Гений Ортопедии, том 25, № 3, 2019 г.

© Борзунов Д.Ю., Горбач Е.Н., Моховиков Д.С., Колчин С.Н., 2019

УДК 616.718.5/.6-001.59-089.227.84

DOI 10.18019/1028-4427-2019-25-3-304-311

Комбинированные костнопластические вмешательства при реабилитации пациентов с врожденным ложным суставом костей голени

Д.Ю. Борзунов^{1,2}, Е.Н. Горбач¹, Д.С. Моховиков¹, С.Н. Колчин¹

¹Федеральное государственное бюджетное учреждение
«Российский научный центр "Восстановительная травматология и ортопедия" им. акад. Г.А. Илизарова»
Министерства здравоохранения Российской Федерации, г. Курган, Россия;

²Федеральное государственное бюджетное образовательное учреждение высшего образования
«Тюменский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Тюмень, Россия

Combined bone plasty interventions for rehabilitation of patients with congenital pseudarthrosis of the tibia

D.Yu. Borzunov^{1,2}, E.N. Gorbach¹, D.S. Mokhovikov¹, S.N. Kolchin¹

¹Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation ²Tyumen State Medical University, Tyumen, Russian Federation

Проблема лечения пациентов с диагнозом «врожденный ложный сустав» обусловлена тяжелым и непрогнозируемым течением данного заболевания, сложностями при оперативном пособии, а также частыми рецидивами процесса. Цель. Сравнить результаты лечения пациентов с врожденным ложным суставом костей голени (ВЛСКГ) при использовании традиционной несвободной костной пластики по Илизарову и комбинации пластики по Masquelet с транспортом кости в условиях чрескостного остеосинтеза. Материалы и методы. Проанализированы результаты реабилитации 13 больных ВЛСКГ в возрасте от 1,5 до 35 лет, которые проходили лечение в период с 2009 г. В основную группу (п = 6) были включены больные, пролеченные с применением комбинации методов Илизарова и Masquelet. В контрольную (n = 7) - пациенты, при лечении которых использовали только чрескостный остеосинтез по Илизарову. Проведено гистологическое исследование надкостницы, тканей резецированного ложного сустава. В основной группе методами световой и электронной сканирующей микроскопии исследованы фрагменты биомембраны, формирующейся вокруг цементного спейсера, временно замещающего область диастаза костей голени после резекции псевдоартроза. Результаты и обсуждение. Пациенты анализируемых групп имели сопоставимую длительность лечения. В основной группе костное сращение наблюдали в 83 % случаев, при этом в отдаленном периоде наблюдения не выявлено ни одного рецидива. Полученный результат лечения достигнут, благодаря хорошей васкуляризации биологической мембраны, образующейся на поверхности спейсера, обеспечивающей трофический эффект на этапах замещения дефекта в области резецированного псевдоартроза. Наличие в ней малодифференцированных остеогенных клеток способствовало активному остеогенезу. У больных контрольной группы сращение удалось достичь во всех случаях, но рецидивы в отдаленном периоде наблюдений произошли в 71 % случаев. Заключение. Основой методических принципов реабилитации больных ВЛСКГ является применение дополнительных вариантов костнопластических вмешательств и материалов в зоне псевдоартроза. Фиксация сегмента без стимуляции регенерации кости не приносит желаемого эффекта. Комплексное применение несвободной костной пластики по Илизарову и технологии Masquelet позволяет добиться полноценного костного сращения врожденного ложного сустава и безрецидивного течения заболевания. Ключевые слова: псевдоартроз, Илизаров, Masquelet, биомембрана

The problem of treating patients diagnosed with congenital pseudarthrosis is due to severe and unpredictable course of this disease, difficulties in choosing surgical techniques, and frequent relapses of the process. Purpose Compare the results of treatment of patients with congenital pseudoarthrosis of the tibia (CPT) using non-free Ilizarov bone plasty and a combination of grafting according to Masquelet technique with Ilizarov bone transport. Materials and methods The outcomes of 13 patients with CPT aged 1.5 to 35 years who had been treated since 2009 were analyzed. The main group (n = 6) included patients treated using a combination of the Ilizarov and Masquelet methods. In the control group (n = 7), patients were treated only with Ilizarov transosseous osteosynthesis. Histological examination of the periosteum and tissues of the resected pseudarthrosis area was performed. In the index group, fragments of a biomembrane formed around a cement spacer temporarily bridged the diastasis after resection of pseudarthrosis were studied by light and electron scanning microscopy. Results and discussion Patients of the analyzed groups had a comparable duration of treatment. In the main group, bone fusion was observed in 83 % of cases, while no relapse was detected in the long-term follow-up. The obtained treatment result was achieved due to good vascularization of the biological membrane formed on the spacer surface, which provides trophic effect at the stages of defect management in the area of resected pseudarthrosis. The presence of poorly differentiated osteogenic cells in it promoted active osteogenesis. In patients of the control group, fusion was achieved in all cases, but relapses in the long-term occurred in 71 % of cases. Conclusion The basis of the methodological principles in treating patients with CPT is the use of additional options for osteoplastic interventions and materials in the pseudarthrosis zone. Fixation of a segment without stimulation of bone regeneration does not bring the desired effect. The complex use of non-free Ilizarov bone grafting according to Ilizarov and Masquelet technology achieves bone fusion of the congenital pseudoarthrosis and disease-free course of the conditions. Keywords: pseudoarthrosis, Ilizarov, Masquelet, biomembrane

АКТУАЛЬНОСТЬ

Распространенность врожденного ложного сустава костей голени относительно низкая, по одному клиническому наблюдению на 140 000-190 000 новорожденных [1, 2]. Неослабевающий интерес ортопедов к данной проблеме обусловлен тяжелым и непрогно-

зируемым течением заболевания, сложностями при оперативном пособии, частыми рецидивами процесса. Даже в рамках чрескостного остеосинтеза существует большое разнообразие оперативных технологий, но это не гарантирует положительного исхода реабилита-

Борзунов Д.Ю., Горбач Е.Н., Моховиков Д.С., Колчин С.Н. Комбинированные костнопластические вмешательства при реабилитации пациентов с врожденным ложным суставом костей голени // Гений ортопедии. 2019. Т. 25, № 3. С. 304-311. DOI 10.18019/1028-4427-2019-25-3-304-311

ции [3, 4, 5, 6]. Формирование костной мозоли в зоне псевдоартроза сохраняет риск развития рецидива патологического перелома в отдаленном периоде. Отчасти это связано с сохранением деформаций сегмента, укорочений и наличием контрактур смежных суставов, патологических деформаций стоп.

Усложняет проблему отсутствие единого взгляда на этиопатогенез заболевания. Установлена связь между нейрофиброматозом (NF1) и врожденным ложным суставом костей голени, однако механизмы возникновения ВЛСКГ при NF1 все еще остаются неизученными [7]. Основная причина заболевания большинством авторов ассоциируется с генными мутациями [8, 9, 10, 11]. Результат мутации NF1 - снижение активности нейрофибромина и сохранение активных форм RAS. Это нарушает естественную остеобластическую дифференциацию [9, 11, 12]. Избыток RAS способствует активности предшественников остеокластов и самих остеокластов, чем объясняется возникновение повторных переломов у пациентов с данной патологией [10, 13]. Однако генетические аномалии характерны не для всех случаев псевдоартрозов и не дают полного объяснения патогенеза развития врожденной формы этого заболевания [11, 14, 15]. Принято считать, что расположенная внутрикостно нейрофиброма провоцирует патологические переломы костей голени с развитием псевдоартроза в области ее локализации. Однако проведенные исследования с применением морфологических методов не подтвердили эту теорию [1, 10, 14, 15, 16].

Данные современной литературы свидетельствуют о том, что патологическое изменение тканей в зоне ложного сустава связано с остеолитической активностью структурно измененной надкостницы [17, 18, 19, 20, 21].

Сутью ряда технологий (в частности, пластика по Masquelet) является радикальное решение проблемы посредством выполнения тотального иссечения измененной надкостницы и формирования индуктивной мембраны. Формирование индуктивной мембраны по методике Masquelet создает условия для синтеза факторов роста кости, в том числе и костных морфогенетических белков. Несмотря на неоспоримые успехи в реконструктивно-восстановительной хирургии при лечении пациентов с врожденными ложными суставами костей голени, ортопеды констатируют высокие риски рецидива процесса. Неудовлетворенность результатами оперативного лечения и, в первую очередь, рецидивным характером течения процесса, побудило нас к поиску новых технологических решений, основанных на комбинации оперативных техник и подходов.

Цель работы: сравнить результаты лечения пациентов с врожденным ложным суставом при использовании традиционной несвободной костной пластики по Илизарову и комбинации пластики по Masquelet с транспортом кости в условиях чрескостного остеосинтеза.

МАТЕРИАЛЫ И МЕТОДЫ

Нами проанализированы результаты лечения 13 больных ВЛСКГ. Для большинства клинических наблюдений типичной локализацией дефекта являлась нижняя треть голени. В 61,5 % случаев (8 больных) этиология заболевания была связана с нейрофиброматозом І типа, в 30,8 % клинических наблюдений (4 больных) с фиброзной дисплазией, в одном случае этиология имела идиопатический характер. У всех пациентов выявляли 4 тип ВЛСКГ по классификации Crawford.

До поступления в клинику РНЦ «ВТО» им. акад. Г.А. Илизарова все больные были безуспешно оперированы от одного до восьми раз. У одного больного была выявлена двухсторонняя локализация врожденного псевдоартроза костей голени. У двух пациентов зона дефекта располагалась в верхней трети голени. Фиксированная деформация на уровне врожденного дефекта была выявлена у трех пациентов (23,1 %). У 12 пациентов при клиническом осмотре была выявлена патологическая подвижность отломков берцовых костей (табл. 1).

Таблица 1 Распределение пациентов по амплитуде патологической подвижности отломков берцовых костей до лечения

Патологическая подвижность	Количество больных	%
Менее 5°	5	38,5
В пределах от 5 до 10°	6	46,21
Более 10°	1	7,7
Фиксированная угловая деформация	1	7,7

Укорочение сегмента до начала лечения в Центре Илизарова составило в среднем 8,1 см (36,3 % от длины аналогичного контралатерального сегмента конечности).

Только у трех пациентов (23,1 % случаев) сохранялось движение голеностопных суставов в полном объеме (табл. 2).

Таблица 2 Анатомо-функциональные нарушения пораженного сегмента

Вид анатомо-функционального нарушения	Количество больных	%
Нарушение опороспособности конечности	13	100,0
Угловые деформации сегмента	13	100,0
Анатомическое укорочение	11	84,6
Нарушение функции смежных сегментов	10	76,9
Деформации стопы	12	92,3

Все пациенты были разделены на 2 группы. В основную группу были включены шесть больных, пролеченных с применением комбинации методов Илизарова и Masquelet. Контрольную группу составили семь пациентов, у которых применяли только чрескостный остеосинтез по Илизарову.

Все пациенты были прооперированы одной хирургической бригадой и пролечены в одном структурном подразделении Центра Илизарова.

Пациентам основной группы в первую операционную сессию производили резекцию патологического участка кости и надкостницы с укладкой в сформированный дефект спейсера из метилакрилатного цемента. Предполагаемый уровень резекции в предоперационном периоде определяли по данным лучевых методов обследования (рентгенография и КТГ). Окончательный вариант резекции определяли интраоперационно при визуализации состояния костной ткани и надкост-

ницы. Основным критерием уровня и объема резекции было появление на концах отломков геморрагического отделяемого в виде «кровавой росы». Сегмент фиксировали аппаратом Илизарова, состоящим из 2-4 опор. Через 6-8 недель спейсер удаляли, выполняли остеотомию наиболее длинного отломка или двух противолежащих. На 5-7 сутки начинали перемещение сформированных фрагментов с целью замещения дефекта. Темп дистракции подбирали индивидуально, оценивая активность дистракционного остеогенеза при визуализации контрольных рентгенограмм. В основном темп дистракции составлял от 0,5 до 1 мм в сутки по 0,25 мм 2-4 приемами в течение дня. После достижения контакта между отломками аппарат переводили в режим фиксации с периодической поддерживающей компрессией на стыке отломков. Продолжительность фиксации сегмента аппаратом с восстановлением целостности костей голени составила от четырех до шести месяцев.

Пациентам контрольной группы выполняли чрескостный остеосинтез костей голени с открытой адаптацией концов отломков с целью увеличения объема костной массы в зоне псевдоартроза, отдавая предпочтение вариантам взаимопогружения концов отломков или перекрытия зоны ложного сустава перемещенным костным фрагментом. Сегмент фиксировали аппаратом Илизарова, состоящим из 3–4 опор. На стыке отломков поддерживали компрессию один раз в 10–14 дней до достижения костного блока в зоне врожденного дефекта.

Пациенты анализируемых групп имели сопоставимую длительность лечения. Средний срок фиксации аппаратом составил 183,3 дня.

РЕЗУЛЬТАТЫ

В основной группе рецидивов в отдаленном периоде наблюдения более года не зарегистрировано. У больных контрольной группы сращение удалось достичь во всех случаях, что согласуется с данными ранее проведенных нами исследований [4, 5]. У четырех пациентов контрольной группы произошло по одному рецидиву заболевания, у одного пациента наблюдали два эпизода отсутствия костного сращения (табл. 3).

Таблица 3

_		
Pesv.	пьтаты	лечения

Результаты лечения	Основная группа (n = 6)		Контрольная группа (n = 7)	
	количество пациентов	%	количество пациентов	%
Достигнуто костное сращение	5	83	7	100
Наличие рецидивов	0	0	5	71

В обеих группах проводили гистологическое исследование надкостницы тканей резецированного ложного сустава.

В основной группе исследовали фрагменты биомембраны, формирующейся вокруг цементного спейсера, временно замещающего область диастаза костей голени после резекции псевдоартроза. Материал забирали интраоперационно. Фрагменты тканей фиксировали в 10 % растворе нейтрального формалина, декальцинировали в смеси растворов соляной и муравьиной кислот. Обезвоживание осуществляли в этиловом спирте (в порциях от 80 до 100°). Затем кусочки тканей заливали в парафин.

Гистологические срезы толщиной 5-7 мкм готовили на санном микротоме («Reichard», Германия), окрашивали их гематоксилином и эозином, по Массону, а также проводили иммуногистохимическое окрашивание с применением поликлональных антител к остеопонтину (протокол и реактивы «Аbcam», Англия).

Микроскопическое светооптическое исследование гистологических препаратов проводили с применением стереомикроскопа AxioScope.A1 и цифровой камеры AxioCam ICc 5 в комплекте с программным обеспечением Zen blue («Carl Zeiss MicroImaging GmbH», Германия).

Архитектонику волокнистого остова биомембраны изучали с помощью сканирующего электронного микроскопа «JSM-840» (Япония).

В работе были использованы методы описательной статистики. Обработка данных проведена с помощью

программы Microsoft Excel.

Проведенное исследование соответствует всем требованиям Хельсинкской декларации пересмотра 2013 г.

Результаты гистологических исследований

Гистологическими методами исследования у пациентов с нейрофиброматозом I типа в резецированном фрагменте из области ложного сустава выявляли участки костной ткани с остеопоротическими и/или дистрофическими изменениями. Это выражалось в наличии кистозных полостей, разрежении костных структур, в выявлении значительного количества пустых остеоцитарных лакун, а также аваскулярных зон. Нередко определялись очаги некроза.

В костной ткани обнаруживали полости, заполненные рыхлой волокнистой соединительной тканью с единичными микрососудами, чаще венозного типа, с расширенными запустевшими просветами. На внутренней поверхности полостей обнаруживали прикрепленные остеокласты. Также визуализировали участки волокнистого хряща и волокнистой соединительной ткани с признаками фиброза, участками кальцификации.

В утолщенной надкостнице были выявлены признаки фиброза. Просветы большей части микрососудов были облитерированы, выявляли деструктивно измененные нервные стволики. Отмечено утолщение стенок некоторых артерий.

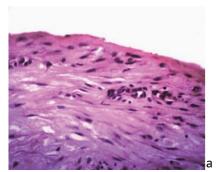
У пациентов с фиброзной дисплазией характерными изменениями костной ткани компактной пластинки, граничащей с участком ложного сустава, являлось наличие кистозных полостей. В самой костной ткани отмечены неравномерно расположенные поля с повышенной плотностью остеоцитов и участки с низкой клеточной плотностью либо бесклеточные поля, которые граничили с участками фиброзной ткани с включенными в нее редкими костными трабекулами ретикулофиброзного строения. Обнаруживали обширные очаги склерозирования компактной пластинки, сменяющиеся участками со слабо выраженным остеогенезом, преимущественно на концах отломков. В зоне ложного сустава обнаруживали участки волокнистой хрящевой ткани.

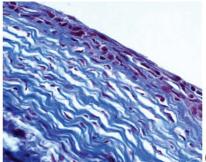
Таким образом, по нашим данным, одна из причин развития дистрофических изменений костной ткани,

приведшая к формированию ВЛСКГ у пациентов с нейрофиброматозом локально была связана с нарушением нейротрофической функции. Об этом свидетельствуют патологические деструктивные изменения сосудов и нервов. У пациентов с фиброзной дисплазией нарушение остеогенеза было связано с процессом неполноценной остеогенной дифференцировки клеток, сдвинутой в сторону десмогенеза.

Однако гистологическое исследование соединительнотканной капсулы, формирующейся вокруг цементного спейсера у пациентов основной группы, показало, что независимо от патологии, в момент извлечения спейсера она имела однотипную структуру.

На макроуровне мягкотканная капсула была представлена эластичной соединительнотканной мембраной или пленкой беловатого оттенка с микрососудами и участками бурых вкраплений.


На микроуровне выявлено, что сформировавшаяся соединительнотканная мембрана имела трехслойное строение. Первый слой, наиболее приближенный к спейсеру, состоял из выстилающих его малодифференцированных соединительнотканных клеток с остеогенной потенцией, расположенных в структуре волокни-


стой соединительной ткани, вытянутой вдоль длинной оси спейсера (рис. 1, а). О принадлежности клеток, выстилающих спейсер, к остеогенному дифферону свидетельствовало окрашивание перицеллюлярного матрикса и самих клеток в оттенки красного цвета при использовании методики Массона (рис. 1, б), а также экспрессия большинством этих клеток остеопонтина при постановке иммуногистохимической реакции (рис. 1, в).

Второй слой был представлен рыхлой волокнистой соединительной тканью с большим количеством капиллярных петель (рис. 2, а), в которой наблюдали выраженную гиперемию сосудов, в некоторых случаях сопровождающуюся локальным диапедезом эритроцитов.

Мелкие и средние сосуды артериального типа преимущественно имели строение, приближенное к нормальному (рис. 2, 6).

Третий (наружный) слой состоял из менее васкуляризованной соединительной ткани с выраженной извилистостью коллагеновых волокон (рис. 2, в). В нем выявляли некрупные нервные стволики, преимущественно нормального строения. Однако у пациентов с нейрофиброматозом некоторые нервные ответвления проявляли признаки деструкции (рис. 2, г).

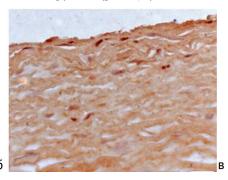


Рис. 1. Внутренний слой биомембраны, формирующейся на поверхности цементного спейсера: а – окрашивание гематоксилином и эозином; б – по Массону; в – экспрессия остеопонтина (иммуногистохимическое окрашивание). Увеличение – 600×

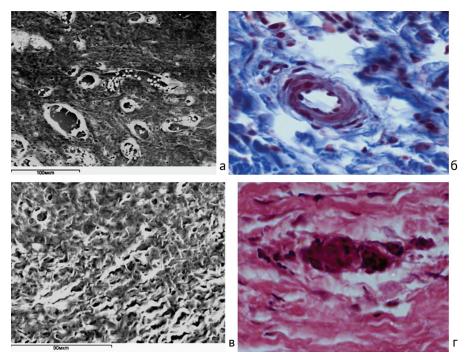


Рис. 2. Особенности строения среднего и наружного слоев биомембраны: а – васкуляризированный слой соединительнотканной мембраны с увеличенной плотностью микрососудов; б – артерия типического строения в среднем слое биомембраны: в – наружный слой соединительнотканной мембраны с извилистыми коллагеновыми волокнами; г – деструктивно измененный нервный стволик в наружном слое биомембраны; а, в – сканирующая электронная микроскопия, увеличение: а – 200; в – 550×; б – окрашивание по Массону, увеличение – 600×; г – окраска гематоксилином и эозином, увеличение – 600×

Таким образом, хорошая васкуляризация биологической мембраны, образующейся на поверхности спейсера, обеспечивала трофический эффект на этапах замещения дефекта в области резецированного псевдоартроза, а наличие в ней малодифференцированных остеогенных клеток способствовало активному остеогенезу. На месте резецированной деформированной надкостницы формировалась новообразованная соеди-

нительнотканная оболочка, подобная по структуре и функции нормальной надкостнице.

Следует обратить внимание, что у пациентов с нейрофиброматозом единичные нервные стволики в новообразованной надкостнице или биологической соединительнотканной мембране вновь подвергались деструктивным изменениям, что в отдаленном периоде могло оказать негативное влияние на достигнутый результат лечения.

ОБСУЖДЕНИЕ

Описанные в данной работе технологии базируются на принципах несвободной костной пластики по Илизарову, а также на комбинации чрескостного остеосинтеза и технологии Masquelet. Ряд технологических решений в настоящее время не имеет отечественных и зарубежных аналогов и не опубликован в доступной печати.

По нашему мнению, основная концепция восстановления целостности сегмента заключается в увеличении объема костной массы в проблемной зоне и опирается на идею операции MacFarland, предложенной в 1951 году. В дальнейшем хирурги использовали различные костно-пластические материалы, в основном алло- и аутотрансплантаты, в том числе васкуляризированные, дублировали отломки или выполняли костную пластику местными тканями [3, 4, 5, 8, 22, 23, 24, 25]. Для фиксации пораженного сегмента ортопеды применяли внешнюю фиксацию, погружные, в основном интрамедуллярные, фиксаторы или комбинировали техники остеосинтеза [4, 5, 23, 24, 25, 26, 27, 28].

Полученные нами данные о патогенезе тканей в области ВЛСКГ у пациентов с нейрофиброматозом I типа и с диагнозом «фиброзная дисплазия» согласуются с современными гистологическими и патоморфологическими исследованиями, свидетельствующими о значительных анатомических и функциональных нарушениях тканей в зоне ложного сустава [11, 18, 19; 20, 22, 23, 29].

На основании результатов проведенного исследования мы полагаем, что основной причиной развития дистрофических изменений костной ткани, приведшей к формированию ВЛСКГ у пациентов с нейрофиброматозом на локальном уровне, являются компрометированные нейротрофические функции. У пациентов с фиброзной дисплазией нарушение остеогенетических процессов, связанных с неполноценной остеогенной дифференцировкой клеток, сдвигается в сторону десмогенеза.

Данные, подтверждающие наши заключения, приведены и в исследованиях других авторов [30, 31, 32].

Полученные ранее сведения об отсутствии значительных структурных изменений мягких тканей у пациентов с фиброзной дисплазией и пациентов с нейрофиброматозом I типа (J. Briner, 1973.; М. Blauth et al., 1984) дискутабельны, т.к. настоящее исследование показало более выраженные патологические изменения сосудов и нервов в надкостнице у пациентов с нейрофиброматозом [33, 34]. Это обусловлено и различием причин развития ВЛСКГ на генетическом уровне. H.V. Leskelä с соавт., так же как и мы, отмечали различия в патогенезе костной ткани в области ложного сустава у пациентов с нейрофиброматозом 1 типа по сравнению

пациентами с другими врожденными ортопедическими патологиями [10].

Выявленная нами хорошая васкуляризация образующейся на поверхности спейсера биологической мембраны объясняет полученные стойкие положительные результаты лечения ВЛСКГ у пациентов основной группы по предложенной комбинированной технологии. Механизм заключается в обеспечении новообразованной васкуляризированной соединительнотканной биомембраной нейротрофической функции в области резецированного псевдоартроза на всех этапах замещения дефекта, а наличие в ней малодифференцированных остеогенных клеток способствует развитию активного остеогенеза в этой области.

В работах других исследователей при использовании техники Masquelet для замещения дефектов кости, вызванных инфекцией и резекцией опухоли, а также в некоторых экспериментальных исследованиях отмечено, что биомембрана имеет богатую капиллярную сеть и секретирует факторы роста VEGF и TGF-β 1, а также остеоиндуктивный фактор (ВМР-2) [35, 36, 37, 38, 39, 40], что согласуется с результатами настоящего исследования, свидетельствуя о трофической и остеогенной функции биомембраны.

Таким образом, на месте резецированной патологически измененной надкостницы к моменту извлечения временного цементного спейсера на его поверхности образуется соединительнотканная оболочка, подобная ей по структуре и функции - своеобразная неонадкостница. В работе A.C. Masquelet, L. Obert (2010) поверхность биомембраны, обращенная к цементу, описана как синовиоподобный эпителий, а наружная часть - как соединительнотканный слой, состоящий из фибробластов, миофибробластов и коллагена. Авторами было показано, что мембранные экстракты стимулируют пролиферацию и дифференцировку клеток костного мозга по остеобластическому пути [41]. В нашем исследовании клетки выстилающего спейсер внутреннего слоя биомембраны по строению соответствовали малодифференцированным соединительнотканным клеткам с признаками остеогенной дифференцировки, о чем свидетельствовала экспрессия остеопонтина.

Однако этот процесс требует дальнейшего накопления материала и его анализа.

Следует обратить внимание, что у пациентов с нейрофиброматозом часть нервных стволиков в новообразованной биологической соединительнотканной мембране вновь подвергались деструктивным изменениям, что, возможно, в отдаленном периоде наблюдения может оказать негативное влияние на трофику тканей и, как следствие, на достигнутый результат лечения, повышая риски рецидива заболевания.

ЗАКЛЮЧЕНИЕ

Для реабилитации больных ВЛСКГ оптимальным подходом является достижение полноценного сращения костных отломков с формированием достаточного объема костной массы, максимально снижающего риск рецидива процесса, устранение деформаций отломков и голени в целом, а также порочных установок стоп. Применение дополнительных вариантов костнопластических вмешательств и материалов в зоне псевдоартроза должно составлять основу методических принципов. Чисто механический подход к лечению ВЛСКГ,

предусматривающий только фиксацию сегмента, без стимуляции регенерации кости не приносит желаемого эффекта в связи с патологическим характером кости в зоне ложного сустава. Монотехнологический подход также не гарантирует безрецидивности течения заболевания в отдаленном периоде наблюдения. Комплексное применение несвободной костной пластики по Илизарову и технологии Masquelet позволяет добиться полноценного костного сращения врожденного ложного сустава и безрецидивного течения заболевания.

Этическое одобрение: все выполненные в исследованиях процедуры, вовлекающие пациентов, проведены в соответствии с требованиями Хельсинской декларации пересмотра 2013 года. Формальное информированное согласие для данного типа исследования не требуется.

Конфликт интересов: не заявлен.

Благодарности: авторы выражают благодарность бывшему заведующему травматолого-ортопедическим отделением N^2 4 ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» к.м.н. Митрофанову Александру Ивановичу, при непосредственном участии которого был пролечен ряд больных, описываемых в данном исследовании.

Источник финансирования: статья выполнена в рамках темы «Оптимизация лечебного процесса у больных с ортопедо-травматологической патологией, осложненной и неосложненной гнойной инфекцией, разработка новых патогенетически обоснованных способов хирургического лечения, направленных на комплексное восстановление анатомо-функционального состояния конечности, общего гомеостаза и стойкое подавление гнойновоспалительных явлений» государственного задания на осуществление научных исследований и разработок ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздрава России.

ЛИТЕРАТУРА

- 1. Andersen K.S. Congenital pseudarthrosis of the leg. Late results // J. Bone Joint Surg. Am. 1976. Vol. 58, No 5. P. 657-662.
- 2. Kim H.W., Weinstein S.L. Intramedullary fixation and bone grafting for congenital pseudarthrosis of the tibia // Clin. Orthop. Relat. Res. 2002. No 405. P. 250-257. DOI: 10.1097/00003086-200212000-00032.
- 3. Борзунов Д.Ю., Дьячкова Г.В., Кутиков С.А. Реабилитация больных с врожденными ложными суставами костей голени методом чрескостного остеосинтеза по Илизарову // Гений ортопедии. 2012. № 3. С. 118-121.
- 4. Врожденный ложный сустав голени. Проблемы, возможные варианты решения / С.А. Кутиков, А.R. Lettreuch, А. Saighi-Bouaouina, Д.Ю. Борзунов, Г.В. Дьячкова // Гений ортопедии. 2014. № 3. С. 24-30.
- 5. Borzunov D.Y., Chevardin A.Y., Mitrofanov A.I. Management of congenital pseudarthrosis of the tibia with the Ilizarov method in a paediatric population: influence of aetiological factors // Int. Orthop. 2016. Vol. 40, No 2. P. 331-339. DOI: 10.1007/s00264-015-3029-7.
- 6. Gubin A., Borzunov D., Malkova T. Ilizarov method for bone lengthening and defect management. Review of contemporary literature / Bull. Hosp. Jt. Dis. 2016. Vol. 74, No 2. P. 145-154.
- Congenital pseudarthrosis of neurofibromatosis type 1: Impaired osteoblast differentiation and function and altered NF1 gene expression / H.V. Leskelä, T. Kuorilehto, J. Risteli, J. Koivunen, M. Nissinen, S. Peltonen, P. Kinnunen, L. Messiaen, P. Lehenkari, J. Peltonen // Bone. 2009. Vol. 44, No 2. P. 243-250. DOI: 10.1016/j.bone.2008.10.050.
- 8. Treatment of congenital pseudoarthrosis of the tibia using the Ilizarov technique // D. Paley, M. Catagni, F. Argnani, J. Prevot, D. Bell, P. Armstrong // Clin. Orthop. Relat. Res. 1992. No 280. P. 81-93.
- 9. Johnston C.E. 2nd. Congenital pseudarthrosis of the tibia: results of technical variations in the Charnley-Williams procedure // J. Bone Joint Surg. Am. 2002. Vol. 84, No 10. P. 1799-1810.
- 10. Crawford A.H., Schorry E.K. Neurofibromatosis update // J. Pediatr. Orthop. 2006. Vol. 26, No 3. P. 413-423. DOI: 10.1097/01. bpo.0000217719.10728.39.
- 11. Congenital pseudarthrosis of the tibia: analysis of the histology and the NF1 gene / A. Sakamoto, T. Yoshida, H. Yamamoto, Y. Oda, M. Tsuneyoshi, Y. Iwamoto // J. Orthop. Sci. 2007. Vol. 12, No 4. P. 361-365. DOI: 10.1007/s00776-007-1142-1.
- 12. Мустафин Р.Н., Хуснутдинова Э.К. Роль эпигенетических факторов в патогенезе нейрофиброматоза 1-го типа // Успехи молекулярной онкологии. 2017. Т. 4, № 3. С. 37-49. DOI: 10.17650/2313-805X-2017-4-3-35-49.
- 13. Osteoclasts in neurofibromatosis type 1 display enhanced resorption capacity, aberrant morphology, and resistance to serum deprivation / E. Heervä, M.H. Alanne, S. Peltonen, T. Kuorilehto, T. Hentunen, K. Väänänen, J. Peltonen // Bone. 2010. Vol. 47, No 3. P. 583-590. DOI: 10.1016/j.
- 14. Vasculopathy in two cases of NF1-related congenital pseudarthrosis / T. Kuorilehto, P. Kinnunen, M. Nissinen, M. Alanne, H.V. Leskelä, P. Lehenkari, J. Peltonen // Pathol. Res. Pract. 2006. Vol. 202, No 9. P. 687-690. DOI: 10.1016/j.prp.2006.03.006.
- 15. Pannier S. Congenital pseudarthrosis of the tibia // Orthop. Traumatol. Surg. Res. 2011. Vol. 97, No 7. P. 750-761. DOI: 10.1016/j.otsr.2011.09.001.
- 16. Histopathology of congenital pseudarthrosis of tibia / G. Cui, W. Lei, J. Li, Y. Hu, P. Ma, Y. Huang, L. Zhao, R. Lu, L. Yang // Zhonghua Yi Xue Za Zhi. 2002. Vol. 82, No 7. P. 487-491.
- 17. Vascular changes in the periosteum of congenital pseudarthrosis of the tibia / B. Hermanns-Sachweh, J. Senderek, J. Alfer, B. Klosterhalfen, R. Büttner, L. Füzesi, M. Weber // Pathol. Res. Pract. 2005. Vol. 201, No 4. P. 305-312. DOI: 10.1016/j.prp.2004.09.013.
- 18. Expressions of VEGF and TGF-β in periosteum in patients with congenital pseudarthrosis of tibia / Shu-qiang Li, P. Wang, Ya-qin Yu, Xin Zhang, Dong-song Li // Journal of Jilin University (Medicine Edition). 2007. No 2. P. 327-329.
- 19. Influence of matrix metalloproteinase on osteogenesis in the tibial periosteum of congenital pseudarthrosis / Shu-Qiang Li, F. Yang, X. Zhang, P. Wang // Journal of Clinical Rehabilitative Tissue Engineering Research. 2008. Vol. 12, No 2. P. 213-216.
- 20. Periosteal grafting for congenital pseudarthrosis of the tibia: a preliminary report / A.M. Thabet, D. Paley, M. Kocaoglu, L. Eralp, J.E. Herzenberg, O.N. Ergin // Clin. Orthop. Relat. Res. 2008. Vol. 466, No 12. P. 2981-2994. DOI:10.1007/s11999-008-0556-1.
- 21. Treatment of congenital pseudarthrosis of the fibula by periosteal flap / M. Trigui, B. de Billy, J.P. Metaizeau, J.M. Clavert // J. Pediatr. Orthop. B. 2010. Vol. 19, No 6. P. 473-478. DOI: 10.1097/BPB.0b013e32833cb749.
- 22. Андрианов В.Л., Поздеев А.П. Врожденные пороки развития голени // Травматология и ортопедия : рук. для врачей : в 3 т. / под ред. Ю.Г. Шапошникова. М. : Медицина, 1997. Т. 3: Ортопедия. С. 290-306.
- 23. Поздеев А.П., Захарьян Е.А. Особенности течения врожденных ложных суставов костей голени у детей дистрофического и диспласти-

- ческого генеза // Ортопедия, травматология и восстановительная хирургия детского возраста. 2014. Т. 2, № 1. С. 78-84. DOI.org/10.17816/ PTORS2178-84.
- 24. Congenital pseudoarthrosis of the tibia treated with the free microvascular fibula / M. Bumbasirević, R. Brdar, V. Djukić, M. Milićević, S. Tomić, V. Bumbasirević, A. Lesić // Acta Chir. Iugosl. 2005. Vol. 52, No 2. P. 121-123.
- 25. Paley D. Congenital Pseudarthrosis of the Tibia: Combined Pharmacologic and Surgical Treatment Using Biphosphonate Intravenous Infusion and Bone Morphogenic Protein with Periosteal and Cancellous Autogenous Bone Grafting, Tibio-Fibular Cross Union, Intramedullary Rodding and External Fixation // Bone Grafting / ed. by Allesandro Zorzi. In-Tech, 2012. Ch. 6.
- 26. Successful reconstruction of a gunshot segmental defect of the radius with a free vascularised fibular osteocutaneous flap / A.R. Molina, E. Ali, L. van Rensburg, C.M. Malata // J. Plast. Reconstr. Aesthet. Surg. 2010. Vol. 63, No 12. P. 2181-2184. DOI: 10.1016/j.bjps.2010.03.022.
- 27. Комбинированный остеосинтез в лечении врожденных ложных суставов голени у пациентов с фиброзной дисплазией / Е.В. Сенченко, Д.В. Рыжиков, Е.В. Губина, А.Л. Семенов, А.С. Ревкович, А.В. Андреев, Е.М. Мезенцев // Международный журнал прикладных и фундаментальных исследований. 2015. № 11-5. С. 672-675.
- 28. Тишков Н.В., Рудаков А.Н., Пусева М.Э. Клиническое применение чрескостного аппарата Орто-СУВ при лечении ложных суставов нижних конечностей // Бюллетень ВСНЦ СО РАМН. 2016. Т. 1, № 4 (110). С. 78-84.
- 29. Результаты хирургической коррекции врожденного псевдоартроза большеберцовой кости в зависимости от активации вирусной инфекции HHV-6/HHV-7 у ребенка с нейрофиброматозом 1-го типа / А. Вилкс, Д.З. Озолс, В. Бока, М. Муровска, Б. Мамая // Анестезиология и реаниматология. 2014. № 1. С. 61-63.
- 30. Feldman D.S., Jordan C., Fonseca L. Orthopaedic manifestations of neurofibromatosis type 1 // J. Am. Acad. Orthop. Surg. 2010. Vol. 18, No 6. P. 346-357.
- 31. Шнайдер Н.А., Шаповалова Е.А. Нейрофиброматоз 1-го типа (болезнь Реклингхаузена) // Вопросы практической педиатрии. 2011. Т. 6, № 1. С. 83-88.
- 32. Любченко Л.Н., Филиппова М.Г. Нейрофиброматоз: генетическая гетерогенность и дифференциальная диагностика // Саркомы костей, мягких тканей и опухоли кожи. 2011. № 4. С. 29-36.
- 33. Briner J., Yunis E. Ultrastructure of congenital pseudarthrosis of the tibia // Arch. Pathol. 1973. Vol. 95, No 2. P. 97-99.
- 34. Light- and electron-microscopic studies in congenital pseudarthrosis / M. Blauth, D. Harms, D. Schmidt, W. Blauth // Arch. Orthop. Trauma Surg. 1984. Vol. 103, No 4. P. 269-277. DOI: 10.1007/BF00387333.
- 35. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration / P. Pelissier, A.C. Masquelet, R. Bareille, S.M. Pelissier, J. Amedee // J. Orthop. Res. 2004. Vol. 22, No 1. P. 73-79.
- 36. Management of traumatic tibial diaphyseal bone defect by "induced-membrane technique" / G. Gupta, S. Ahmad, Mohd Zahid, A.H. Khan, M.K. Sherwani, A.Q. Khan // Indian J. Orthop. 2016. Vol. 50, No 3. P. 290-296. DOI: 10.4103/0019-5413.181780.
- 37. Behaviour of cancellous bone graft placed in induced membranes / P. Pelissier, D. Martin, J. Baudet, S. Lepreux, A.C. Masquelet // Br. J. Plast. Surg. 2002. Vol. 55, No 7. P. 596-598.
- 38. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta 1 on osteoblast differentiation / S. Spinella-Jaegle, S. Roman-Roman, C. Faucheu, F.W. Dunn, S. Kawai, S. Galléa, V. Stiot, A.M. Blanchet, B. Courtois, R. Baron, G. Rawadi // Bone. 2001. Vol. 29, No 4. P. 323–330.
- 39. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis / X. Wang, F. Luo, K. Huang, Z. Xie // Bone Joint Res. 2016. Vol. 5, No 3. P. 101-105. DOI: 10.1302/2046-3758.53.2000487.
- 40. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects / C. Christou, R.A. Oliver, Y. Yu, W.R. Walsh // PLoS One. 2014. Vol. 9, No 12. P. e114122. DOI: 10.1371/journal.pone.0114122.
- 41. Masquelet A.C., Obert L. Induced membrane technique for bone defects in the hand and wrist // Chir Main. 2010. Vol. 29, No Suppl. 1. P. S221-S224. DOI: 10.1016/j.main.2010.10.007.

REFERENCES

- 1. Andersen K.S. Congenital pseudarthrosis of the leg. Late results. J. Bone Joint Surg. Am., 1976, vol. 58, no. 5, pp. 657-662.
- 2. Kim H.W., Weinstein S.L. Intramedullary fixation and bone grafting for congenital pseudarthrosis of the tibia. *Clin. Orthop. Relat. Res.*, 2002, no. 405, pp. 250-257. DOI: 10.1097/00003086-200212000-00032.
- Borzunov D.Y., Dyachkova G.V., Kutikov S.A. Reabilitatsiia bolnykh s vrozhdennymi lozhnymi sustavami kostei goleni metodom chreskostnogo
 osteosinteza po Ilizarovu [Rehabilitation of patients with congenital pseudoarthroses of leg bones by the transosseous osteosynthesis method
 according to Ilizarov]. Genij Ortopedii, 2012, no. 3, pp. 118-121. (in Russian)
- 4. Kutikov S.A., Lettreuch A.R., Saighi-Bouaouina A., Borzunov D.Y., Dyachkova G.V. Vrozhdennyi lozhnyi sustav goleni. Problemy, vozmozhnye variant resheniia [Pseudoarthrosis of the leg. Problems, possible solutions]. *Genij Ortopedii*, 2014, no. 3, pp. 24-30. (in Russian)
- Borzunov D.Y., Chevardin A.Y., Mitrofanov A.I. Management of congenital pseudarthrosis of the tibia with the Ilizarov method in a paediatric population: influence of aetiological factors. *Int. Orthop.*, 2016, vol. 40, no. 2, pp. 331-339. DOI: 10.1007/s00264-015-3029-7.
- 6. Gubin A., Borzunov D., Malkova T. Ilizarov method for bone lengthening and defect management. Review of contemporary literature. *Bull. Hosp. Jt. Dis.*, 2016, vol. 74, no. 2, pp. 145-154.
- 7. Leskelä H.V., Kuorilehto T., Risteli J., Koivunen J., Nissinen M., Peltonen S., Kinnunen P., Messiaen L., Lehenkari P., Peltonen J. Congenital pseudarthrosis of neurofibromatosis type 1: Impaired osteoblast differentiation and function and altered NF1 gene expression. *Bone*, 2009, vol. 44, no. 2, pp. 243-250. DOI: 10.1016/j.bone.2008.10.050.
- 8. Paley D., Catagni M., Argnani F., Prevot J., Bell D., Armstrong P. Treatment of congenital pseudoarthrosis of the tibia using the Ilizarov technique. *Clin. Orthop. Relat. Res.*, 1992, no. 280, pp. 81-93.
- 9. Johnston C.E. 2nd. Congenital pseudarthrosis of the tibia: results of technical variations in the Charnley-Williams procedure. *J. Bone Joint Surg. Am.*, 2002, vol. 84, no. 10, pp. 1799-1810.
- Crawford A.H., Schorry E.K. Neurofibromatosis update. J. Pediatr. Orthop., 2006, vol. 26, no. 3, pp. 413-423. DOI: 10.1097/01. bpo.000217719.10728.39.
- 11. Sakamoto A., Yoshida T., Yamamoto H., Oda Y., Tsuneyoshi M., Iwamoto Y. Congenital pseudarthrosis of the tibia: analysis of the histology and the NF1 gene. *J. Orthop. Sci.*, 2007, vol. 12, no. 4, pp. 361-365. DOI: 10.1007/s00776-007-1142-1.
- 12. Mustafin R.N., Khusnutdinova E.K. Rol epigeneticheskikh faktorov v patogeneze neirofibromatoza 1-go tipa [Role of epigenetic factors in Type 1 neurofibromatosis pathogenesis]. *Uspekhi Molekuliarnoi Onkologii*, 2017, vol. 4, no. 3, pp. 37-49. (in Russian) DOI: 10.17650/2313-805X-2017-4-3-35-49.
- 13. Heervä E., Alanne M.H., Peltonen S., Kuorilehto T., Hentunen T., Väänänen K., Peltonen J. Osteoclasts in neurofibromatosis type 1 display enhanced resorption capacity, aberrant morphology, and resistance to serum deprivation. *Bone*, 2010, vol. 47, no. 3, pp. 583-590. DOI: 10.1016/j. bone.2010.06.001.
- 14. Kuorilehto T., Kinnunen P., Nissinen M., Alanne M., Leskelä H.V., Lehenkari P., Peltonen J. Vasculopathy in two cases of NF1-related congenital pseudarthrosis. *Pathol. Res. Pract.*, 2006, vol. 202, no. 9, pp. 687-690. DOI: 10.1016/j.prp.2006.03.006.
- 15. Pannier S. Congenital pseudarthrosis of the tibia. Orthop. Traumatol. Surg. Res., 2011, vol. 97, no. 7, pp. 750-761. DOI: 10.1016/j.otsr.2011.09.001.
- 16. Cui G., Lei W., Li J., Hu Y., Ma P., Huang Y., Zhao L., Lu R., Yang L. Histopathology of congenital pseudarthrosis of tibia. *Zhonghua Yi Xue Za Zhi*, 2002, vol. 82, no. 7, pp. 487-491.
- 17. Hermanns-Sachweh B., Senderek J., Alfer J., Klosterhalfen B., Büttner R., Füzesi L., Weber M. Vascular changes in the periosteum of congenital pseudarthrosis of the tibia. *Pathol. Res. Pract.*, 2005, vol. 201, no. 4, pp. 305-312. DOI: 10.1016/j.prp.2004.09.013.

- 18. Li Shu-Qiang, Wang P., Yu Ya-Qin, Zhang Xin, Li Dong-Song. Expressions of VEGF and TGF-β in periosteum in patients with congenital pseudarthrosis of tibia. *Journal of Jilin University* (Medicine Edition), 2007, no. 2, pp. 327-329.
- 19. Li Shu-Qiang, Yang F., Zhang X., Wang P. Influence of matrix metalloproteinase on osteogenesis in the tibial periosteum of congenital pseudarthrosis. *Journal of Clinical Rehabilitative Tissue Engineering Research*, 2008, vol. 12, no. 2, pp. 213-216.
- 20. Thabet A.M., Paley D., Kocaoglu M., Eralp L., Herzenberg J.E., Ergin O.N. Periosteal grafting for congenital pseudarthrosis of the tibia: a preliminary report. Clin. Orthop. Relat. Res., 2008, vol. 466, no. 12, pp. 2981-2994. DOI:10.1007/s11999-008-0556-1.
- 21. Trigui M., De Billy B., Metaizeau J.P., Clavert J.M. Treatment of congenital pseudarthrosis of the fibula by periosteal flap. *J. Pediatr. Orthop. B*, 2010, vol. 19, no. 6, pp. 473-478. DOI: 10.1097/BPB.0b013e32833cb749.
- 22. Andrianov V.L., Pozdeev A.P. Vrozhdennye poroki razvitiia goleni [Congenital malformations of the leg]. In: Shaposhnikov Iu.G., editor. Travmatologiia I Ortopediia. Guide for physicians. In 3 Vol. Moscow, Meditsina, 1997, vol.3: Ortopediia, pp. 290-306. (in Russian)
- 23. Pozdeev A.P., Zakharian E.A. Osobennosti techeniia vrozhdennykh lozhnykh sustavov kostei goleni u detei distroficheskogo I displasticheskogo geneza [Particular characteristics of the course of congenital pseudoarthroses of the leg bones in children of dystrophic and dysplastic genesis]. *Ortopediia, Travmatologiia I Vosstanovitelnaia Khirurgiia Detskogo Vozrasta*, 2014, vol. 2, no. 1, pp.78-84. (in Russian) DOI: 10.17816/PTORS2178-84.
- 24. Bumbasirević M., Brdar R., Djukić V., Milićević M., Tomić S., Bumbasirević V., Lesić A. Congenital pseudoarthrosis of the tibia treated with the free microvascular fibula. *Acta Chir. Iugosl.*, 2005, vol. 52, no. 2, pp. 121-123.
- 25. Paley D. Congenital Pseudarthrosis of the Tibia: Combined Pharmacologic and Surgical Treatment Using Biphosphonate Intravenous Infusion and Bone Morphogenic Protein with Periosteal and Cancellous Autogenous Bone Grafting, Tibio-Fibular Cross Union, Intramedullary Rodding and External Fixation. In: Zorzi A., editor. Bone Grafting. In-Tech, 2012, Ch. 6.
- 26. Molina A.R., Ali E., Van Rensburg L., Malata C.M. Successful reconstruction of a gunshot segmental defect of the radius with a free vascularised fibular osteocutaneous flap. *J. Plast. Reconstr. Aesthet. Surg.*, 2010, vol. 63, no. 12, pp. 2181-2184. DOI: 10.1016/j.bjps.2010.03.022.
- 27. Senchenko E.V., Ryzhikov D.V., Gubina E.V., Semenov A.L., Revkovich A.S., Andreev A.V., Mezentsev E.M. Kombinirovannyi osteosintez v lechenii vrozhdennykh lozhnykh sustavov goleni u patsientov s fibroznoi displaziei [Combined osteosynthesis in the treatment of congenital pseudoarthroses of the leg in patients with fibrous dysplasia]. *Mezhdunarodnyi Zhurnal Prikladnykh I Fundamentalnykh Issledovanii*, 2015, no. 11-5, pp. 672-675. (in Russian)
- 28. Tishkov N.V., Rudakov A.N., Puseva M.E. Klinicheskoe primenenie chreskostnogo apparata Orto-SUV pri lechenii lozhnykh sustavov nizhnikh konechnostei [Clinical use of Ortho-SUV transosseous device in the treatment of lower limb pseudoarthroses]. *Biulleten VSNTs SO RAMN*, 2016, vol. 1, no. 4(110), pp. 78-84. (in Russian)
- 29. Vilks A., Ozols D.Z., Boka V., Murovska M., Mamaia B. Rezultaty khirurgicheskoi korrektsii vrozhdennogo psevdoartroza bolshebertsovoi kosti v zavisimosti ot aktivatsii virusnoi infektsii HHV-6/HHV-7 u rebenka s neirofibromatozom 1-go tipa [Results of surgical correction of congenital tibial pseudoarthrosis depending on HHV-6/HHV-7 viral infection activation in a child with Type 1 neurofibromatosis]. *Anesteziologiia i Reanimatologiia*, 2014, no. 1, pp.61-63. (in Russian)
- 30. Feldman D.S., Jordan C., Fonseca L. Orthopaedic manifestations of neurofibromatosis type 1. J. Am. Acad. Orthop. Surg., 2010, vol. 18, no. 6, pp. 346-357.
- 31. Shnaider N.A.., Shapovalova E.A. Neirofibromatoz 1-go tipa (bolezn Reklingkhauzena) [Type 1 neurofibromatosis (Recklinghausen disease)]. *Voprosy Prakticheskoi Pediatrii*, 2011, vol. 6, no. 1, pp. 83-88. (in Russian)
- 32. Liubchenko L.N., Filippova M.G. Neirofibromatoz: geneticheskaia geterogennost i differentsialnaia diagnostika [Neurofibromatosis: genetic heterogeneity and differential diagnosis]. Sarkomy Kostei, Miagkikh Tkanei i Opukholi Kozhi, 2011, no. 4, pp. 29-36. (in Russian)
- 33. Briner J., Yunis E. Ultrastructure of congenital pseudarthrosis of the tibia. Arch. Pathol., 1973, vol. 95, no. 2, pp. 97-99.
- 34. Blauth M., Harms D., Schmidt D., Blauth W. Light- and electron-microscopic studies in congenital pseudarthrosis. *Arch. Orthop. Trauma Surg.*, 1984, vol. 103, no. 4, pp. 269-277. DOI: 10.1007/BF00387333.
- 35. Pelissier P., Masquelet A.C., Bareille R., Pelissier S.M., Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. *J. Orthop. Res.*, 2004, vol. 22, no. 1, pp. 73-79.
- 36. Gupta G., Ahmad S., Zahid Mohd, Khan A.H., Sherwani M.K., Khan A.Q. Management of traumatic tibial diaphyseal bone defect by "induced-membrane technique". *Indian J. Orthop.*, 2016, vol. 50, no. 3, pp. 290-296. DOI: 10.4103/0019-5413.181780.
- 37. Pelissier P., Martin D., Baudet J., Lepreux S., Masquelet A.C. Behaviour of cancellous bone graft placed in induced membranes. *Br. J. Plast. Surg.*, 2002, vol. 55, no. 7, pp. 596-598.
- 38. Spinella-Jaegle S., Roman-Roman S., Faucheu C., Dunn F.W., Kawai S., Galléa S., Stiot V., Blanchet A.M., Courtois B., Baron R., Rawadi G. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta 1 on osteoblast differentiation. *Bone*, 2001, vol. 29, no. 4, pp. 323-330.
- 39. Wang X., Luo F., Huang K., Xie Z. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. *Bone Joint Res.*, 2016, vol. 5, no. 3, pp. 101-105. DOI: 10.1302/2046-3758.53.2000487.
- 40. Christou C. , Oliver R.A., Yu Y., Walsh W.R. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects. *PLoS One*, 2014, vol. 9, no. 12, pp. e114122. DOI: 10.1371/journal.pone.0114122.
- 41. Masquelet A.C., Obert L. Induced membrane technique for bone defects in the hand and wrist. *Chir Main.*, 2010, vol. 29, no. Suppl. 1, pp. S221-S224. DOI: 10.1016/j.main.2010.10.007.

Рукопись поступила 18.05.2018

Сведения об авторах:

1. Борзунов Дмитрий Юрьевич, д. м. н.

 $^1\Phi\Gamma$ БУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздрава России, г. Курган, Россия,

²ФГБОУ ВО «Тюменский ГМУ» Минздрава России, г. Тюмень, Россия,

Email: borzunov@bk.ru

2. Горбач Елена Николаевна, к. б. н., ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздрава России, г. Курган, Россия,

Email: gorbach.e@mail.ru

3. Моховиков Денис Сергеевич, к. м. н.,
ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздрава
России, г. Курган, Россия

 Колчин Сергей Николаевич, к. м. н., ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздрава России, г. Курган, Россия

Information about the authors:

Dmitrii Yu. Borzunov, M.D., Ph.D.,
 ¹Russian Ilizarov Scientific Centre "Restorative Traumatology and Orthopaedics", Kurgan, Russian Federation,
 ²Tyumen State Medical University, Tyumen, Russian Federation, Email: borzunov@bk.ru

2. Elena N. Gorbach, Ph.D. of Biological Sciences, Russian Ilizarov Scientific Centre "Restorative Traumatology and Orthopaedics", Kurgan, Russian Federation, Email: gorbach.e@mail.ru

 Denis S. Mokhovikov, M.D., Ph.D., Russian Ilizarov Scientific Centre "Restorative Traumatology and Orthopaedics", Kurgan, Russian Federation

 Sergei N. Kolchin, M.D., Ph.D., Russian Ilizarov Scientific Centre "Restorative Traumatology and Orthopaedics", Kurgan, Russian Federation