстановительная травматология и ортопедия" им. академика Г. А. Илизарова, г. Курган (Генеральный директор — академик РАМТН, д.м.н., профессор В.И. Шевцов)

В работе описаны способы получения из зрелой компактной костной ткани препаратов, ускоряющих созревание дистракционного регенерата кости, стимулирующих кроветворение и иммуногенез, восполняющих дефицит фосфата кальция в организме, коллагена и гликозаминогликанов, а также результаты апробации этих препаратов на животных в эксперименте.

Ключевые слова: костная ткань, химический состав, получение фармпрепаратов, испытания в эксперименте.

Разработка и широкое внедрение способов коррекции врожденных и приобретенных нарушений опорно-двигательного аппарата (ОДА) посредством чрескостного компрессионнодистракционного остеосинтеза по Г.А. Илизарову (ЧКДОС) совершили переворот в травматологии и ортопедии, принесли выздоровление, социальную и трудовую реабилитацию десяткам тысяч людей. Методы ЧКДОС постоянно совершенствуются, делая доступным лечение больных с практически любыми нозологическими формами повреждения и заболевания ОДА.

Вместе с тем, остается ряд проблем, трудно разрешимых или неразрешимых с помощью усовершенствования технологии ЧКДОС. По нашему представлению к ним в первую очередь относятся:

- анемизация, следующая за скелетной травмой [1, 2];
- нарушение иммунного статуса при повреждении ОДА [3, 4];
- деминерализация интактного скелета при лечении переломов и исправлении длины и формы отдельных костей [5, 6];
- значительная продолжительность фазы созревания (минерализации) - периода фиксации - в сравнении с периодом дистракции;
- дегенеративно-дистрофические изменения в синовиальных средах суставов, образованных как оперированными костями, так и контрлатеральными [7].

Эти осложнения, сопровождающие повреждения ОДА - общие для травматологии и ортопедии - не оставлены вниманием специалистов разного профиля - клиницистов, эксперимента-

торов, теоретиков, предложивших применение анаболических стероидных, полипептидных остеотропных гормонов, иммуномодуляторов, хондропротекторов и пр., обзор которых не входит в задачу настоящего сообщения. Своей целью мы считаем необходимость привлечь внимание к костной ткани как источнику разнообразных биологически активных веществ (БАВ) и пластического материала для создания новых фармакологических препаратов, способствующих потенцированию влияния на репаративный остеогенез технических приемов ЧКДОС.

Ежегодно в мире миллионы тонн костной ткани животных на бойнях и мясоконсервных комбинатах используются, в лучшем случае, на производство не окупающих себя материалов или становятся предметом загрязнения окружающей среды. Только ничтожная часть идет на приготовление фармпрепаратов (например, оссопан фирмы Robapharm, Базель). На рис. 1 приведен аппроксимированный состав костной ткани. Примерно 70 % ее приходится на минеральную фазу, которая может служить источником для получения препарата, восполняющего дефицит фосфорно-кальциевых солей - около 10 % населения планеты страдает остеопорозом вследствие алиментарных, гормональных и других нарушений [8, 9]. Около 20 % костной ткани составляет коллаген типа I того же типа, что и в коже - практически единственном источнике получения коллагена, находящего все большее применение в медицине в виде гемостатических и бактериостатических губок, основы водорастворимых гелевых мазей и т. п. [10]. Неколлагеновые белки костной ткани (НКБ) - ее минорный компонент - включают в себя семейство местных факторов роста (МФР), контролирующих физиологическую клеточную активность, способность стимулировать пролиферацию и дифференцировку клеток [11, 12]. Наконец, наиболее известные и применяемые широко в настоящее время хондропротекторы представляют собой продукты гидролиза гликозаминогликанов или входящие в их состав ингредиенты [13, 14], составляющие 3 - 5 % массы костной ткани.

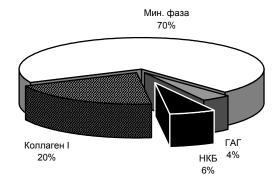


Рис. 1. Аппроксимированный состав костной ткани

В РНЦ "ВТО" им. акад. Г.А.Илизарова исследования по выделению, изучению физикохимических и биологических свойств НКБ зрелой костной ткани и распределению их в различных морфо-функциональных зонах дистракционного регенерата проводятся около двух десятков лет в комплексных НИР с участием 6 -8 научных подразделений и составляют, по существу, новое научное направление, основные положения которого изложены нами в первом номере настоящего журнала. В данном сообщении мы представляем результаты некоторых разработок прикладного характера, перспективных, на наш взгляд, для создания фармсредств, потенцирующих стимулирующие морфогенез тканей свойства ЧКДОС и корригирующих его осложнения.

Приступая к конструированию фармпрепаратов из компонентов костной ткани, мы постулировали для себя несколько положений:

- лабораторный регламент их получения должен быть в достаточной мере технологичен создание на его основе промышленного производства должно достигаться простым масштабированием лабораторных приемов;
- костная ткань в процессе приготовления серии препаратов различного назначения должна использоваться полностью, без отхо-

дов;

- для извлечения, фракционирования, очистки ингредиентов костной ткани, входящих в состав препаратов, не должны применяться вещества I - II класса вредности;
- все используемые реагенты должны возвращаться в технологический цикл или утилизироваться.

Кроме того, используя референтные данные [15] и собственные наблюдения, мы пришли к выводу, что фармпрепараты должны быть композиционными, с тем чтобы, действуя кооперативно и синэргично, каждый отдельный компонент усиливал эффект другого, а суммарное влияние композиции обладало качественно новым действием.

В основу лабораторного регламента получения фармпрепаратов из зрелой костной ткани положен описанный нами ранее [16, 17] комплекс приемов выделения НКБ, включающий кислотную декальцинацию, диссоциативное экстрагирование декальцинированного внеклеточного органического матрикса, диализ, фракционирование посредством высаливания, гельфильтрации и ионообменной хроматографии.

Основные этапы выделения и очистки БАВ костной ткани, костного коллагена и минерала приведены на рис. 2. Зная биологические и физико-химические свойства отдельных ингредиентов, можно, внося минимальные изменения в эту схему, получать композиции веществ с заранее заданными свойствами, т.е. конструировать по потребности новые фармпрепараты. В настоящем сообщении мы приводим несколько примеров получения таких веществ - потенциальных фармпрепаратов. Общее рабочее название, выбранное нами для них, - стимбон (от Stimulator from Bone).

Стимбон-1 - композиция неколлагеновых белков костной ткани, осаждающихся при насыщении сульфатом аммония 45 - 50 %, с молекулярной массой от 20 до 30 кД, не обладающих сродством к анионообменнику [18] (рис. 3).

Этот препарат при испытании в эксперименте на животных проявил следующие свойства. При однократном введении мышатам с массой тела 8 - 11 г в дозе 1 мг/кг массы тела уже к 5-м суткам после введения отмечено статистически достоверное опережение в приросте массы тела по сравнению с контролем, получавшим равный с препаратом объем 0,15 М раствора NaCl (рис. 4).

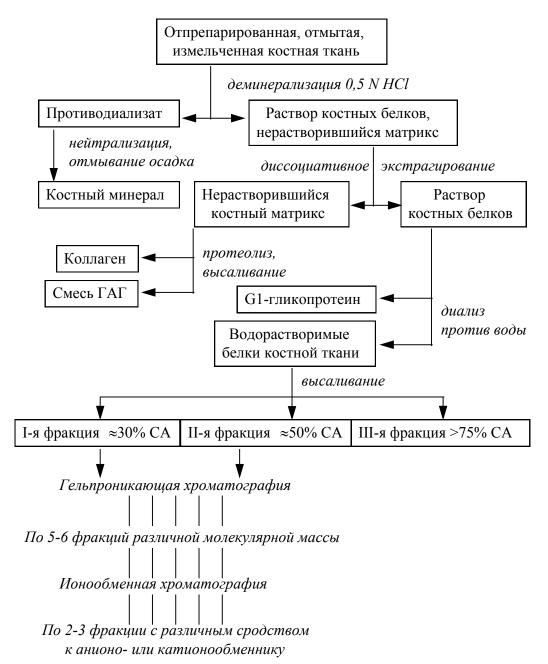


Рис. 2. Схема выделения и очистки ингредиентов костной ткани

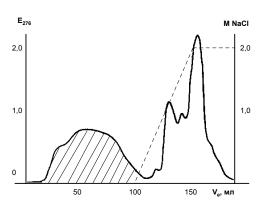


Рис. 3. Заключительная фаза выделения препарата стимбон-1. Колонка ДЕАЕ-сефадекса А-25 (20×2см)

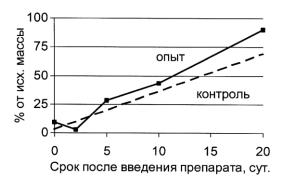
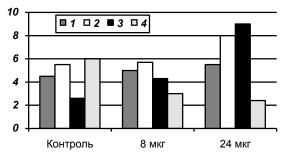



Рис. 4. Влияние препарата стимбон-1 на скорость прироста массы тела растущих мышей

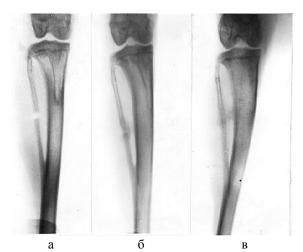
На рис. 5 представлены результаты влияния препарата на красное кроветворение в зависимости от дозы, парэнтерально введенной взрослым мышам. Все использованные тесты подтверждают стимулирующий эффект стимбона-1 на эритропоэз. Влияние на костеобразование проверено в двух экспериментах.

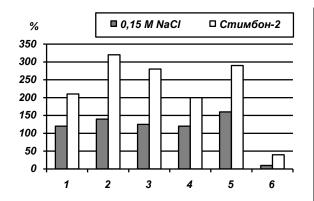
- Содержание эритроцитов х 10¹² клеток/л
- 2 Индекс массы селезенки
- 3 Абсолютное количество 9 эритроидных клеток селезенки на 100 спленоцитов
- 4 Лейкоцитарно-эритроцитарное соотношение костного мозга

Рис. 5. Влияние препарата стимбон-1, стимулирующего физиологическую и репаративную регенерацию, на гематологические показатели в зависимости от дозы.

На рис. 6 показан результат замещения стандартного дефекта малоберцовой кости у кролика после однократного введения 2 мл препарата (0,8 мг/мл) и того же объема 0,15 М NaCl на 3-и сутки после создания дефекта. В таблице 1 приведены показатели минерализации дистракционного регенерата у собак, которым после завершения дистракции дважды вводили по 1 мг/кг массы тела стимбон-1 или одинаковый объем физраствора.

Приведенные в таблице данные показывают, что влияние стимбона-1 не ограничивается влиянием на отложение фосфата кальция во внеклеточном матриксе новообразованной кости, но ускоряет созревание минеральной фазы, т.е. обладает свойством инициировать кристаллизацию гидроксилапатита.




Рис. 6. Рентгенограмма дефекта малоберцовой кости кролика: а - исходный дефект, б - через 18 суток после введения 0,15M NaCl, в -через 18 суток после введения препарата стимбон-1.

Стимбон-2 - композиция неколлагеновых белков костной ткани, осаждающихся при 45 -50%-м насыщении сульфатом аммония, с относительной молекулярной массой 20 - 30 кД, не проявляющих сродства к катионообменнику [19] (кислые и нейтральные белки). Этот препарат, в отличие от предыдущего, наиболее выраженное действие оказывает на белое кроветворение. На рис. 7 представлены некоторые изменения в составе крови белых взрослых мышей через 48 часов после введения 5 мг/кг массы тела: в 2 раза увеличивается общее содержание лейкоцитов, обеспечиваемое повышением уровней всех анализируемых клеточных форм; кроме того, более чем в 5 раз возрастает содержание плазматических клеток в селезенке, однако всего лишь на 30% возрастает лейкоцитарноэритробластическое соотношение костного мозга, т. е. стимулирование белого кроветворения практически не ухудшает состояние эритропоэза.

Таблица 1 Влияние препарата стимбон-1 на минерализацию дистракционного регенерата большеберцовой кости кролика

	Ткань		
Показатель	Интактная кость	Дистракционный регенерат	
		контроль	ОПЫТ
Содержание Са (г/100г сухой обезжиренной ткани)	24,62±0,84	18,37±0,71	21,02±0,81*
Содержание Р (г/100г сухой обезжиренной ткани)	13,20±0,41	12,05±0,32	12,83±0,81*
Показатель кристаллизации минеральной фазы (Ca/PO ₄)	1,49±0,10	1,18±0,04	1,31±0,07*
Показатель минерализации (Ca+3P)	63,9±1,8	54,5±1,6	59,4±1,3*

^{*} показатели, отличающиеся от контрольных с уровнем > 95~%

- 1 общее содержание лейкоцитов (% исходного уровня)
- 2 молодые формы нейтрофилов (% исходного уровня)
- 3 общее содержание нейтрофилов (% исходного уровня)
- 4 содержание лимфоцитов (% исходного уровня)
- 5 содержание моноцитов (% исходного уровня)
- 6 плазмоциты селезенки х 10⁻¹ (на 100 спленоцитов) Рис. 7. Влияние стимбона-2 на клеточный состав периферической крови и другие показатели лейкопоэза и иммуногенеза

Испытание иммуномодулирующих свойств стимбона-2 было осуществлено на 7 интактных собаках, имевших до введения препарата физиологические уровни ауторозеткообразования (0-2 %) и циркулирующих иммунокомплексов (0 - 25 усл. ед.). Влияние препарата на иммунный статус собак приведено в таблице 3.

Как оказалось, стимбон-2 обладает, кроме того, адаптогенными свойствами: введение его "стрессированным" мышам изменяло их показатели белой крови в направлении к физиологической норме.

Особенности внеклеточного органического матрикса костной ткани создают определенные трудности для получения из него коллагена и гликозаминогликанов, которые находят все более широкое применение в фармации и парфюмерной промышленности. Нами разработан

сравнительно простой и дешевый способ получения этих ингредиентов из нерастворимого материала, остающегося после деминерализации и диссоциативного экстрагирования.

Матрикс в соотношении 1:1 по объему заливают 0,01 М раствором HCl и добавляют пепсин (для производства антитоксических сывороток, Московский мясокомбинат) 1 г/л; оставляют при комнатной температуре, периодически перемешивая. 1 раз в 2 дня сиропообразный раствор коллагена сливают, а к нерастворившемуся материалу добавляют новую порцию переваривающего раствора. За 3 - 4 приема удается переварить не менее 80 % костного матрикса.

Дальнейшая очистка коллагена и гликозаминогликанов заключается в высаливании коллагена при 25 - 30%-м насыщении сульфатом аммония и диализе против дистиллированной воды. При этом коллаген получают в виде плотного геля, легко отделяющегося от раствора гликозаминогликанов. Тот и другой перед дальнейшим использованием лиофильно высушиванот

Мы нашли возможность использования и костного минерала в удобной для усвоения организмом форме. С этой целью мы в щелочной среде осаждаем фосфат кальция противодиализата, получаемого при деминерализации костной ткани, отмываем его дистиллированной водой, высушиваем, размалываем в тонкий порошок, который до тестообразной консистенции смешиваем с кислотным гидролизатом, полученным из остатков нерастворившегося матрикса и других белков, не использованных для приготовления препаратов, предназначенных для парэнтерального введения. Химический состав опытного образца стимбона-4, как названо это вещество, приведен в таблице 3.

Таблица 2 Влияние парэнтерального введения препарата стимбон-2 на иммунный статус собак

	Срок после введения			
Показатель	До введения	24 часа	48 часов	7 суток
Т-РОК (от общего числа	22,6±3,1	30,9±7,0	33,2±7,7	22,3±5,6
лимфоцитов, %)				
Количество Т-лимфоцитов	$0,20\pm0,05$	$0,47\pm0,04$	$0,40\pm0,07$	$0,21\pm0,05$
$(клеток × 10^9/л)$				
В-РОК (от общего числа	7,5±1,1	8,3±1,0	10,4±2,1	7,4±0,8
лимфоцитов, %)				
Количество В-лимфоцитов	$0,08\pm0,02$	$0,11\pm0,04$	$0,14\pm0,01$	0,07±0,1
$(клеток × 10^9/л)$				
Активные Т-лимфоциты	11,3±1,7	17,1±2,0	17,8±1,4	11,6±1,6
(% от их общ. числа)				
Фагоцитарная активность	84,3±2,5	91,4±2,2	92,7±1,4	89,7±1,6
нейтрофилов (%)				
Фагоцитарное число	$8,9\pm0,7$	10,3,0±0,4	10,4±0,6	9,2±0,5

		Таблица 3
Химический состав	препарата	стимбон-4

Вещество	Количество,	
	г / 100 г препарата	
Кальций	32,02±1,30	
Фосфор	19,42±0,50	
Магний	2,16±0,22	
Хлорид-ион	3,37±0,07	
Сера сульфатов	1,24±0,06	
Натрий	0,43±0,08	
Общий азот	9,57±0,60	
Аминный азот	3,84±1,43	
Тяжелые металлы	не более 0,002	

Как видно из нее, помимо минеральных веществ он содержит аминный азот в виде свободных аминокислот и олигопептидов, являясь источником не только костного минерала (на 2 порядка более усвояемого, растворимого, чем оссопан), но и незаменимых аминокислот, предшественников биосинтеза нуклеотидов, биогенных аминов и др. БАВ.

Фармакологические свойства стимбона-4 были испытаны на мышатах-отъемышах, в

опытной группе которых в рацион с низким содержанием минералов добавляли этот препарат в соотношении 5 : 10000. Результаты эксперимента, продолжавшегося 28 суток, приведены в таблице 5. Явно благотворное влияние стимбона-4 на рост животных и минерализацию костной ткани у них позволяет надеяться, что этот препарат со временем найдет применение в клинике для профилактики деминерализации скелета после ортопедических вмешательств и, возможно, лечения остеопороза различной этиологии.

Приведенные в настоящем сообщении примеры не исчерпывают всех возможностей использования костной ткани как источника новых фармакологических средств, в которых нуждается клиника травматологии и ортопедии, однако надеемся, что нам удалось показать перспективность выбранного направления и реальность завершения его появлением этих средств "на аптечной полке". Авторы приносят искреннюю благодарность сотрудникам нашего Центра и других учреждений, которые так или иначе помогали нам в этой работе, общий список которых едва ли не превысит объем этой статьи.

Таблица 4

Влияние препарата стимбон-4 на рост и состав костной ткани мышей

	Группа животных	
Показатель	Контроль	Опыт
Масса тела (г)	14,73±1,00	17,41±0,89*
Длина тела (мм)	76,6±1,4	84,9±1,4*
Длина большеберцовой кости (мм)	15,9±0,2	16,9±0,34*
Содержание Са в костной ткани (г / 100 г)	16,5±0,9	18,6±1,7*
Содержание Р в костной ткани (г / 100 г)	10,6±0,5	12,4±0,3
Содержание Мg в костной ткани (г / 100 г)	$1,58\pm0,07$	1,53±0,08

^{*} показатели, отличающиеся от контрольных с уровнем > 95 %

ЛИТЕРАТУРА

- 1. Вагнер Е.А. и др. Инфузионно-трансфузионная терапия острой кровопотери/ Е.А. Вагнер, Я.А. Заугольников, В.М. Ортенберг, В.М. Тавровский. М., Медицина.- 1986.- 160с.
- 2. Реакция красной крови на скелетную травму, значение стабильной фиксации правильно сопоставленных отломков/ Десятниченко, Ю.П. Балдин, С.И. Швед, В.Я. Шурша // Актуальные проблемы чрескостного остеосинтеза по Илизарову.: Сб. науч. трудов. Вып. 12.- Курган. 1987. -C.41-47.
- 3. Аскалонов А.А., Гордиенко С.М., Полушкин Б.В. Изменения содержания Т- и В-лимфоцитов у больных с переломами // Ортопед.травматол. -1980. № 11.- С.11-13.
- 4. Оценка иммунного статуса собак в ветеринарной и научно-исследовательской и ветеринарной практике: Метод. рекомендации /Уральский НИИТО; Сост.: А.В. Осипенко, В.В. Базарный, Э.Б. Макарова. Екатеринбург. 1993.- 12 с.
- 5. О роли неколлагеновых белков в минерализации дистракционного регенерата кости / К.С. Десятниченко, В.К. Камерин, Ю.С. Кочетков, Л.С. Кузнецова // Вопр. мед. химии. 1985. Т.31, № 6. С.107-111.
- 6. Изучение репаративного костеобразования и кровообращения при переломах шейки бедренной кости по Илизарову / А.А. Свешников, С.И. Швед, В.М. Шигарев, Н.В. Офицерова // Актуальные проблемы чрескостного остеосинтеза по Илизарову: Сб. науч. Трудов. Вып. 12. Курган. 1987. С.19-31.
- 7. Грачева Л.И. Механохимия суставного хряща при коррекции патологии опорно-двигательного аппарата: Автореф. дис... канд. мед. наук. Курган, 1992. 14 с.
- 8. Изменения гиалинового хряща коленного сустава у собак при чрескостного остеосинтеза / С.Н. Лунева, К.С. Десятниченко, А.А. Ларионов и др. // Тез.науч. конф. НИТЦ "ВТО", Казань, 1996 (в печати).

Гений Ортопедии № 4, 1996 г.

- 9. Albright F. et al. Postmenopausal osteoporosis // J. Amer.Med.Ass. 1941.- Vol.116. P.2465-2474.
- Rasmussen H. et al. Effect of combined therapy with phosphate and calcitonin on bone volume in osteoporosis // Metab.Bone.Dis.Relat.Res. - 1980. - Vol.2. - P.107-111.
- 11. Хилькин А.М. и др. Коллаген и его применение в медицине / А.М. Хилькин, А.Б. Шехтер, Л.П. Истранов, В.Л. Леменев М.: Медицина.-1976. 256 с.
- 12. Canalis E. Bone-related growth factors // Triangle. 1988. V.27, № 1-2. P.11-19.
- 13. Щепеткин И.А. Полипептидные факторы остеогенеза // Успехи .соврем.биол. 1994.- Т.114, вып.4. С.454-466.
- 14. Павленко Т.Н. Применение нового органопрепарата "Румалона" при остеоартрозе//Тер.архив. 1969. № 12. С.33-36.
- 15. Дедух Н.В. Остеоартрозы. Пути фармакологической коррекции./ Н.В. Дедух ,И.А. Зупанец, В.Ф. Черных, С.М. Дроговоз. Харьков: Основа, 1992. 140 с.
- 16. Теста Н. Регуляция клеточных линий в гемопоэзе // Гематол.трансфузиол. 1991. № 8.- С.27-28.
- 17. Выделение и биотестирование костных рострегулирующих факторов: Метод. Рекомендации / ВКНЦ «ВТО»; Сост.: К.С. Десятниченко, Ю.П. Балдин, А.Н. Дьячков и др. Курган, 1990. 24 с.
- 18. Десятниченко К.С., Балдин Ю.П. Экспериментально-теоретические исследования, подтверждающие концепцию Г.А.Илизарова о единстве генеза костной и кроветворной тканей//Гений ортопедии. 1995. № 1.- С.32-38.
- 19. Препарат для стимуляции физиологической и репаративной регенерации//Патент РФ N 2050158, авт. К.С. Десятниченко. Опубл. Бюлл. № 35. 20.12.95 г.
- 20. Препарат, стимулирующий иммуногенез стимбон-2//Заявка на патент № 950108659, приоритет от 8.06.95 г., авт. К.С.Десятниченко.
- 21. Препарат стимбон-4 для коррекции обмена в организме фосфата кальция и способ его получения//Заявка на патент № 95117043, приоритет от 13.10.95 г., авт. К.С. Десятниченко, С.Н. Лунева.

Рукопись поступила 26.07.96 г.