© Группа авторов, 2012

УДК 57.032:611.018.4:611.018.54

Исследование гуморальных компонентов, стимулирующих остеогенез

О.Л. Гребнева, М.А. Ковинька, С.Н. Лунева, Т.А. Ларионова, Е.Н. Овчинников, Д.В. Самусенко

Studying the humoral components stimulating osteogenesis

O.L. Grebneva, M.A. Kovin'ka, S.N. Luneva, T.A. Larionova, E.N. Ovchinnikov, D.V. Samusenko

Федеральное государственное бюджетное учреждение «Российский научный центр "Восстановительная травматология и ортопедия" им. академика Г. А. Илизарова» Минздравсоцразвития РФ, г. Курган (директор — д.м.н. А.В. Губин)

Изучали состав компонентов остеогенной фракции плазмы крови пациентов после костной травмы (основная группа, 10 человек) и аналогично выделенной фракции сыворотки крови соматически здоровых доноров (референтная группа, 10 человек). Исследовали содержание белков, белковых фракций, гидроксипролина, сиаловых и уроновых кислот, а также инсулиноподобного фактора роста – 1. Обнаружили, что фракция основной группы состоит из компонентов полипептидной и углеводной природы и содержит более чем в 20 раз большую концентрацию инсулиноподобного фактора роста – 1 при сравнении с фракцией референтной группы.

Ключевые слова: остеогенез, плазма крови, инсулиноподобный фактор роста – 1.

The composition of the components of blood plasma osteogenic fraction was studied in patients after bone injury (the main group, n = 10), as well as that of similarly isolated blood serum fraction of somatically normal donors (the reference group, n = 10). The content of proteins, protein fractions, hydroxyproline, sialic and uronic acids, and also that of insulin-like growth factor-1 was studied. The fraction of the main group has been found to consist of polypeptide- and carbohydrate-origin components and to contain more than 20-fold higher concentration of insulin-like growth factor-1 in comparison with the reference group fraction.

Keywords: osteogenesis, blood plasma, insulin-like growth factor - 1.

На сегодняшний день в клинической практике не теряет актуальности задача сокращения сроков лечения больных ортопедотравматологического профиля с помощью средств фармакологической коррекции. Среди таких средств широко ведутся исследования по применению компонентов крови [11, 14, 35]. На базе РНЦ «ВТО» им. акад. Г.А. Илизарова проводятся исследования, посвященные стимуляции регенерации костной ткани с помощью компонентов крови от доноров с активным остеогенезом. Ранее была доказана в эксперименте эффективность способа стимуляции костеобразования с помощью компонентов плазмы крови с определенными физико-химическими свойствами [10], на основании чего разработана и апробирована в

клинических условиях медицинская технология с применением компонентов аутоплазмы [12]. Хотя были получены первые положительные результаты, широкое применение предлагаемого способа сдерживает ряд факторов. Среди них — необходимость выявления механизмов реализации эффекта, в которые входит как идентификация слагаемых фракционированной плазмы, так и определение мишеней их действия. Известно, что сыворотка крови здоровых доноров не влияет на репаративный остеогенез [13]. Целью настоящего исследования явилось сравнение состава компонентов остеогенной фракции плазмы крови пациентов после костной травмы и аналогично выделенной фракции сыворотки крови соматически здоровых доноров.

МАТЕРИАЛ И МЕТОДЫ

Основную группу составили 10 пациентов в возрасте 25±2 года с закрытыми многооскольчатыми переломами длинных трубчатых костей конечностей, у которых забирали кровь спустя 12±2 суток после травмы для получения остеогенной фракции (ОФ). Материал для контрольных исследований был выделен из плазмы 10 человек без соматической патологии в возрасте 20-22 лет. Фракционирование плазмы крови с получением лиофилизи-

рованного материала проводили в соответствии с ранее описанной процедурой [12]. В полученной фракции определяли содержание общего белка биуретовым методом, белковых фракций – с помощью электрофоретической системы «Paragon» (Вескта Coulter), гексуроновых кислот (ГУК) – по методу Дише в модификации Bitter T., Muir H.M. [20], сиаловых кислот (СК) – наборами «Сиалотест 100» (НПЦ «ЭКО-СЕРВИС», Россия), гидроксипролина

(ОН-про) – по методу [1] после предварительного гидролиза навески лиофилизированной пробы в 6 н соляной кислоте, ИФР-I – радиоиммунологическим методом с использованием наборов «IRMA IGF-I»

(IMMUNOTECH). Статистическую обработку результатов проводили с использованием непараметрического критерия Вилкоксона для независимых выборок.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Было обнаружено, что группы по содержанию общего белка сыворотки крови не отличаются (табл.1). Масса остеогенной фракции и содержание белка в материале основной группы имеет тенденции к более высоким величинам, но достоверных отличий обнаружено не было. Значительную часть выделенного материала составляет белок: до 95 % от массы анализируемой фракции в основной и до 91 % – в референтной группе (табл. 1).

Анализ белковых фракций показал, что в $О\Phi$, в отличие от нормальной сыворотки крови, преимущественно содержатся белки с электрофоретиче-

скими свойствами β- и у-глобулинов (табл. 2).

Не было обнаружено различий между группами по содержанию сиаловых кислот, тогда как содержание гексуроновых кислот и гидроксипролина в ОФ основной группы было достоверно меньше референтных значений этих показателей (табл. 3).

Результаты исследований показали, что по содержанию ИФР-1 ОФ основной и референтной групп резко различаются; величины этого фактора роста у пациентов после травмы более чем в 20 раз превышают показатели экстрагируемого той же технологией ИФР-1 из сыворотки здоровых пациентов (табл. 4).

Содержание белка в остеогенной фракции

Таблица 1

Таблица 2

Таблица 3

Величина	Основная группа (n=10)				Референтная группа (n=10)			
	Общий белок сыворотки, г/л	/ /	Общий белок ОФ, мг		Общий белок сыворотки, г/л		Общий белок «ОФ», мг	Белок, % от массы «ОФ»
медиана	68,2	25,50	22,78	71,05	71,3	18,71	15,8	84,45
1 квартиль	63,9	21,15	16,59	66,30	69,7	15,45	13,4	76,73
3 квартиль	73,9	30,00	29,27	94,65	73,6	22,10	20,2	91,40

Белковые фракции остеогенной фракции (n = 10) и нормальной сыворотки крови, %

Farmany to Amazeur	Darwey	Альбумины	Глобулины				
Белковые фракци	Величина		$\alpha_{_1}$	α_2	β	γ	
	медиана	5,65	1,65	13,25	37,60	38,00	
Остеогенная фракция	1 квартиль	3,7	1,25	9,63	31,90	28,55	
	3 квартиль	8,9	3,35	14,33	43,30	45,65	
Нормальные значения для сыворотки [15]	диапазоны значений	54-65	2-5	7-13	8-15	12-22	

Содержание гексуроновых, сиаловых кислот и оксипролина в ОФ, выделенной из эквиобъемного количества сыворотки крови, мкмоль

Основная группа (n=10) Референтная группа (n=10) Величина ГУК СК ОН-про ГУК СК ОН-про 0,458* 0,390 0,390 1,08* 0,720 3,22 медиана 0,380 0,355 0,81 0,540 0,360 2,16 1 квартиль 0,633 0,555 1,97 0,960 0,450 4,37 3 квартиль

Таблица 4 Содержание ИФР-1 в остеогенной фракции в основной (n=10) и референтной (n=10) группах, нг

Группы	Медиана	1 квартиль	3 квартиль
Основная группа	1124*	935	1992
Референтная группа	48,6	20,3	174,8

^{* -} показатель отличается от значения референтной группы с p<0,001.

^{* -} показатели отличаются от значений референтной группы с р<0,05.

ОБСУЖДЕНИЕ

Обнаруженные нами данные по составу остеогенного начала сыворотки крови по большей части согласуются с литературными. К 70-м годам 20-го века было известно, что рострегулирующие свойства обеспечиваются недиализуемым активным началом, присутствующим в сыворотке крови и экстрактах травмируемых органов, связанным в основном с альбуминовой фракцией, устойчивым к лиофилизации и не строго видоспецифичным [13]. Выделенные нами компоненты плазмы по большей части обладают белковой природой, также не диализуются через мелкопористые фильтры, не теряют свойств после лиофилизации [10], не обладают строгой видоспецифичностью (неопубликованные данные). Однако значительную часть ОФ составляют не альбумины, а белки с электрофоретическими свойствами β- и у-глобулинов. Возможно, этот феномен связан с тем, что остеоиндуктивное начало связано с альбуминами нековалентными связями; в этом случае в ходе процедуры выделения, включающей растворение осажденного материала в растворе 8 М мочевины, должна происходить диссоциация таких связей.

Исследование состава ОФ обнаружило меньшие, чем референтной группе, значения гексуроновых кислот и гидроксипролина, несмотря на то, что в этот период наблюдаются высокие значение этих показателей в сыворотке крови [2]. По-видимому, это объясняется тем, что данные метаболиты входят в состав соединений, обладающих отличающимися физико-химическими свойствами в исследованных группах; это ведет, например, к связыванию с различными транспортными белками.

На сегодняшний день известно, что мощными регуляторами регенерации костной ткани являются факторы роста, депонированные в костной ткани и циркулирующие в гуморальном русле [3, 4, 8, 17, 21, 28]. Среди них одно из ключевых мест занимает инсулиноподобный фактор роста — 1, и нами было обнаружено более чем 20-кратное превышение референтных величин концентрации этого фактора в ОФ основной группы, что предполагает его участие в реализации остеогенного эффекта сыворотки крови.

Известно, что ИФР-1 играет центральную роль в регуляции клеточного деления, необходим для оптимальной пролиферации и дифференцировки остеогенных клеток [25, 26, 32], стимулирует синтез костного коллагена и аппозиционный рост костного матрикса, а также вызывает синтез ДНК и репликацию клеток в линиях остеобластов [21]. Кроме того, ИФР-1 способен стимулировать рост костей посредством повышения канальцевой реабсорбции неорганического фосфата и образования 1,25-дигидроксивитамина D3 почками [22]. Однако действие этого фактора на регенерацию костной ткани неоднозначно; так, обнаружено, что ИФР-1 принимает участие в процессах костной резорбции: он вызывает образование интерлейкина (ИЛ)-6 и увеличивает количество остеокластов [29], а также активирует зрелые остеокласты [16].

Учитывая приведенные факты, ИФР-1 нельзя отнести к факторам, исключительно стимулирующим костеобразование. И в этом отношении на ИФР-1 похожи многие, если не все полипептиды из группы факторов роста. Один и тот же цитокин может быть как стимулятором, так и ингибитором митотической и пролиферативной активности клеток в зависимости от концентрации, дифференцировочного фенотипа клетки, времени инкубации и присутствия других регуляторов в среде [18]. Показано, что трансформирующий фактор роста бета (ТФРВ) оказывает стимулирующее влияние на пролиферацию клеток линии СЗН/10Т1/2 лишь при условии повышенной экспрессии протоонкогена с-тус [26], что стимулируется целым рядом факторов роста [8]. Кроме того, ТФРВ через сеть внутриклеточных медиаторов способен активировать онкоген c-fos, играющий важнейшую роль в морфогенезе кости [27]. Однако при условии повышенной транскрипции этого онкогена ТФРВ ингибирует синтез ДНК, стимулированный эпидермальным фактором роста (ЭФР) и фактором роста тромбоцитарного происхождения (ФРТП) [33]. Имеются данные, свидетельствующие о зависимости действия факторов роста от дифференцировочного фенотипа клетки. Так, ТФРВ стимулирует рост предшественников остеобластов и ингибирует рост клеток остеосаркомы [31]. Фактор роста фибробластов (ФРФ) является митогеном для нормальных остеобластов, но ингибирует пролиферацию клеток остеосаркомы крысы [17]. Присутствующие (или индуцированные) другие факторы роста могут модулировать действие тестируемого фактора на нескольких уровнях. ФРФ стимулирует транскрипцию гена, кодирующего ТФРВ [30], а последний активирует ген, кодирующий рецептор ЭФР [28]. Основной ФРФ (оФРФ), ТФРВ1 и ФРТП ВВ уменьшают содержание мРНК ИФР-связывающего белка (СБ)-5 и самого белка в культуре обогащенных остеобластами клеток свода черепа эмбрионов крысы [24]; известно, что для ИФР-1 существует целая система ИФР-СБ, обладающих различными функциями в отношении активности ИФР-1 [4]. Обнаружена модуляция действия полипептидных регуляторов через влияние на экспрессию рецепторов. Например, ИЛ-1 вызывает высвобождение интерферона-у, который повышает экспрессию рецепторов для фактора некроза опухоли (ФНО); ФРФ и ФРТП индуцируют рецепторы для ИЛ-1; ФНО, ФРТП и ЭФР модулируют активность рецепторов для ЭФР [28]. Этим далеко не исчерпываются возможности регуляции действия цитокинов на этапе рецепции. Так, обнаружено существование пептида - специфического ингибитора связывания ИЛ-1 с его рецептором [24]. Системные гормоны могут модулировать локальное костеобразование посредством регуляции синтеза и высвобождения костных факторов роста. Было обнаружено, что в различных системах костных клеток высвобождение ИФР-2 способны стимулировать ПТ,

1,25-дигидроксивитамин D3, 17 β -эстрадиол [28]. С другой стороны, известны примеры активной модуляции эффектов гормонов факторами роста. Например, модулировать эффект паратирина вплоть до его отмены способны ТФР β и оФРФ [23, 34].

Приведенные примеры свидетельствуют о пермиссивности действия как каждого фактора роста, так и любого другого эффектора, т.е. о модуляции его действия другими факторами – наличием и концентрацией других эффекторов в среде, функциональным состоянием клетки-мишени и другими. Известны примеры неудачных попыток применения одного фактора роста, успешно себя зарекомендовавшего при использовании in vitro, в систему in vivo [8]. Видимо, это объясняется тем, что текущие адаптационные процессы, обладающие многоконтурностью [5], могут продолжать осуществление своей программы регенерации. Исходя из высокой стабильности феномена стимуляции костеобразования с помощью гуморальных компонентов доноров с активным остеогенезом [6, 9, 19], можно предположить, что его реализацию вызывает не одно активное вещество, а комплекс молекул, действующих по различным контурам и дублирующих действие друг друга. Данное предположение согласуется с представлениями о развитии адаптационных процессов в организме [5] и подтверждается наличием остеоиндуктивного эффекта богатой

тромбоцитами плазмы крови, содержащей набор известных (а может, еще и не известных) факторов роста [7, 11].

По современным представлениям, факторы роста и цитокины являются частью единого программного звена — коммуникативно-регуляторного интегративного аппарата (КРИА), который включает нервную, гормональную и иммунную системы. Деятельность трех интегративных систем тесно взаимосвязана. Так, установлено, что клетки иммунной системы регулируются гормонами и нейромедиаторами, и, наоборот, иммунная система посредством цитокинов и аутоантител направленно регулирует функции нервной и эндокринной систем; лимфоциты секретируют некоторые гипофизарные гормоны и их иммунологические копии, а нейроны головного мозга продуцируют инсулин [3].

Таким образом, результаты исследований показали, что в состав остеогенной фракции входят соединения полипептидной и углеводной природы. Обнаружено, что в ОФ входит инсулиноподобный фактор роста — 1 в концентрациях, более чем в 20 раз превышающих референтные величины. Мы полагаем, что остеогенная активность сыворотки крови обусловлена наличием комплекса гуморальных компонентов КРИА, в число которых входит ИФР-1, а также другие, пока еще не идентифицированные эффекторы.

ЛИТЕРАТУРА

- 1. Биохимические методы анализа показателей обмена биополимеров соединительной ткани / П. Н. Шараев [и др.]. Ижевск. 1990. С. 3-5.
- 2. Герасимов А. М., Фурцева Л. Н. Биохимическая диагностика в травматологии и ортопедии. М.: Медицина, 1986. 234 с.
- 3. Зайчик А. Ш., Чурилов Л. П. Основы общей патологии: (учеб. пособие для студентов медвузов). СПб.: ЭЛБИ, 1999. Ч.1. 624 с.
- 4. Кишкун А. А. Биологический возраст и старение: возможности определения и пути коррекции: рук. для врачей. М.: ГЭОТАР-Медиа, 2008. 976 с
- 5. Корнилов Н. В., Аврунин А. С. Адаптационные процессы в органах скелета. СПб.: МОРСАР АВ, 2001. 269 с.
- 6. О гуморальных механизмах регуляции репаративного остеогенеза / В. И. Филимонов [и др.] // Бюл. эксперим. биологии и медицины. 1977. № 12. С. 725-727.
- 7. Результаты применения богатой тромбоцитами аутоплазмы в хирургическом лечении больных с дефектами костной ткани / В. Г. Самодай [и др.] // Журн. теоретич. и практ. медицины. 2006. Т.4, № 2. С.173-175.
- 8. Романчиков Ю. М. Факторы роста, вторичные мессенджеры и онкогены // Успехи соврем. биологии. 1991. Т.111, № 1. С.19-33.
- 9. Соловьев Г. С. Факторы стимуляции регенерационных процессов хрящевой и костной тканей // Эпителий и соединительная ткань в нормальных, экспериментальных и патологических условиях: тез. конф. морфологов Сибири. Тюмень, 1983. С. 228-229.
- 10. Способ стимуляции репаративного остеогенеза: патент 2193868 Рос. Федерация. № 98105940/14; заявл. 26.03.1998; опубл. 10.12.2002, Бюл. № 34.
- 11. Способ лечения дефектов длинных трубчатых костей: патент 2283043 Рос. Федерация. № 2005115802/14; заявл. 24.05.05; опубл. 10.09.2006, Бюл. № 25. 2 с.
- 12. Ускорение костной регенерации экстракорпорально модифицированной аутоплазмой: мед. технология / А. В. Попков, М. А. Ковинька, О. Л. Гребнева, Д. А. Попков, И. А. Талашова. Курган, 2006. 9 с.
- 13. Условия регенерации органов у млекопитающих / под ред. Л. Д. Лиознера. М.: Медицина, 1972. 328 с.
- 14. Хирургическое лечение больных с псевдоартрозами с применением богатой тромбоцитами аутоплазмы / В. Г. Самодай [и др.] // Вестн. травматологии и ортопедии им. Н. Н. Приорова. 2007. № 1. С. 215-242.
- 15. Чиркин А. А., Окороков А. Н., Гончарик И. И. Диагностический справочник терапевта. Минск: Беларусь, 1993. 688 с.
- 16. Щепеткин И. А. Остеокластическая резорбция кости // Успехи соврем. биологии. 1996. Т.116, вып. 4. С. 474-492.
- 17. Щепеткин И. А. Полипептидные факторы остеогенеза--- // Успехи соврем. биологии. 1994. Т.114, вып. 4. С. 454-466.
- 18. Щепеткин И. А. Фактор некроза опухоли как полипептидный фактор роста // Успехи соврем. биологии. 1993. Т.113, вып. 5. С. 17-625.
- 19. Эпштейн М. Э. Регенерационные вещества в крови и сыворотке, способствующие заживлению повреждений и ран, их теоретическое и практическое значение // Новый хирург. архив. 1925. Т.б, кн. 4. С. 449-456.
- 20. Bitter T., Muir H.M. A modified uronic acid carbazole reactions // Anal. Biochem. 1962. Vol. 4. P.330-334.
- 21. Canalis E. Bone-related growth factors // Triangle. 1988. Vol. 27, No 1/2. P. 11-19.
- 22. Caverzasio J., Bonjour J.-P. IGF-1 et homeostase du phosphate pendant la croissance // Nephrologie. 1992. Vol.13, No 3. P.109-113.
- 23. Effect of acidic and basic fibroblasts growth factors on osteoblast cells / S.B. Rodan [et al.] // Conn. Tiss. Research. 1989. Vol. 20. P. 283-288.
- 24. Goldring M.B., Goldring S.R. Skeletal tissue response to cytokines // Clin. Orthop. Relat. Res. 1990. Vol. 258, P. 245-278.
- 25. Hock J.M., Centrella M., Canalis E. Insulin-like growth factor 1 has independent effects of bone matrix formation and cell replication // Endocrinology. 1988. Vol. 122. P. 254-261.
- 26. Leof E.B., Proper J.A., Moses H.L. Modulation of transforming growth factor β action by activated ras and c-myc // Mol. Cell. Biol. 1987. Vol.7, No 7. P. 2649-2652.

Гений Ортопедии № 2, 2012 г.

- 27. Mackie E.J., Trechsel U. Stimulation of bone formation in vivo by transforming growth factor-beta: remodeling of woven bone and lack of inhibition by indomethacin // Bone. 1990. Vol.11, No 4. P. 295-300.
- 28. Mohan S., Baylink D.J. Bone growth factors // Clin. Orthop. Relat. Res. 1991. Vol. 263. P. 30-48.
- 29. Osteoclast formation together with interleukin-6 production in mouse long bones is increased by insulin-like growth factor-1 / M.C. Slootweg [et al.] // J. Endocrinol. 1992. Vol. 132, No 3. P. 433-438.
- 30. Paris S., Pouyssegur J. // EMBO J. 1985. Vol. 5. P. 5. цит. по [28].
- 31. Pfeilschifter J., D'Souza S.M., Mundy G.R. Effects of transforming growth factor-β in osteoblastic osteosarcoma cells // Endocrinology. 1987. Vol. 121. P. 212-218.
- 32. Skeletal growth factor and other growth factors known to be present in bone matrix stimulate proliferation and protein synthesis in human bone cells / J.E. Wergedal [et al.] // J. Bone Miner. Res. 1990. Vol. 5. P. 179-187.
- 33. TGF-β induced a sustained c-fos expression associated with stimulation or inhibition of cell growth in EL-2 or NIH-3T3 fibroblasts / Liboi E. [et al.] // Biochem. Biophys. Res. Commun. 1988. Vol. 151, No 1. P. 298-305.
- 34. Transforming growth factor β inhibits formation of osteoclast-like cells in long-term human marrow cultures / C. Chehu [et al.] // Proc. Nat. Acad. Sci. USA. 1988. Vol. 85, No 15. P. 5683-5687.
- 35. Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration [Y. Yamada [et al.] // Tissue Eng. 2004. Vol. 10, No (5-6). P. 955-964.

Рукопись поступила 01.07.2010.

Сведения об авторах:

- 1. Гребнева Ольга Леонидовна ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздравсоцразвития России, г. Курган; клинико-экспериментальный лабораторный отдел, старший научный сотрудник, к.м.н.; e-mail: olgrebneva@bk.ru.
- 2. Ковинька Михаил Александрович ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздравсоцразвития России, г. Курган; клинико-экспериментальный лабораторный отдел, старший научный сотрудник, к.б.н.
- 3. Лунева Светлана Николаевна ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздравсоцразвития России, г. Курган; руководитель клинико-экспериментального лабораторного отдела, д.б.н., профессор.
- 4. Ларионова Татьяна Адиславовна ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздравсоцразвития России, г. Курган; заведующая отделением радиоизотопной диагностики, к.м.н.
- 5. Овчинников Евгений Николаевич ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздравсоцразвития России, г. Курган; ученый секретарь, к.б.н.
- 6. Самусенко Дмитрий Валерьевич ФГБУ «РНЦ «ВТО» им. акад. Г.А. Илизарова» Минздравсоцразвития России, г. Курган; научно-клиническая лаборатория травматологии, старший научный сотрудник, к.м.н.