УДК 546.821/.824:616.71-089.843-77:577.121

Особенности метаболических процессов в костной ткани при использовании композитных имплантатов из пористого титана с алмазоподобным нанопокрытием

Э.Б. Макарова¹, Ю.М. Захаров², А.П. Рубштейн³

Features of bone metabolic processes when using composite porous titanium implants with diamond-like nanocoating

E.B. Makarova, Yu.M. Zacharov, A.P. Rubshtein

¹Федеральное государственное бюджетное учреждение «Уральский НИИ травматологии и ортопедии им. В.Д.Чаклина», г. Екатеринбург (директор – д.м.н. И. Л. Шлыков) ²Челябинская государственная медицинская академия, г.Челябинск (ректор – член-корреспондент РАМН И.И. Долгушин) ³Институт физики металлов УрО РАН, г. Екатеринбург (директор – академик РАН В.В. Устинов)

Эксперимент выполнен на 26 половозрелых кроликах. Изучали активность ферментов костной ткани при внедрении пористых титановых имплантатов (ПТі) и ПТі с алмазоподобными покрытиями (а-С), насыщенных аутогенными прилипающими клетками костного мозга, в зону костных дефектов. Выявили, что особенностями остеоинтеграции при использовании ПТі (а-С) является ранняя и более выраженная активация остеогенеза, сопровождающаяся активацией костной фракции щелочной фосфатазы по сравнению с ПТі. Одним из механизмов, обеспечивающих возрастающие энергетические потребности формирующейся костной ткани, является активация аэробных процессов.

Ключевые слова: пористый титан, имплантаты, алмазоподобное покрытие, кость, метаболизм.

The experiment was performed in 26 adult rabbits. The enzyme activity of bone tissue in the implementation of porous titanium implants with a diamond-like coatings (a-C) saturated with autologous adherent bone marrow cells, in the area of bone defects have been investigated. When using PTi (a-C) the features of osseointegration consisted in earlier and more pronounced osteogenesis activation, which was accompanied by activation of bone-specific alkaline phosphatase, as compared with PTi. One of the mechanisms that provided the increasing energy needs of the developing bone was the activation of aerobic processes. Keywords: porous titanium, implants, diamond-like coating, bone, metabolism.

введение

В выполненных ранее исследованиях показано, что модификация поверхности титана алмазоподобными пленками (a-C), имеющими структурные особенности в виде пирамидальных выступов, создает лучшие условия для адгезии прилипающих клеток костного мозга, их пролиферации и дифференцировки в остеогенном направлении. Реализация их функциональных возможностей зависит от характера протекания метаболических и синтетиче-

ских процессов [2].

Цель исследования – изучить активность ферментов костной ткани при внедрении в искусственно созданную костную нишу насыщенных аутогенными прилипающими клетками костного мозга пористых титановых имплантатов, а также пористых титановых имплантатов с алмазоподобными покрытиями (a-C).

МАТЕРИАЛЫ И МЕТОДЫ

Эксперимент выполнен на 26 половозрелых 6-10 месячных кроликах массой 2,5-3 кг стадного разведения. В эксперименте использовали два типа имплантатов – ПТі и ПТі (а-С). 1 группу составили 12 кроликов с ПТі (24 имплантата, насыщенных аутологичными клетками костного мозга), 2 группу – 12 кроликов с ПТі(а-С) (24 имплантата, насыщенных аутологичными клетками костного мозга), группа сравнения – 8 образцов из аналогичных областей костной ткани интактных кроликов. Костный мозг кроликов получали пункцией из крыла подвздошной кости. Миелокариоциты однократно отмывали избытком полной культуральной среды. После центрифугирования удаляли супернатант с жировым костным мозгом. Доводили кле-

точность суспензии до $5-6\times10^6$ /мл живых клеток. Имплантаты насыщали прилипающей фракцией клеток аутологичного костного мозга кроликов, внося в лунку стерильных 24-луночных планшетов (SplLifeSciences) с имплантатом $(5-6)\times10^6$ миелокариоцитов/мл на 2 часа. Количество клеток увеличивали инкубацией имплантатов с клетками в порах в полной культуральной среде в течение 14 суток при 37 °C, 4 % содержании CO_2 , абсолютной влажности. Смену 60 % среды осуществляли два раза в неделю. Операции по внедрению насыщенных клетками имплантатов кроликам проводили под об-

 $^{^1}$ Операции выполняли на базе ФГБУ ГОУ ВПО УГМА младший научный сотрудник Д. Г. Близнец, кандидат медицинских наук Э. Б. Макарова, ветеринарный врач К.С. Женыспаев.

щим наркозом. Выделяли костную площадку, сверлом 4 мм формировали дефект с проникновением в костномозговой канал, вход в него раззенковывали сверлом 4,5 мм. С помощью импактора в метадиафиз устанавливали имплантат таким образом, чтобы поверхность торца имплантата сравнялась с плоскостью кости. Положение имплантата контролировали рентгенологически. Через 5-6 часов животные наступали на оперированную конечность. Через 4, 16 и 52 недели после операции животных выводили из эксперимента. Для оценки активности ферментов остеогенных клеток из костей кроликов вырезали костные блоки 15-20 мм высотой, непосредственно прилегающие к внедренному имплантату, помещали в жидкий азот. Дальнейшие

манипуляции проводили на льду. Для разделения цитоплазматической и митохондриальной фракций осуществляли дифференциальное центрифугирование при 0/+4 °C на рефрижераторной высокоскоростной центрифуге Sorval. Изучали активность тартратрезистентной кислой фосфатазы (КФтарт), активность термолабильной щелочной фосфатазы (ЩФтерм), активность малатдегидрогеназы (МДГ) и лактатдегидрогеназы (ЛДГ). Исследования выполнены на биохимическом анализаторе Sapphire 400. Полученные результаты пересчитывали на 1 г ткани. Статистическая обработка результатов выполнена с использованием непараметрического критерия Манна-Уитни с применением программы Statistica Six SigmaRelease 7.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

При внедрении в дефект костной ткани пористых титановых имплантатов мы выявили рост активности костного изофермента щелочной фосфатазы в течение 4-16 недель после операции. При использовании ПТі (а-С) изменения были значимыми по сравнению с интактной костной тканью (соответственно 242,3 % p = 0.02 и 156 %, p = 0.01). Данный показатель отражал функцию остеобластов и свидетельствовал об активации процесса остеогенеаза. Активность тартратрезистентной кислой фосфатазы в течение 4-16 недель после операции не претерпевала значимых изменений в группе с ПТі (а-С) и значимо возрастала в группе с ПТі по сравнению с активностью данного фермента в интактной костной ткани. Возможно, это связано с выявленными при гистологических исследованиях ограниченными небольшими областями некроза костного вещества на краевых участках материнского ложа при использовании ПТі имплантатов на ранних сроках наблюдения и отсутствием очагов некроза при использовании имплантатов с модифицированной алмазоподобной пленкой поверхностью. Фосфатазный индекс (ФИ = ЩФтерм/КФтарт) (ПТі (а-С)) достигал максимального значения уже через 4 недели после операции (352 %, p = 0.048), а в группе с ПТі через 16 недель (400 %, p = 0,03). Полученные результаты согласуются с данными гистологических исследований. Покрытие поверхности титановых имплантатов алмазоподобными пленками приводит к активации процесса остеогенеза, что проявляется восстановлением кортикальной пластинки в зоне сформированного дефекта, уменьшением проявления рарификации и дистрофических изменений в материнском ложе от средне выраженных (ПТі) до незначительных (ПТі (а-С)).

Малатдегидрогеназа (К.Ф. 1.1.1.37) является полифункциональным ферментным комплексом, участвующим как в синтетических процессах, так и в энергетическом обмене. По современным представлениям, в клетках животных МДГ представлена в димерной и тетрамерной формах. Установлено, что для ткани с активно протекающими аэробными процессами характерно увеличение активности цитоплазматической фракции МДГ, восстанавливающей с помощью НАДН2оксалацетат в малат [1]. Интенсификация анаэробных процессов в тканях характеризуется увеличением глюконеогенеза и снижением активности цитоплазматической МДГ

[4]. Общая активность лактатдегидрогеназы (ЛДГ) связана с экспрессией ее двух полипептидных субъединиц, обозначаемых как "М" и "Н". Субъединицы М-типа ЛДГ функционируют в тканях преимущественно в анаэробных условиях, Н-типа - в хорошо аэрируемых тканях, что объясняется различной стимуляцией их специфической активности, определяемой концентрацией пирувата - низкой в хорошо аэрируемых тканях и высокой - в анаэробных условиях [5]. Данные свойства цитоплазматических МДГ и ЛДГ послужили основанием исследовать их активность для оценки преимущественно аэробной или анаэробной направленности метаболизма в различных тканях [1]. Полученные данные характеризуют активность МДГ в цитоплазме клеток гомогенатов интактной костной ткани, равной 23,7±9,1 ME/г ткани, что указывает на меньшую, но значимую активность аэробных процессов в костной ткани по сравнению с клетками интактной печени (49,08 МЕ/г сырой массы) [3]. Соответствие уровня активности цМДГ в костной ткани у группы ПТі (а-С) уровню ее активности в интактной кости с одновременным уменьшением общей активности ЛДГ в цитоплазме по сравнению с интактной костной тканью через 4 недели эксперимента указывает, на наш взгляд, на более выраженное протекание аэробных процессов в конечности с имплантатом ПТі (а-С), по сравнению с ПТі группой, у которой была отмечена тенденция к снижению активности цМДГ и цЛДГ. Аэробная направленность обмена в костной ткани конечности с внедренными ПТі (а-С) имплантатами подтверждается значимым отличием (р = 0,033) соотношения активностей цитоплазматических ЛДГ и МДГ по сравнению с группой с пористыми титановыми имплантатами и по сравнению с интактной костной тканью (р = 0,001). Через 16 недель после внедрения ПТі(а-С) в прилегающей к имплантату костной ткани активность цМДГ выше, а активность цЛДГ ниже, чем в интактной костной ткани. У группы ПТі в эти сроки также отмечается тенденция к росту активности цМДГ, но не достигающей уровня, регистрируемого в интактной костной ткани, и сниженный уровень цЛДГ по сравнению как с интактной костной тканью (р = 0,046), так и с группой ПТi (a-C) (p = 0,025), что мы расцениваем как следствие усиления процессов аэробного окисления в костной ткани обеих групп опытных животных. Через 12 месяцев уровень значимых

отличий в активности цМДГ и цЛДГ у животных с ПТі и ПТі (a-C) по сравнению с интактной костной тканью не выявлено. Однако обращает на себя

внимание сохраняющаяся тенденция к снижению активности цЛДГ в обеих группах животных с введенными имплантатами.

ЗАКЛЮЧЕНИЕ

Проведенный эксперимент показал, что остеоинтеграция пористых титановых имплантатов сопровождалась значимыми изменениями обмена в костной ткани. Характер изменений метаболических реакций зависел от типа применяемого имплантата. Особенностями остеоинтеграции при использовании ПТі (а-С) является более ранняя активация остеогенеза по сравнению с применением ПТі, на что указывает более ранняя и выраженная активация костной фракции щелочной фосфатазы, увеличение фосфатазного индекса у первой группы животных по сравнению со второй. Одним из механизмов, обеспечивающих возрастающие потребностей костной ткани в макроэргах, является активация метаболизма, характеризуемая увеличением доли аэробного окисления.

ЛИТЕРАТУРА

- Захаров Ю. М., Якушев В. С. О влиянии ингибиторов эритропоэза на метаболизм тканей некоторых органов // Физиол. журн. им. И. М. Сеченова. 1976. Т. 69, № 10. С. 1365-1368.
- 2. Интеграция костной ткани в пористые титановые имплантаты с алмазоподобными нанопокрытиями // Э. Б.Макарова, Ю. М.Захаров, А. П. Рубштейн, А. И. Исайкин // Гений ортопедии. 2011. № 4. С. 111-116.
- 3. Михайлова Е. В., Сафонова О. А., Попова Т. Н. Применение хроматографических методов для очистки цитоплазматической НАДзависимой малатдегидрогеназы из печени крыс в норме и при токсическом гепатите // Сорбционные и хроматографические процессы. 2008. Т. 8, Вып. 6. С. 1027-1034.
- Фарис С. А. Особенности физико-химических, кинетических и регуляторных свойств изоформ малатдегидрогеназы из печени крыс при аллоксановом диабете: автореф. дис. канд. биол. наук. Воронеж, 2010. 24 с.
- 5. Kaplan N.O. Lactate dehydrogenase-structure and function // Brookhaven Sympos. Biol. 1964. No 17. P.131-153.

Рукопись поступила 25.06.12.

Сведения об авторах:

- 1. Макарова Эмилия Борисовна ФГБУ «Уральский НИИ травматологии и ортопедии им. В.Д. Чаклина», г. Екатеринбург, старший научный сотрудник клинико-биохимической лаборатории, к. м. н.
- Захаров Юрий Михайлович Челябинская государственная медицинская академия, г. Челябинск, зав. кафедрой нормальной физиологии, академик РАМН.
- 3. Рубштейн Анна Петровна Институт физики металлов УрО РАН, г. Екатеринбург, лаборатория неравновесных процессов института физики металлов, старший научный сотрудник, к. ф.-м. н.